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Practical forecasting of air pollution components is important for monitoring and providing
early warning. The accurate prediction of pollutant concentrations remains a challenging
issue owing to the inherent complexity and volatility of pollutant series. In this study, a novel
hybrid forecasting method for hourly pollutant concentration prediction that comprises a
mode decomposition-recombination technique and a deep learning approach was
designed. First, a Hampel filter was used to remove outliers from the original data.
Subsequently, complete ensemble empirical mode decomposition adaptive noise
(CEEMDAN) is employed to divide the original pollution data into a finite set of intrinsic
mode function (IMF) components. Further, a feature extraction method based on sample-
fuzzy entropy and K-means is proposed to reconstruct the main features of IMFs. In
conclusion, a deterministic forecasting model based on long short-term memory (LSTM)
was established for pollutant prediction. The empirical results of six-hourly pollutant
concentrations from Baoding illustrate that the proposed decomposition-recombination
technique can effectively handle nonlinear and highly volatile pollution data. The developed
hybrid model is significantly better than other comparative models, which is promising for
early air quality warning systems.

Keywords: hourly pollutants forecasting, decomposition-recombination technique, sample-fuzzy entropy, k-means,
long short-term memory

INTRODUCTION

Following rapid industrialization and urbanization, various air pollution problems have occurred
frequently. Air pollution has serious effects on human health and causes significant economic losses
(Tang et al., 2010; Liu et al., 2011; Pandey et al., 2021). Therefore, establishing high-precision
monitoring and prediction models is necessary to support governmental decision-making,
environmental protection, and medical diagnosis.

Up to now, enormous amount of studies contributed to predicting future trends of air pollutants.
In summary, most works modeled for prediction from three perspectives: mathematical and physical
techniques, statistical prediction models, and machine learning models. First, mathematical and
physical techniques have long been widely used in the field of air pollutant prediction. For instance,
Huang et al. (2018) developed a random forest model, including gap-filled aerosol optical depth
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(AOD), Modern-Era Retrospective analysis for Research and
Applications Version 2 (MERRA-2) simulations,
meteorological parameters, and land cover as predictors to
estimate monthly PM2.5 concentrations in North China.
Tessum et al. (2015) used Weather Research and Forecasting
with Chemistry Meteorological (WRF-Chem) and a chemical
transport model (CTM) to simulate air pollution in adjacent areas
of the United States for 12 months in 2005 with a horizontal
resolution of 12 km and evaluated the simulation results.
Atmospheric environment diffusion model techniques such as
CTM and WRF can predict the pollutant concentration by
solving the corresponding differential equation, which makes
the prediction more deterministic (Yahya et al., 2014).
Pollutants can further be predicted using the statistical
forecasting model. Statistical methods are used to predict
pollutants by mining time-series data for characteristic
information. Zhang et al. (2018) used the autoregressive
integrated moving average model (ARIMA) to predict the
PM2.5 concentration and compared it with other pollutant
concentrations and meteorological parameters. Further, Wang
P. et al. (2017) proposed a novel hybrid generalized autoregressive
conditional heteroskedasticity (GARCH) method by combining
ARIMA and support vector machine (SVM) forecasting models.
Additionally, some improved statistical models, such as multiple
linear regression (Elbayoumi et al., 2015; Yuchi et al., 2019; Yan
and Enhua, 2020) and gray models (Chen & Pai, 2015; Wu &
Zhao, 2019), are proposed for better prediction of PM2.5.
Machine learning models such as artificial neural networks
and support vector algorithms have recently become more
prominent in pollution prediction. Various machine learning
methods have been used in previous air pollution prediction
studies. These include the following: backpropagation neural
network (BPNN) (Bai et al., 2016); generalized regression
neural network (GRNN) (Zhou et al., 2014); extreme learning
machine (ELM) (Shang et al., 2019); random forest (Huang et al.,
2018); support vector regression (SVR) (Zhu et al., 2018); long
short-term memory (LSTM) (Qi et al., 2019; Yan et al., 2021)
Zhang et al. (Zhang et al., 2019), integrated a multiple objectives
model with five algorithms—BPNN, ARIMA, cuckoo search
(CS), holt winters (HW) and online extreme learning machine
(OELM)—for wind speed prediction. A constructed function
comprising a three-objective combined model was optimized
using a non-dominated sorting genetic algorithm. Liu et al.
(Liu et al., 2018), constructed a combined model was
constructed using a nonlinear neural network and statistical
linear algorithm. Compared with several integrated models, it
is more reliable and results in high accuracy.

However, it is hardly possible for a single prediction method to
elaborately capture all complex features in pollution series which
locate in a high dimension space. To this end, data preprocessing
by outlier removing and series decomposition is efficient way for
model construction at first. Various data preprocessing methods
are developed for pollution data with nonlinearity and volatility
present in. Data preprocessing approaches and optimization
strategies have been extensively researched for pollutant
prediction to increase the efficiency and accuracy of the
prediction performance (Li & Zhu, 2018). Researchers usually

propose suitable data preprocessing methods and process them
according to study requirements. Several existing data
preprocessing methods are relevant to the study of
environmental contaminants. Empirical Mode Decomposition
(EMD) (Huang et al., 1998) is a well-known algorithm for series
decomposition. This algorithm projects a time series onto a set of
intrinsic mode function (IMF) acting as bases because the project
coefficients show good shapes via the Hilbert transform. These
bases are derived from the phenomena of oscillations in the
physical time domain. Owing to the poor performance of the
subjective intervention for the intermittence test, EEMD (Wu and
Huang, 2009) is proposed using noise-assisted data analysis
(NADA) to construct a set of IMF. To increase the scales of a
series at high frequency via the transformation of the IMF, an
ensemble of white noise is incorporated for the designed trials
because its scales are distributed uniformly in both the time and
frequency domains. The true signal is estimated using the average
of the ensemble in which the random white noise is canceled out,
and only the persistent part of the signal remains. For example,
(Zhou et al., 2014), suggested a hybrid ensemble empirical mode
decomposition-generalized regressionneural network (EEMD-GRNN)
model that integrates the EEMD and a generalized regression
neural network (GRNN) as a strategy for forecasting PM2.5.
Wang (Wang D. et al., 2017) developed a new hybrid model
based on a two-phase decomposition technique and modified
ELM to improve the forecasting accuracy of the air quality
index. Xu et al. (Xu et al., 2017) developed a hybrid model based
on Improved Complementary Ensemble Empirical Mode
Decomposition, Whale Optimization Algorithm and Support
Vector Machine (ICEEMD-WOA-SVM) to predict major
pollutants, in which the data preprocessing part follows a
“decomposition and integration” strategy. The raw series of
each pollutant concentration was decomposed into several IMFs
that were individually decomposed using a data preprocessing
technique. The Hampel filter is an offline frequency-domain
filtering method for eliminating spectral outliers (Allen, 2009).
The advantage of the Hampel filter is that there is no prior need
to know the outliers where the disturbance occurs. Moreover,
the processed data series will not be distorted. Li et al. (Li et al.,
2019) developed a new analysis and prediction system for air
quality index prediction. Outliers in the air quality index series
were eliminated using Hampel filter. Liu et al. (Liu and Chen,
2020) proposed a three-stage hybrid neural network model for
outdoor PM2.5 forecasting. K-means is an iterative clustering
analysis algorithm used in pollutant data analysis. Riches et al.
(Riches et al., 2022) employed the K-means cluster to analyze
five concentrations. They further examined the patterns of
association between PM2.5, PM10, CO, NO2, O3, and SO2

measurements and variations in annual diabetes incidence at
the county level in the United States.

The data preprocessing methods mentioned above provided
qualified data for later analysis with prediction models. However,
most current studies only use a single data preprocessing
technology which cannot offer well present data suitable for
further modeling. For example, in some studies, the EEMD
technique was the only method used to decompose the
original data into numerous IMF components for reducing the
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prediction complexity. The effective extraction of features from
IMFs is difficult because features with diversity in frequency
domain might be caused by outliers, which introduce disturbance
into prediction. Therefore, in this study, the original data were
first filtered by Hampel to eliminate the outliers in the data. The
data were then decomposed into several IMFs using complete
ensemble empirical mode decomposition adaptive noise
(CEEMDAN). The complexity characteristics of the different
sequences were obtained by calculating the fuzzy entropy and
information entropy of each IMF signal. Subsequently, similar
IMFs are recombined using the K-means clusteringmethod based
on fuzzy entropy and information entropy. After that, a
prediction model was established using LSTM to conduct an
empirical study of the six pollutants.

RELATED METHODOLOGIES

Data Preprocessing Method
Six data preprocessing methods—the Hampel filter, CEEMDAN,
Sample entropy (SE), Fuzzy entropy (FE), K-means, and LSTM
prediction methods—were applied in this study to better predict the
concentrations of six pollutants: PM2.5, PM10, SO2, NO2, O3, and
CO. First, the original data were filtered byHampel filter to eliminate
the outliers in the data. Then, the data was decomposed into several
IMFs using CEEMDAN. The complicated characteristics of the
different sequences were obtained by calculating the fuzzy
entropy and information entropy of each IMF signal. Finally, to
sum up similar IMFs in each group clustered with the K-means in
terms of fuzzy entropy and information entropy.

Hampel Filter
The Hampel filter is an offline frequency-domain filtering
method used to eliminate spectral outliers that are difficult to
represent elaborately using prediction models. By representing
the sequence with a one-dimensional vector, the method
generates a local window around each element of the vector
and calculates the median of all elements in that window. The
standard deviation of each sample was further estimated using the
absolute value of the median. The absolute difference between the
sample and median shorted in the MAD can be a direct
measurement for outlier detection. Mathematically, the
Hampel filter detects elements as outliers in a vector using Eq. 1:

{ Sj � 1.4286median{∣∣∣∣∣xj − xp
j

∣∣∣∣∣},
xj � xp

j , if
∣∣∣∣∣xj − xp

j

∣∣∣∣∣> tSj, for j � 1, ..., N,
(1)

where t is the threshold, and N is the length of the vector. The
variables xp

j and Sj are the median and standard deviation of the
window centered at element xj, respectively. The deviation Sj is
estimated adaptively by multiplying MAD and a constant.
Element xj is further replaced with xp

j when the MAD is t
times larger than Sj, the standard deviation.

Algorithm of CEEMDAN
EEMD can obtain better IMF than EMD. However, it does not
result in exact decomposition because the white noise drives the

generation on new modes that hide within the mixed IMFs.
Furthermore, the IMF might not be orthogonal so that the energy
of the added white noise is not similar to that when the polluted
series are expanded by the IMF. To overcome this problem,
CEEMDAN first defines a residual between the series and
variation IMF from EEMD and then applies the step in EMD,
which extracts the most IMF of the residual. The above steps were
repeated until the residual energy was small. The last residual is
defined as the last mode, which is why this algorithm is
considered complete.

Let E1(•) denote the operator that decomposes the first mode
from a series, defined as in EMD, and let IMFV

j denote the
variation of the j − th IMF. Assuming M, the number of trials in
EEMD, the procedure of CEEMDAN is described in detail as
follows:

Step 1: The first variation IMF is the same as the first in EEMD.

IMFv
1[n] �

1
M

∑M
i�1
IMFi

1[n] � IMF1[n].

Step 2: The following is the first residual off the decomposed
series.

r1[n] � x[n] − IMFv
1[n].

Step 3: Let the second mode be the mean of the
decompositions of the residuals enhanced by adaptive noise
with E1(•) in an ensemble of trials.

IMFv
2[n] �

1
M

∑M
i�1
E1(r1[n] + ε1E1(ωi[n])).

Step 4: Similar to step 2, define the k − th residual off the
(k − 1) − th residual.

rk[n] � r(k−1)[n] − IMFv
k[n].

Step 5: Extract the (k + 1) − th mode, IMFV
k+1[n], from the

enhanced k − th residual by an adaptive noise,

IMFv
(k+1)[n] �

1
M

∑M
i�1
E1(rk[n] + εkEk(ωi[n])).

Step 6: After the number ofK decompositions, the last residual
is given as follows:

R[n] � x[n] −∑K
k�1

IMFv
k,

and we have the exact decomposition

x[n] � ∑K
k�1

IMFv
k + R[n].

Sample Entropy
Sample entropy is a new measure of time-series complexity proposed
by Richman and Moornan (Richman et al., 2000), which aims to
reduce the error of the approximate entropy algorithm with higher
accuracy. Sample entropy was calculated as follows:
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From a time series X � [x1,x2,/, xn], and a tolerance r,
Step 1:Generate a group of vector by rolling on time,

Xm
i � [xi, xi+1,/, xi+m−1], i � 1, 2, ..., n −m + 1.

Step 2: Define the distance between Xm
i and Xm

j with the
maximum norm of Xm

i −Xm
j ,

dm
ij � d(Xm

i , Xm
j ) � max{∣∣∣∣xi+k − xj+k

∣∣∣∣, k � 0, 1,/, m − 1}.
Step 3:For each i, i � 1, . . . , n −m + 1, calculate Pm

i (r) by the
sum of indicate function I(•), Pm

i (r) � 1
n−m ∑

j≠i
I(dmij < r), and

ϕm(r) � 1
n−m+1 ∑n−m+1

i�1
Pm
i (r).

Step 4:Let m � m + 1, and repeat steps 1–3, get ϕm+1(r), then
the sample entropy is defined as

SEm(r) � −ln(ϕm+1(r)
ϕm(r) ) (2)

Fuzzy Entropy
The concept of fuzzy sets was first introduced by Zadeh (Zadeh,
1965), which resulted in the formation of fuzzy entropy with
further research on fuzzy sets. The statistical measure of fuzzy
entropy was further developed by Chen et al. (Chen et al., 2009) to
characterize the degree of fuzziness of fuzzy sets. As a measure of
complexity, there is less bias, and continuity is achieved as well as
free parameter selection and greater robustness against noise.

There are many definitions of fuzzy entropy as long as the
definition satisfies the four rules described in this study (Zadeh,
1965). In this study, fuzzy entropy is similarly formulated as part
of the sample entropy. The first difference is that a constant c is
subtracted from all the elements of the vector Xm

i generated by
rolling on time:

Xm
i � [xi, xi+1,/, xi+m−1] − c, i � 1, 2, ..., n −m + 1,

where c � 1
m∑i+m−1

k�i k. The second difference is the definition of
distance for two vectors,

dm
ij � exp

⎧⎨⎩ − (∣∣∣∣∣Xm
i −Xm

j

∣∣∣∣∣max

r
)2⎫⎬⎭.

The other steps are similar to those of the sample entropy. In
conclusion, the fuzzy entropy is defined as

FuzzyEn(t) � ln ϕm(t) − ln ϕm+1(t). (3)

K-Means
The K-means algorithm is a classic method for clustering points in
high-dimensional space, as proposed by Macqueen (Macqueen,
1967). Based on the criterion of similarity between two points,
usually measured by the Euclidean distance, a point is determined
to belong to the class whose center is closest to it. The centers of all
groups are updated after all points in the dataset are set. The algorithm
stops when the cluster measurement function converges, which
means that there are no changes for all centers in the updating.

The distance and similarity between points Xi and Cj, the
center of the jth class, can be calculated as follows:

d(xi, cj) � ������������������������������������(x1
i − c1j)2 + ... + (xk

i − ckj)2 + ... + (xd
i − cdj )2√

,

s(xi, cj) � 1/d(xi, cj).
For each updated class, a new cluster center is calculated.

Assuming that the samples in the jth class are {xj1, xj2, ..., xjnj}
and the cluster center is cj � (c1j , c2j , ..., ckj , ..., cdj ), the kth attribute
of class center Cj is represented as CKj, which is

ckj �
xk
j1 + xk

j2 + ... + xk
jnj

nj
.

The above process is repeated until the standard measure
function converges. The conventional clustering measure function
is usually the mean-square deviation, which is expressed as

J �

�������������∑k
i�1

∑nj
j�1

(xij − ci)2
n − 1

√√
. (4)

LSTM
LSTM is a type of recurrent neural network (RNN), which was
originally established by Hochreiter and Schmidhuber (Aksoy et al.,
2018) andwas refined and popularized bymany others in subsequent
work. RNN are sensitive to short-term information. However, they
always have a problem of long-term reliance. As an improvement to
RNN, LSTM solves this problem by introducing a cell state in which
the long-term state is saved. In this neural network, there are some
LSTM blocks, which are regarded as intelligent net cells in certain
studies. In several versions of LSTM, themost important LSTM cell is
“forget gate.” There are four neural network layers, each of which
interacts in a unique manner.

The first stage of LSTM is to identify the information from the
cell state that should be forgotten or rejected. The “forget gate layer,”
formulated by a sigmoid layer, makes this judgment. For input ht−1
and xt, a number between zero and one is the output for each
number in the cell state Ct−1. Output 1 means “keep this
completely,” while 0 means “forget this completely.” This step is
formulated as follows:

ft � σ(Wf · [ht−1, xt] + bf). (5)
where ht−1 is the output of the previous input value, representing
the effect on the current input value. Matrix wf is the weight of
the input value, and bf is the deviation of the input value. Output
ft is the result of function σ, a 0–1 output function.

We further determine which part of the information needs to
be stored in the cell state. The “input gate layer” it first determines
which values will be updated. Denoting Ct

~ as the “tanh layer,” a
vector is generated for new candidate values. These two layers are
further integrated to update the state.

it � σ(W _I · [ht−1, xt] + bi)
Ct

~ � tanh(WC · [ht−1, xt] + bC)
where tanh is a function of hyperbolic arctangent. The other
parameters are similar to those in Eq. 5.
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The next step is to multiply the old state by ft, forgetting the
information that should be rejected earlier. This is implemented
using the following operation:

Ct � ftpCt + itp~Ct

In conclusion, the unit state Ot is determined by the
output of the sigmoid layer. Subsequently, the cell state is
transformed by the tanh function, which outputs a value
between 1 and -1. For the next recurrent, ht is the
multiplication of the unit state and tanh transform of the
cell state. This is formulated as

Ot � σ(Wo[ht−1, xt] + bo),
ht � otptanh(Ct). (6)

HYBRID MODEL ARCHITECTURE

This section introduces the proposed hybrid model
architecture, which includes the following three parts: data
preprocessing, pollutant concentration prediction, and model
evaluation. Figure 1 shows a framework diagram of the
proposed model.

Part 1 Mode
Decomposition-Recombination
Step 1: Original data were filtered using Hampel filtering to
eliminate outliers.

Step 2: The filtered data were decomposed into several IMF
component sequences using CEEMDAN.

Step 3: Calculated the information entropy and fuzzy entropy
of each IMF component into a two-dimensional vector.

Step 4: Based on the calculation results of the information
entropy and fuzzy entropy, K-means was used to cluster the IMF
components to achieve feature extraction.

Part 2 Pollutant Concentration Prediction
Step 1: For each data group obtained from clustering, the 4-fold
cross-validation method was used for training.

Step 2: Setting up the LSTM model structure, the hidden layer
was selected as a 2-layer LSTM structure, the number of neuron
nodes in the first layer was 64, the number of neuron nodes in the
second layer was 32, and the output layer reduced the results to
the original data format.

Step 3: The mean absolute error (MAE) was chosen as the loss
function, the Adam algorithm was used to generate optimization
parameters for each node learning, and the error was reduced by
iterating and adjusting the weights until convergence.

Step 4: To obtain the final prediction results, the prediction
results of each group were superimposed.

Part 3 Model Evaluation
Step 1: Designed model evaluation experiments. In this study, we
designed two sets of evaluation experiments: 1) data
preprocessing comparison; 2) prediction model comparison.

Step 2: In the data preprocessing comparison experiments,
we chose three comparison models: 1) the LSTM model without
data preprocessing; 2) Hampel integrated with the LSTMmodel;
3) the CEMMDAN integrated LSTM model with our proposed
SFE-K-Means integrated LSTM model for the comparison
experiments.

Step 3: For the prediction model comparison experiments, we
chose the backpropagation neural network (BPNN), evolutionary
neural network (ENN), and Extreme Learning Machine (ELM),
which are the three benchmark comparison models for
comparison with the LSTM model and our proposed model.

FIGURE 1 | The framework diagram of the hybrid model.
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Step 4: We chose mean squared error (RMSE), MAE, and
mean absolute percentage error (MAPE) as the model evaluation
criteria for the above two sets of experiments.

EMPIRICAL STUDY

Data Description
Major air pollutants in the atmosphere, including PM2.5, PM10,
SO2, CO, NO2 and O3, were selected as the research objects in this
study. The Ministry of Environmental Protection of the People’s
Republic of China (http://www.mep.gov.cn/) has provided six
pollutant concentration datasets from Baoding. Sample data were
collected on September 1, 2017, and November 30, 2017, in
Baoding. The hourly pollution concentration data totaled
2140. These datasets were split into two categories: training
and testing. The first 1814 data (approximately 85% of the
total data) are training sets, and 321 data points
(approximately 15%) for test.

Performance Evaluation Criteria
This study considers three assessment criteria, as in Table 1, to
effectively evaluate the performance of the model. MAE,MSE and
MAPE were chosen as error criteria to reflect the prediction
performance of the forecasting models.

Mode Decomposition-Recombination
Technique Process
Results of Outlier Detection
The series of original environmental pollution concentrations
have obvious volatility and nonlinear characteristics and contain
a few outliers. Therefore, data preprocessing is required for the
original data. This section first uses a Hampel filter to process the
original data. The filtering results of the six pollutant time series
are shown in Figure 2, which shows that the filtered time series
present more smooth appearance and more stable variation in
local area after outliers and noise are eliminated from the
original data.

TABLE 1 | Evaluation criteria.

Criteria Interpretation Equation

MAE The average absolute error of n times forecast results 1
N ∑N
n�1

|yn − y
∧
n|

MSE The mean-square forecast error (1N ∑N
n�1

(yn − y
∧
n)2)

MAPE The mean absolute precent error of forecasting results 1
N ∑N
n�1

|yn−yn
∧

yn
| × 100%

FIGURE 2 | Filtering results of the six pollutants time series.
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Results of Decomposition for Six Pollutants Data
In this section, CEEMDAN is used to decompose the original
amount of pollutant series into a collection of IMFs with
associated frequencies and the residue component. We chose
an ideal standard deviation of 0.1–0.5 and a total of 200 ensemble
members. The original pollutant series decomposed using
CEEMDAN is shown in Figure 3.

Calculate Sample and Fuzzy Entropy
Figure 3 clearly shows that the original data are decomposed by
CEEMDAN to obtain different frequency components. From
IMF1 to IMF11, the higher frequency of the IMF components
indicates that each component contains more information and

complexity. Therefore, we calculated the sample entropy and
fuzzy entropy of each IMF separately to evaluate the complexity
characteristics of different IMF time series. Table 2 shows that the
frequency of the sequence from IMF1 to IMF11 gradually
decreases, and the calculated sample entropy and fuzzy
entropy also gradually decrease, which indicates that the
complexity of the IMFs decreases.

Results of K-Means Cluster
Based on the entropy value results for each IMF component
obtained from Table 2, a cluster analysis was implemented with
K-means method. The clustering centers and groupings of each
pollutant were obtained, as shown in Table 3. From the results in

FIGURE 3 | Pollutant series decomposed by CEEMDAN.

TABLE 2 | Sample and fuzzy entropy of IMF.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11

PM2.5 FE 8.047495 6.388529 1.649125 1.270372 0.959852 0.497776 0.27859 0.040618 0.023789 0.004574 9.89E-05
SE 1.983576 0.554265 1.519343 1.491674 0.965727 0.607932 0.51636 0.488107 0.370485 0.110548 0.02104

PM10 FE 1.412543 4.431981 4.210672 1.61084 0.69924 0.770135 0.408633 0.239158 0.025897 0.00488 0.000646
SE 2.723644 1.099536 2.191735 1.993386 1.239376 0.690948 0.658875 0.400867 0.394307 0.16184 0.019505

SO2 FE 4.267658 5.091819 1.867888 1.2594 0.592948 0.455568 0.253383 0.058592 0.012499 0.002048 0.000226
SE 1.086146 0.337643 1.280924 0.891944 0.725795 0.608708 0.527715 0.387489 0.140906 0.042888 0.014509

NO2 FE 4.322556 5.581931 2.524202 1.441533 0.967665 0.439743 0.194742 0.067011 0.016767 0.00236 0.00E+00
SE 2.394989 0.813402 2.054457 1.785199 0.805091 0.674112 0.549718 0.43341 0.196665 0.075553 0.003059

O3 FE 3.359121 4.02093 2.487006 1.975004 0.654115 0.418519 0.161993 0.037779 0.016124 0.004214 0.005488
SE 1.717077 0.839211 2.102009 1.854934 1.134547 0.629392 0.616712 0.500818 0.197826 0.047921 0.015869

CO FE 6.753463 0.270155 0.981246 0.746559 0.19851 0.052625 0.016649 0.002809 9.54E-05 0 0
SE 0.013549 0 0.02167 0.080561 0.086343 0.0539 0.034768 0.010918 0.00312 0.00199 0.000891
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Table 3, we found that the 11 IMFs were clustered and reintegrated
into 6 clusters. Each cluster is composed of IMF components with
similar characteristics. The IMF components of each cluster are
added together to form the final feature extraction datasets.

Comparison of Forecasting Results
Comparison of Data Preprocessing Methods
In this experiment, the concentrations of six pollutants in
Baoding were predicted and analyzed. This
experiment compares the performance of three preprocessing
models—Hampel-LSTM, CEEMDAN-LSTM, and our proposed
model. Additionally, the evaluation criteria of MSE, MAE, and
MAPE were used to measure the prediction performance of the
models and the results are presented in Table 4. Boldly marked

values are used to indicate the best values of the model in different
evaluation metrics. Further discussion of the experimental results
is as follows.

For the different data processing methods of the LSTM-
based hybrid models, Table 4 shows that Hampel, CEEMDAN,
and SFE-K-Means integrated with the same LSTM have
obvious differences in prediction accuracy. However,
compared with a single LSTM prediction model, the three
hybrid models with signal processing tools—Hampel-
LSTM(Hampel*), CEEMDAN-LSTM(CEEMDAN*), and
SFE-K-Means-LSTM (SFE-K-Means*)—have better
prediction performance. Therefore, it is safe to conclude
that the use of mixed-preprecessing can significantly
improve the data quality for the later hybrid model to

TABLE 3 | Clustering centers and groupings of each pollutant by K-means.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

PM2.5 Clustering
Center

(0.7288,0.7868) (6.3885,0.5542) (8.04749,1.9835) (0.0023,0.0657) (1.4597,1.5055) (0.1143,0.4583)

Group IMF5 IMF6 IMF2 IMF3 IMF10 IMF11 IMF3 IMF4 IMF7 IMF8 IMF9
PM10 Clustering

Center
(0.7346,0.9651) (0.1358,0.3270) (4.4319,1.0995) (1.4125,2.7236) (1.6108,1.9933) (4.2106,2.1917)

Group IMF5 IMF6 IMF7 IMF8 IMF9 IMF10
IMF11

IMF2 IMF1 IMF4 IMF3

SO2 Clustering
Center

(0.0183,0.1464) (5.0918,0.3376) (1.2594,0.8919) (0.4339,0.6207) (1.8678,1.2809) (4.2676,1.0861)

Group IMF8 IMF9 IMF10 IMF11 IMF2 IMF4 IMF5 IMF6 IMF7 IMF3 IMF1
NO2 Clustering

Center
(0.0561,0.2516) (5.5819,0.8134) (4.3225,2.3949) (0.7037,0.7396) (1.4415,1.7851) (2.5242,2.0544)

Group IMF7 IMF8 IMF9 IMF10 IMF11 IMF2 IMF1 IMF5 IMF6 IMF4 IMF3
O3 Clustering

Center
(0.6541,1.1345) (2.2310,1.9784) (4.0209,0.8392) (0.0086,0.0872) (0.2060,0.5823) (3.3591,1.7170)

Group IMF5 IMF3 IMF4 IMF2 IMF9 IMF10
IMF11

IMF6 IMF7 IMF8 IMF1

CO Clustering
Center

(0.01180,0.0176) (6.7419,0.0134) (0.7940,0.0808) (0.1979,0.0863) (0.2685,4.389e-
07)

(1.0444,0.0219)

Group IMF6 IMF7 IMF8 IMF9 IMF10
IMF11

IMF1 IMF4 IMF5 IMF2 IMF3

TABLE 4 | Prediction performance of data preprocessing methods.

Pollutants Criteria LSTM Hampel* CEEMDAN* SFE-K-Means*

PM2.5 MSE 178.5243 187.8801 41.9019 38.4436
MAE 8.3156 8.2933 3.4539 3.4379
MAPE 14.59% 14.95% 7.29% 6.86%

PM10 MSE 421.1828 521.2269 78.2811 75.5773
MAE 13.8984 15.1586 5.1386 4.9915
MAPE 12.52% 13.51% 4.66% 4.93%

SO2 MSE 133.8757 72.4359 32.8127 14.8968
MAE 5.6349 3.9291 2.9422 1.8789
MAPE 23.86% 18.63% 12.32% 7.91%

NO2 MSE 69.0062 64.0526 51.8403 29.8058
MAE 5.7719 5.5731 4.6785 2.8757
MAPE 14.65% 13.35% 12.26% 7.52%

O3 MSE 30.1279 34.0037 8.1717 3.4115
MAE 3.9207 4.2903 2.3501 1.3998
MAPE 16.23% 18.12% 13.18% 6.89%

CO MSE 0.0404 0.0582 0.0091 0.0121
MAE 0.1349 0.1559 0.0568 0.0568
MAPE 11.28% 12.61% 5.71% 6.22%
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obtain better prediction results. Subsequently, three hybrid
prediction models based on different signal processing
tools—Hampel*, CEEMDAN*, and SFE-K-Means*—were
compared, and SFE-K-Means was found to have the highest
prediction accuracy. For example, as for PM2.5, the MAPE
values of LSTM, Hampel*, CEEMDAN*, and SFE-K-Means*
were 14.59, 14.95, 7.29, and 6.86%, respectively. Thus, LSTM
integrated with SFE-K-Means outperforms the other data
preprocessing models.

Comparison of Benchmark Methods
This experiment compares the performances of four single
benchmark prediction models, including BPNN, ENN, and
ELM. The models’ prediction performance was assessed
using the MSE, MAE, and MAPE evaluation criteria; the
results are presented in Table 5. The best results in
the numerous evaluation metrics are emphasized by bold font.
The results of the experiments are summarized below.

Table 5 clearly shows that LSTM seems to have more
substantial predictive power than BPNN, ENN, and ELM. In
the six pollutant concentration predictions, LSTMwas superior to
the other comparative models for all evaluation indexes. For
example, the MAPE values for PM2.5 via BPNN, ENN, ELM,
LSTM and proposed model were 14.45, 18.10,13.90, 14.59 and
6.86%, respectively. The proposed model, which integrates SFE-
K-Means with LSTM, results in the smallest MAE, MSE, and
MAPE values, which says it should outperform the other
benchmark methods to compare with. Notably, as a novel data
preprocessing approaches, SFE-K-Means is critical for enhancing
the forecast accuracy for environmental pollutant concentration.

CONCLUSION

The practical analysis and forecasting of pollutant concentrations are
critical for environmental management and public health. Owing to
the fluctuation and complexity of the pollutant data series, a novel

mode decomposition-recombination technique is proposed to
capture valuable information and characteristics. Six pollutant
concentration series collected from Baoding were used as test
cases to conduct the empirical study. Two experiments were
implemented to compare the performances of the data
preprocessing and forecasting methods, respectively. The
evaluation criteria of MAE, MSE and MAPE were used to
examine the prediction performance of the models. Based on the
results of hourly pollutant concentration forecasting, some vital
conclusions were drawn as follows. First, compared with
Hampel*, CEEMDAN*, and SFE-K-Means*, the proposed SFE-
K-Means* was found to have the highest prediction accuracy.
Shown in Table 4 as for PM2.5, the MAPE values of LSTM,
Hampel*, CEEMDAN*, and SFE-K-Means* were 14.59, 14.95,
7.29, and 6.86%, respectively. These errors explain that LSTM
integrated with SFE-K-Means outperformed the other data
preprocessing models. Second, compared with BPNN, ENN, and
ELM, the proposed model, which integrates SFE-K-Means and
LSTM, obtains lower values of MAE, MSE, and MAPE. This
indicates that the proposed model can obtain the best forecasting
performance among the compared models. Notably, the novel data
preprocessing methods (SFE-K-Means) play an essential role in
improving the prediction accuracy of environmental pollutant
concentration.

In summary, the Hybrid model can change the traditional
passive response of air quality management and provide strong
technical support for urban air pollution early warning decisions,
scientific air quality management, and regional joint prevention.
Further, it can improve the level of air pollution control for air
environment risk prevention.
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MAPE 14.45% 18.10% 13.90% 14.59% 6.86%

PM10 MSE 489.6128 8.93E+02 446.8126 421.1828 75.5773
MAE 13.7485 18.0084 13.4037 13.8984 4.9915
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MAE 5.9537 7.8745 6.2234 5.6349 1.8789
MAPE 25.87% 33.46% 25.49% 23.86% 7.91%

NO2 MSE 75.7468 94.0673 71.512 69.0062 29.8058
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