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Mechanical oil recovery, a most used tool for oil spill response, can generate a
considerable proportion of oil-contaminated water (10–70%). Large storage space
is commonly required to transport the recovered oil and water mixture to shore. Transit
and transportation consume loads of time, money, and resources while reducing oil
recovery’s overall efficiency and capacity. Techniques of on-site treatment and
disposal of oily wastewater provide benefits for oil recovery by freeing storage
space. However, the high petroleum content of decant water can lead to uncertain
risks, if discharged into the marine ecosystem. Insufficient ecological toxicity data and
research limit the standardization and establishment of regulative tools. To fill the
knowledge gaps, this review comprehensively summarized recent studies on the
potential impacts of the organic composition in decant water, including oil–water
accommodated fractions, dispersed oil droplets, and other related chemicals, on
various marine species (i.e., bacterium, invertebrates, fishes, plants, reptiles, and
mammals). The toxicity effects and the ecological endpoints of oils, TPH, and PAHs
on different species were discussed. Recommendations for future ecological impacts
and decant water composition were provided to support the on-site disposal of the
water fraction.

Keywords: decanting, ecotoxicity, water accommodated fraction, oil spill, mechanical oil recovery, demulsification,
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1 INTRODUCTION

Mechanical oil recovery is a widely accepted response tool in a marine oil spill by stakeholders due to
the capacity of collecting spilled oil and reducing environmental impacts on spilled sites (Li et al.,
2016; Walker et al., 2018). In a general process, spilled oil is thickened by booms, recovered by
skimmers, stored and separated on offshore vessels, and shipped onshore for treatment or disposal
(Etkin & Nedwed, 2021). One of the disadvantages of mechanical oil recovery is the generation of a
large volume of oil and water emulsion during oil collections (Gaaseidnes & Turbeville, 1999). The
water content in the recovered fluid can reach more than 60% and even 90% (Gaaseidnes &
Turbeville, 1999; Etkin & Nedwed, 2021). The high water content not only reduces the storage
capacity for recovered oil and intensifies the demands on offshore operational and logistical support,
but also greatly increases the workload and pressure of onshore disposal/treatments with a large
amount of oily waste (National Academies of Sciences & Medicine, 2020). An alternative that has
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been frequently mentioned to mitigate the problem is oil
decanting, which is a process of oil–water separation and
water disposal at sea (Figure 1) (Nuka Research and Planning
Group, LLC., 2012, 2017; IPIECA, 2013; Buchholz et al., 2016;
The U.S. National Response Team, 2018). The process allows for
more efficient use of onboard storage space by storing more
concentrated oil, thus facilitating mechanical recovery operations
(Buchholz et al., 2016).

Unlike mechanical recovery, the decanting operation needs
permission from authorities (Buchholz et al., 2016). The
International Spill Control Organization suggests the decanting
process should follow the International Convention for the
Prevention of Pollution from Ships (MARPOL) Annex 1, which
states that all the discharges of offshore oily wastewater should have
an oil content less than 15 ppm (IMO, 2012; ISCO, 2015). However,
many authorities in the U.S. lack decanting protocols (Buchholz
et al., 2016) and the approval of decanting varies in regions (Etkin &
Nedwed, 2021). In Canada, no regulations have been established for
decant water (National Energy Board, 2010).

The major concern of decant water discharge is the release of
dispersed oil and other additives into the ocean. The contact of oil
on the surface and in the water column would result in the acute
(<96 h) and chronic (>96 h) toxicity to plants, invertebrates,
fishes, reptiles and amphibians, birds, and mammals (Nordtug
et al., 2011; Dupuis & Ucan-Marin, 2015; Lee et al., 2015). The
toxicity studies on the dispersed oil could be used for the
ecological assessment of decant water to the marine
environment. SL Ross Environmental Research Ltd (2005)
suggested using water accommodated fraction of oil (WAF) to
investigate the ecological impacts of the decant water discharge.
WAF includes hydrocarbons that dissolve and suspend in water,
namely water-soluble fractions of oil (WSF) and oil droplets,
respectively (National Research Council, 2005; Lee et al., 2015).
The different composition of WSF, such as low molecular weight
saturates, monocyclic and polycyclic aromatic hydrocarbons
(PAHs), and their homologs, phenols, naphthenic acids, and
heterocyclic aromatic compounds, lead to the different
toxicologic effects to the marine species (Holth et al., 2009;
Kang et al., 2014; Lee et al., 2015; Chand et al., 2022). Oil
droplets also showed toxicity to Atlantic cod and haddock
(Olsvik et al., 2011; Sørhus et al., 2015; Sørensen et al., 2017).
The potential additives and treatment by-products should be
considered as well.

To better understand the ecological impacts of decant water, the
acute and chronic impacts of WAF compositions, suspended oil,
demulsifiers, and potential by-products after treatment to plants,
invertebrates, fishes, reptiles, and mammals are reviewed. The most
commonly referenced indicators are considered, including the
species used for toxicity (e.g., Vibrio fischeri, mysid shrimp), as
well as commercially significant invertebrates and fish species in
Canada (e.g., crab snow, shrimp, cod, flatfish, herring, salmon)
(DFO, 2017). The ecological endpoints of petroleum
hydrocarbons and PAHs to marine species are summarized. The
findings of this study provide the information required for future
science-based decision-making on policies and regulations for the
management of on-site discharges of decant water.

2 COMPOSITION OF WATER
ACCOMMODATED FRACTION OF OIL
2.1 Comparison of Water Accommodated
Fraction of Oil Compositions
In a decanting process, recovered oil and water being vigorously
mixed in the skimming and pumping systems and settled in
temporary storage tanks for a certain time (1–24 h) (SL Ross
Environmental Research Ltd., 2005). The process is similar to the
Chemical Response to Oil Spill Ecological Research Forum
(CROSERF) methods in terms of WAF preparation (Aurand
& Coelho, 2005; DFO, 2017). In general, a certain amount of oil
(0.01–25 g/L) is added to filtered seawater and stirred for 18–24 h
(Singer et al., 2000; Özhan et al., 2014; Philibert et al., 2021). For
the preparation of high-energyWAF, oil and water are vigorously
vortexed for 18 h. The water phase after a 6 h settling is used for
toxicity analysis (Özhan et al., 2014). Whereas the preparation of
oil and water emulsion for decanting uses a high oil dose (<25%).
The mixing method for emulsification is more intensive than that
for WAF preparation (SL Ross Environmental Research Ltd.,
2005; Özhan et al., 2014). It, therefore, requires a longer settling
time to reduce the oil content in decant waters. For example, the
total petroleum hydrocarbons (TPHs) in WAF were 7.2–43 mg/L
(Faksness et al., 2008; Özhan et al., 2014), which was similar to the
oil concentration of the decant water after settling for 24 h (SL
Ross Environmental Research Ltd., 2005).

The composition of WAFs is dependent on the solubility and
abundance of oil compounds in different oils. Faksness et al.
(2008) compared the concentration of TPHs, BTEX (benzene,
toluene, ethylbenzene, and xylenes), phenols, and PAHs in WAF
using different crude and refined oils. For instance, light
condensate (0.761 g/ml) had the highest concentration of
mono-aromatic hydrocarbons (BTEX + C3-benzenes) but the
lowest concentrations of two to three and four to six ring PAHs,
while a heavy fluid oil contained low concentrations of aromatics.
BTEX (0.24–68.6 ppm), and naphthalene and alkylated
naphthalene (0.04–0.27 ppm) in WAF were correlated to those
in oil samples. Because of the high-water solubilities, naphthalene
and alkylated naphthalene, and phenols (0.01–1.82 ppm) were
the major semi-volatile compounds in WAF. Specific to each oil,
Snøhvit condensate had the lowest density, and its WAF had the
highest BTEX and phenol concentrations. Heavy oils such as
Heidrun Åre, Grane, and Bunker oil had the lowest oil
concentration in WAF, probably owing to the low content of
soluble compounds. Bitumen natural-gas condensate blend
(dilbit), as unconventional crude oil, had lower levels of TPHs,
BTEX, naphthalenes, and fluorenes in WAF than those in
conventional crude oils (Philibert et al., 2016). It was be
noticed that, biodegradation of oil increased the concentration
of TPH in WAF (Faksness et al., 2008).

The weathering of spilled oil, including dilution, evaporation,
and biodegradation, affects the oil composition of WAF as well.
The components with boiling points lower than C12 in Macondo
oils can be quickly evaporated in 1–2 days after the spill (Faksness
et al., 2015). Further weathering (>3 days) would reduce the oil
and PAHs concentrations in WAF to less than one 10th of those
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prepared by the source oil, leaving only unresolved complex
materials. Similar results were reported by Forth et al. (2017).
Oil slick recovered in skimmer vessels had no BTEX, and most
lighter PAHs were lost, while the total PAHs concentration was
reduced by 68–85%. Nevertheless, weathered oil has substantial
water-in-oil emulsification (Forth et al., 2017).

2.2 Toxicologic Effects of Different Oil
Components
Volatile hydrocarbons in WAF, including low molecular weight
(LMW) alkanes (C6-C9), monoaromatics, and 2-ring PAHs
(naphthalene and alkylated naphthalene), can be intaken by
invertebrates, fishes, mammals, birds, and reptiles (Dupuis &
Ucan-Marin, 2015). These hydrophobic compounds penetrate
the respiratory membrane and partition into cell membrane and
nervous tissue, disrupting the function of central nervous systems
(Lee et al., 2015). The narcotic effect can result in the mortality of
species in the short-term exposure to WSF (Dupuis & Ucan-
Marin, 2015). n-alkanes are considered less toxic in the marine
environment owing to their high biodegradability. Cyclo-alkanes
and iso-alkanes are more resistant to biodegradation than
n-alkanes at the same molecular weight (Head et al., 2006). In
addition, cyclo-alkanes deform cell membrane by partition.

Aromatic hydrocarbons are recognized as the main toxic
substances in the WSF. Monoaromatics (BTEX) are volatile
and most soluble, thus having the highest contribution to the
acute toxicity of WSF (Kang et al., 2014; Philibert et al., 2016).
PAHs in WAF are mostly two to five rings (Faksness et al., 2008).
PAHs are more persistent in the marine environment, leading to
acute and chronic diseases and eventually mortality of marine
species. Naphthalene and its homologs have similar acute toxicity
to BTEX (Dupuis & Ucan-Marin, 2015). PAHs can activate the
transcription of downstream genes such as the CYP1A gene,
increasing the synthesis of CYP1A proteins, releasing reactive
oxygen species, and oxidatively damaging organisms (Schlezinger
et al., 1999; Wu et al., 2012). PAHs show cardiotoxic responses
and developmental abnormalities in embryos and larvae fish
(Colavecchia et al., 2006; Incardona et al., 2013). 3-5-ringed
alkyl PAH is considered the main cause of embryotoxicity
(Hodson, 2017). Benzo(a)pyrene is considered the most
carcinogenic compound (Dupuis & Ucan-Marin, 2015). Some
PAHs have carcinogenic endocrine-disrupting effects (Neff et al.,
2011). The immunotoxicity responses of PAHs in different
species are observed (Reynaud & Deschaux, 2006). PAHs
under irradiation promote the generation of oxidative species

and damage the tissue (Barron, 2017). Phototoxicity has shown a
significant enhancement in crude oil toxicity to fish. For certain
PAHs that can absorb solar radiation spectrum (fluoranthene and
anthracene), the increase in toxicity can approach 100-fold.

The toxicities of different WAFs are summarized in Table 1.
Generally, light oil WAF is more toxic than heavy oil. Heavy fuel
oil WAF was nontoxic to fish owing to its low to no
bioavailability. Once the fish exposures to oil, the toxicity of
heavy fuel oil WAF was higher than other crude oils because of
the high concentrations of alkyl PAHs (Martin et al., 2014).
Philibert et al. (2016) observed similar toxicity of conventional
crude oils and dilbit to the survival and pericardial edema of
zebrafish embryos. Because the WAFs have similar levels of
monoaromatic hydrocarbon content. Di Toro et al. (2007)
suggested that oil weathering could significantly reduce the
more bioavailable, lower-molecular-weight, and higher toxic
fractions, thus decreasing the toxicity of WAF.

3 ECOLOGICAL IMPACTS

Toxicity endpoints and subsequent ecological impacts of oil fractions
in water on various marine species (i.e. plants, invertebrates, fishes,
reptiles and amphibians, birds, and mammals) have been
comprehensively reviewed by many researchers (National
Research Council, 2005; Perhar & Arhonditsis, 2014; Lee et al.,
2015; Hodson, 2017; Liu et al., 2022). Generally, toxicity is
considered either acute toxicity (<96 h) or chronic toxicity
(>96 h) based on the exposure duration and bioaccumulation
potential. Commonly applied indicators include LC50

(concentration of a chemical that kills 50% of the total
population), EC50 (concentration of a chemical that affects 50%
of the total population), and IC50 (concentration of a chemical
inhibits 50% of biological activity) (Lee et al., 2015; Walton et al.,
2021). Some studies use a more stringent term, like EC10, to evaluate
the toxicity of oil fractions to marine species (Brakstad et al., 2018;
Sørensen et al., 2019). Terms of lowest observed effect concentration
(LOEC) and no observed effect concentration (NOEC) are used to
describe chronic toxicity (Brand et al., 2001; Barron et al., 2013). The
ecotoxic effects and endpoints of different oils and components in
WAF are summarized in Table 1 and Supplementary Table S1,
respectively.

3.1 Bacterium
The Vibrio fischeri test is a well-established toxicity test that has
been widely applied in the evaluation of the acute and chronic

TABLE 1 | Toxicity of WAF prepared from different oils.

Oil Name Oil Types WAF Composition Toxicity References

Louisiana sweet crude Light TPAHs 0.878 mg/L LC50: 31.6 µl of crude oil/L Almeda et al. (2013)
Alaska North Slope Medium TPH: 6.51 mg/L, TPAHs 0.191 mg/L LC50: 3.3–4 mg/L Gardiner et al. (2013)
Dilbit Blended BTEX 17.3 mg/L, TPH 2.76 mg/L, TPAHs 0.0461 mg/L LC50: 88.4% WAF Philibert et al. (2016)
Access Western Blend Blended TPAHs 0.02 mg/L LC50: 0.593 g/L Robidoux et al. (2018)
Access Western Blend Blended, weathered TPAHs 0.02 mg/L LC50: 1.31 g/L Robidoux et al. (2018)
Mixed sweet blend Heavy BTEX 20.7 mg/L, TPH 43.6 mg/L, TPAHs 0.206 mg/L LC50: 72.7% WAF Philibert et al. (2016)
Heavy fuel oil Heavy TPH >0.045 mg/L, TPAHs >0.005 mg/L LC50: >0.01 Martin et al. (2014)
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ecotoxicity of WSF (Wells et al., 1997; Perkins et al., 2003;
Brakstad et al., 2018). A concentration of a chemical in water
resulting in a 50% decrease in the bioluminescence of the target
bacterium at a certain time (5–15 min) is used as an indicator for
the toxicity assessment (King et al., 2014). EC50 values of oil WSF
ranged from 1.08 to 17.18 mg/L, depending on the composition of
oils (Hokstad et al., 2000; Rhoton et al., 2001; Fuller et al., 2004;
Reá tegui-Zirena et al., 2014). Normally, aromatics inWSF have a
much higher toxicity than saturates. The acute toxicity tests
(15 min) of individual compounds showed that the monocyclic
aromatics (e.g., benzene, toluene and ethylbenzene), had a EC50

value of 13.8 mg/L; Xylene was ranging from 4.23 to 2.63 mg/L
depending on the structure; PAHs with increasing aromatic rings
had a declined trend of EC50, in whichmost of the PAHs were less
than 0.5 mg/L (Lee et al., 2013). The toxicity of individual
naphthenic acids was tested by Jones et al. (2011). The results
showed a toxicity range of 0.004–0.7 mM, in which the bicyclic
acids (e.g., 3-decalin-1-yl propanoic acid) were considered as the
most toxic among the naphthenic acids. Their toxic effect to V.
fisheri was found to be nonpolar narcosis, with an EC50 value of
46 mg/L (Swigert et al., 2015). Mirjani et al. (2021) used Aliivibrio
fischeri to evaluate the acute toxicity of a crude oilWSF in 6 h. The
authors suggested that the longer time evaluation may be more
accurate for the toxicity analysis, as the low assimilation rate of
petroleum compounds may delay the toxicologic response. The
EC10 and EC50 values of TPH were 0.03 mg/L and 1.77 mg/L,
respectively (Mirjani et al., 2021).

3.2 Invertebrates
Decant water plumes can transport material vertically to the
water column and may interact with sediment in nearshore
waters, where WSF can form oil particulate aggregates or be
absorbed on the sediment (SL Ross Environmental Research Ltd.,
2005; Yang et al., 2018). In this instance, benthic invertebrates,
such as crustaceans, can be directly affected.

Mysid shrimp, an estuarine crustacean found in the Atlantic, is
one of the most common species for both acute and chronic
toxicity tests relevant to marine estuarine organisms (USEPA,
2009). Mysid shrimp is considered to be more toxicologically
sensitive than other species (Roast et al., 1998; Verslycke et al.,
2004). Perkins et al. (2003) assessed the toxicity of volatile
organics (C6-C9, including BTEX) and petroleum
hydrocarbon fractions (C10-C36) of Alaska North Slope crude
oil using mysid shrimp. Their analysis showed that mysid shrimp
had a high tolerance to volatile organics (LC50 = 7.87 mg/L) but
relatively low tolerance to C10-C36 (LC50 = 1.79 mg/L). They
further examined the toxicity of different compounds to tanner
crab larvae, showing that tanner crab larvae were less sensitive
than mysid shrimp to volatiles (13.37 mg/L) but was more
sensitive to C10-C36 (LC50 = 0.408 mg/L). Phenol has a
chronic lethal effect on opossum shrimp (Duan et al., 2018).
The LC50 (96 h) was 0.26 mg/L (Kim & Chin, 1995).

Zooplankton, a key marine food source, showed a population
decrease in the presence of WSF after 16 h (Jiang et al., 2010;
Almeda et al., 2013). Jiang et al. (2010) summarized the toxicity of
oil WSF, BTEX, PAHs and alkyl PAHs on different
phytoplankton species after exposure for 72 h. Their data

discovered that oil WSF had a lower toxicity on
phytoplankton (EC50 > 10 mg/L), and heavy oil WSF was less
toxic than fuel oil and marine oil. PAHs had a toxicity range from
7.30 mg/L to 18 μg/L, depending on the species and specific
chemicals under consideration. For the marine copepod,
fluoranthene and pyrene had higher toxicity than anthracene
and naphthalene, and alkyl PAHs were more toxic than the
parent PAHs. The phototoxicity of PAHs increases the
lethality rate for mesozooplankton (Almeda et al., 2013).

Sublethal effects of PAHs on zooplankton have also been
studied. Bioaccumulation of PAHs can cause changes in cell
size and growth rate, and result in hormone-disruption (Saiz
et al., 2009; Almeda et al., 2013). The development of copepod
(Amphiascus tenuiremis) was affected by the exposure to WAF of
South Louisiana crude oil. The maturity of copepod was delayed
for 1.9–2.2 days in the 50% WAFs (Total PAHs = 439 μg/L)
(Bejarano et al., 2006).

SL Ross Environmental Research Ltd. (2005) summarized the
acute toxicity of oil on crustacean species, including shrimps,
lobster, and crabs. The EC50 values at 96 h were found to range
from 0.54 to 49 mg/L depending on the subject species, stages of
growth, and selected oil types. Saco-Álvarez et al. (2008)
investigated the acute toxicity of marine fuel oil on marine
invertebrates, including mussels, sea urchins, and copepods.
Undiluted marine fuel WAF has low toxicity to mussel
embryos, while similar impacts were observed on sea urchins
and copepods. However, the toxicity of the WSF was significantly
increased under irradiation. The EC50 value of WSF dilution to
mussel was 20%, demonstrating the enhancing effects of
phototoxicity. It could attribute to the presence of PAHs in
WSF (Total PAHs = 42 nM) (Saco-Álvarez et al., 2008).
Overall, this study found that test invertebrates were more
sensitive to oil than fish samples, especially under irradiation
(Saco-Álvarez et al., 2008).

Field studies on the Deepwater Horizon (DWH) spill
suggested that invertebrates in real-world conditions had a
higher tolerance to WSF compared with those in laboratory
studies. This was because the WSF concentration was more
unstable and sensitive to the marine environment (Hodson
et al., 2019). For example, the growth rate of shrimps, and the
bioaccumulation effects in mussels and oysters were either not
observed or directly linked to the oil spill. Further investigations
based on species sensitivity distributions suggested that the
sensitivity of invertebrates was not consistent as with that of
fish species (Barron et al., 2013).

3.3 Fishes
The major components of oil that present an acute lethal hazard to
fish populations are the low molecular weight (LMW) petroleum
hydrocarbons (i.e. monoaromatics, diaromatics, and short-chain
alkanes), which rapidly penetrate lipid membranes by narcosis
(Gardiner et al., 2013). However, the duration in which exposure
to these compounds can occur is brief and localized due to
weathering processes (Lee et al., 2015). High molecular weight
compounds, such as PAHs with three or more rings, may be
slowly taken up by the fish’s lipids causing chronic and sublethal
effects. Fishes in the early development stages are particularly
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sensitive to PAHs, which could alter the organization of tissue along
the dorsoventral axis and the development of the heart (Honda &
Suzuki, 2020). For example, newly hatched haddock larvae showed
morphological defects after 7 days ofWSF exposure (Sørensen et al.,
2017). Fish embryo and yolk sac larvae can be affected by the total
PAH concentrations higher than 0.1 μg/L, at which point cardiac
defect, bone deformity, slow development, and mortality can be
observed (Hodson, 2017). AdultAchirus lineatus accumulates PAHs
metabolites in bile and gut when exposing a sublethal level of WAF
(Améndola-Pimenta et al., 2020). Fatty degeneration, inflammation,
and structural disintegration were found in livers, spleen, and
kidneys, respectively.

The toxicity of oil WAF to fish at different development stages
was extensively reviewed by Lee et al. (2015). They summarized
the acute and chronic toxicity thresholds (LC50 or EC50) of
TPAHs and TPH for fish based on existing literature
(Figure 2). It was shown that fish was able to survive in
higher concentrations of oil WAF and TPAHs, however, they
would widely develop sublethal diseases, particularly impacting
recruitment and productivity in lower WAF concentration.
TPAHs are roughly 100 to 1,000 times more toxic than TPHs.
In addition, Pacific halibut juvenile has a LOEC of 1.6 mg oil
(Alaska North Slope weathered)/g sediment (Moles & Norcross,
1998). The 10-d LOEC of PAHs in the Alaska North Slope to the
embryo of pink salmon is 25–540 μg/L (Birtwell et al., 1999). The
NOEC of PAHs in Alaska North Slope to the embryo of Pacific
herding is 17 μg/L for 96 h exposure (Barron et al., 2013).

Hodson (2017) indicated that the chronic toxicity of PAHs to
fish embryos was related to the molecular size and octanol-water
partition coefficients (Kow) of each compound. The chronic EC50s
for individual PAHs to various fish species were found to range
from 0.3–100 μg/L, among which 3-5-ringed alkyl PAH had the
lowest values. Jasperse et al. (2019) pointed out that a 14-day
exposure to HEWAF increased liver somatic indices of

Sheepshead minnow, and decreased fertilization. The decrease
in egg production and fertilization rate was correlated with the
PAHs bioaccumulation. The second and third generations of
affected Sheepshead minnow decreased in weight, length, and
prey capture, suggesting a transgenerational effect. Through the
exposure to different oils, the gene expressions of the second
generation were altered, which further affected the
biotransformation, cardiac development, and
neurodevelopment (Philibert et al., 2021).

3.4 Marine Mammals
Although oil can reduce the thermal insulation of mammals by
fur oiling, and then lead to possible mortality, the short-term
exposure to oil sheen did not have a lethal effect (Geraci & Smith,
1976). However, oil spills may affect the long-term population of
mammals. For example, a loss of 33–41% of killer whales was
observed in 18-months after the Exxon-Valdez oil spill, while
only a loss of 2.5% was found in the unaffected area (Matkin et al.,
2008). The inhalation, aspiration, and ingestion of oil would
elevate the concentration of oil in the respiratory tract,
gastrointestinal tract, and bloodstream, causing irritation and
narcosis (National Academies of Sciences & Medicine, 2020). It
may explain the occurrence and elevation of lung diseases and
impaired stress on Barataria Bay dolphins after the Deepwater
Horizon Spill (Schwacke et al., 2014; Smith et al., 2017). The
inhalation of volatile organics was suggested to have caused the
death of 302 harbor seals after the Exxon-Valdez oil spill
(Peterson, 2001).

Wise et al. (2018) examined the cytotoxic and genotoxic effect
of PAHs on sperm whale skin cells using WAF of Alaskan oil.
After 24 h exposure, WAF showed a low level of genotoxic effect.
A slight decrease in cell survival (8.5%) was found only in 20% of
AlaskanWAF (Total PAH = 197.4 μg/L). Reynaud and Deschaux
(2006) reviewed the immunotoxicity responses of PAHs by

FIGURE 1 | On-sea Oil Decanting.
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mammalian models and suggested the possible mechanisms,
which were the metabolic activation of PAHs by cytochrome
P450, binding of aryl-hydrocarbon receptors, and intracellular
calcium mobilization.

3.5 Reptiles
Similar to marine mammals, oil can expose to sea turtles through
inhalation and ingestion (Frasier et al., 2020). PAH absorption
was detected in oiled sea turtle’s intestines and tissues (Ylitalo
et al., 2017). The concentrations of PAH in turtle esophagus were
ranged from 0.01–0.36 mg/g. Oiled sea turtles had higher total
PAHs than unoiled sea turtles. In terms of phenanthrene
equivalent, the PAH metabolites in the bile of visibly oiled sea
turtles were 10-fold more than those in the non-visible oiled sea
turtles (Ylitalo et al., 2017). Some research suggested that sea
turtles did not seem to avoid oil spills (Frasier et al., 2020). Adult
loggerheads did not change the foraging sites after spills,
suggesting the long-term exposure to oil (Vander Zanden
et al., 2016). Ingestion of contaminated crustaceans and
mollusks could increase the risk of oil exposure in the oil-
affected region (Milton et al., 2003). Nesting in the oil-
contaminated site impacts the turtles at the early life stages,

which may alter the sex distribution of hatchlings (Ruberg
et al., 2021). However, the long-term effects of oil exposure on
sea turtles have not been well quantified (Vander Zanden et al.,
2016).

3.6 Plants
The toxic effect of oil on algae, mangroves, and seagrass has been
comprehensively reviewed by Lewis and Pryor (2013). In the
review, the toxic effect concentrations to alga were 0.002-
10,000 ppm for crude oil, while a narrower range was found to
be 0.09–50 ppm for refined oil. Mangroves are sensitive to oil
contamination which need approximately 50 years to recover
(Lewis & Pryor, 2013). Crude oils appeared moderate acute
toxicity (>1.0 ppm) to signal algal species. Bunker C oil WAF
had low toxicity to a microalga (Tetraselmis tetrathele)
(Santander-Avanceña et al., 2016). Low concentrations of WSF
(100–300 mg/L) in seawater resulted in minor damage to
phytoplankton, and on some occasions, even promoted the
algae growth (Ohwada et al., 2003). All of the PAH
concentrations in WAF were lower than EC50 or NOEC,
suggesting no inhibition of Tetraselmis tetrathele growth.
Arctic marine phytoplankton and copepods showed a

FIGURE 2 | Lethal and sublethal concentrations of TPAH and TPH for fish subjected to acute or chronic exposure to oil WAF (Lee et al., 2015).
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significant reduction of biomass-specific primary production
(>52%) and fecal pellet production (>51%) when exposure to
WAF (oil content 0.28–0.55 mg/L) of heavy fuel oil for 40 h
(Lemcke et al., 2019). In a high WAF, a further reduction of
71–91% in primary production was occurring in light irradiation,
indicating the phototoxic effect. A low concentration of phenol
(<15 mg/L) promoted the growth of a marine diatom (Duan et al.,
2018). On the contrary, the sub-lethal concentration (96 h EC50)
of phenol using the same species was 13.66 mg/L (Duan et al.,
2017).

3.7 Arctic Species
The Arctic ecosystem has relatively simple food webs, in which
species are characterized by slower metabolic rates, longer
lifespan, and higher lipid content (Chapman and Riddle, 2005;
Gardiner et al., 2013; Camus et al., 2015). Therefore, Arctic
species may have different responses to oil toxicity compared
to temperate species.

Gardiner et al. (2013) selected three Arctic species, Calanoid
copepods, Arctic cod, and Sculpin, to investigate the toxicity of
dispersed crude oil under Arctic conditions. The results indicated
that cupboards were not affected byWAF (TPH below 1.0 mg/L).
But wave and chemical-enhanced WAF has elevated TPH and
PAHs levels in seawater, leading to acute toxicity. The 96 h LC50

values of WAF to cod and sculpin were 1.6 and 2.3 mg TPH/L,
respectively. It was also found that the parent PAHs, especially
naphthalene, were statistically correlated to acute toxicity.
Hansen et al. (2011) compared an Arctic copepod with its
temperate relative. The results showed lower sensitivity in the
Arctic copepod which had a delayed response (toxic effect and
mortality) to oil, especially for those that had high lipid content.
Camus et al. (2015) investigated differing responses between the
Arctic and temperate species from low to high trophic levels to
the toxicity of artificial oil-contaminated water. Algae and Arctic
fishes were more sensitive than temperate ones, while copepod
and shrimp were less sensitive.

4 TOXICITY OF DISPERSED OIL DROPLETS

Oil and water separation can remove most large oil droplets from
decant water. However, small oil droplets that present as oil/water
emulsions are not easily removed during decanting. Although many
studies have indicated that the WSF in decant water is more toxic,
the emulsified oil droplets may also be a source of toxicity to exposed
marine organisms (Gonzá lez-Doncel et al., 2008; Lee et al., 2015).
Dispersion of oil can further increase the diffusion and bioavailability
of oil droplets (Redman, 2015). The less dissolvable fractions of oil,
such as PAHs, showed a much higher concentration in dispersed oil
than in WSF (Echols et al., 2015; Hansen et al., 2015). Thus,
dispersion increases the potential for uptake of these compounds
bymarine species (e.g., zooplankton) and subsequently the food web
(Almeda et al., 2013). Other research indicated that fish were more
sensitive to dispersed oil as oil adhered to the chorion of embryos
(Sørhus et al., 2015).

Echols et al. (2015) collected water samples from exposure
sites in the Gulf of Mexico after the DWH spill and evaluated the

acute toxicities of WSF and dispersed oil in water. They indicated
that the maximum TPAHs in oil in water dispersion (OWD) was
ten-fold higher than that of WSF. The toxicity of SWFs was less
than that from OWD to Atlantic Silverside fish, but not with
mysid shrimp. Mysid shrimp was more sensitive than Silverside
fish in mortality tests, but overall acute toxicity was minimal.
They also found that the level of PAHs did not show a clear trend
of acute toxicity to the Microtox® assays.

Chronic effects of dispersed oil should also be considered.
Hansen et al. (2015) investigated egg production of copepods
exposed to mechanically dispersed oil (0.2–5.5 mg/L) for 96 h.
The results indicated that PAH levels were elevated in exposed
copepods, in which proportions of naphthalene and two to three
ring PAHs were dominant. This resulted in suppressing egg
production 15 days after the exposure. The production rate
recovered after the initial exposure to the mechanically
dispersed oil at a high level (16.5 mg/L), indicating a
temporary effect. In contrast, oil droplets were found to
adhere to the chorion of haddock embryos, directly enhancing
the uptake of PAHs and other petroleum hydrocarbons,
consequently increasing the probability and severity of chronic
toxicity (Sørhus et al., 2015). This phenomenon was not seen in
Atlantic cod, however, whose chorion was not fouled by oil
droplets (Sørensen et al., 2017). It is not clear on the physical-
chemical mechanism of oil droplet fouling.

Oil droplet size affects oil toxicity to aquatic species via feeding
apparatus coating and oil consumption (Bejarano et al., 2014;
Uttieri et al., 2019). Olsvik et al. (2011) indicated oil droplets
(<20–50 µm) could be ingested by copepods, and subsequently
consumed by cod larvae, leading to bioaccumulation of PAHs, as
well as CYP1A response. However, the effect was moderate on the
gene transcription when compared with the effect of WSF.

5 TOXICITY OF DEMULSIFIERS AND
TREATMENT BY-PRODUCTS

Demulsifier is a chemical additive that is commonly applied to
accelerate the separation of water in oil and oil in water
emulsions. SL Ross Environmental Research Ltd. (2005) and
Henderson et al. (1999) summarized the acute toxicity of
several demulsifiers used in oil spill response and offshore oil
and gas production. The acute toxicities (96 h EC50) of different
demulsifiers on rainbow trout and brine shrimp ranged from 28
to 10,000 ppm. Henderson et al. (1999) evaluated the acute
toxicity of three demulsifiers that were used for oil recovery
enhancement. The 96 h-EC50 values to Vibrio fischeri ranged
from 1–112 ppm, in which the blend of ionic and non-ionic
demulsifier had the lowest toxicity. Meanwhile, demulsifiers are
more water-soluble than WAF. Their concentrations in decant
water were in the 100–1,000 ppm range, which sometimes
exceeded the toxicity endpoints of demulsifiers (SL Ross
Environmental Research Ltd., 2005). To reduce ecological
impacts, more studies are focused on the development and
application of demulsifiers with low toxicity. For example,
novel demulsifiers produced from biogenic materials have
EC50 values (Vibrio fischeri) more than 500 ppm (Cai et al.,

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 9440107

Liu et al. Ecotoxicity Review of Decant Water

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


2019; Cho et al., 2021; Zhu et al., 2022b). The key surface-active
ingredients, such as dioctyl sodium sulfosuccinate, can be rapidly
degraded (Cao et al., 2022b).

The interfacial active components in demulsifiers can not only
enlarge the oil droplets that promote separation but also increase
the solubility of oil in water. A double of the oil content in decant
water was observed in the presence of demulsifiers (SL Ross
Environmental Research Ltd., 2005). The increase of bioavailable
oil could further increase oil toxicity. For example, the oil-treated
by demulsifiers had increased toxicity to crustaceans when
compared with untreated oil (Tamis et al., 2012). On the
contrary, the addition of surfactant enriched cell abundance
and increased the oil biodegradation in high salinities (Cao
et al., 2022a).

Oxidation intermediates are expected during oil weathering
and oily wastewater treatment. The primary oxidation products
of crude oil in water are aliphatic and aromatic acids, as well as
alcohols and phenols when under lower oxidation (Hansen, 1975;
Zhu et al., 2022a). For example, during an advanced oxidation
treatment, organic pollutants, such as PAHs and BTEX, undergo
a series of oxidation and spontaneous transformation reactions.
Parent PAHs and BTEX are more likely oxidized to form phenols
and quinones, which are sometimes more toxic than their parent
compounds (Shu & Huang, 1995; Lundstedt et al., 2007). Further
oxidation results in ring cleavage and the release of ketones,
aldehydes, and carboxylic acids, which are more biodegradable
than aromatics (Liu et al., 2021). Developments in more efficient
oxidation processes can promote the mineralization of oil and
control the discharge of toxic intermediates into the environment
(Dong et al., 2022).

6 TOXICITY AND IMPACT PREDICTION OF
DECANT WATER

The numerical modeling of oil toxicity of marine species can be
used to predict ecological impacts of decant water. The
composition of WAF prepared by different oils has been
examined by different researchers (Faksness et al., 2008;
Barron et al., 2020). The major composition of WAF can be
determined by the water solubility of individual compounds
(Faksness et al., 2008). The concentration of oil components,
especially PAHs in the water phase can be calculated by Raoult’s
law and the Setschenow equation (Kang et al., 2014). In addition,
the release of oil components into water depends on the contact
time and temperature. Oil with high viscosity/pour point requires
longer than to reach a partition equilibrium. Barron et al. (2020)
tested the concentration of alkanes and PAHs in the WAF
prepared with three unweathered oils (0.87–0.91 g/cm3). A
similar pattern of PAHs and alkanes among the three oils
resulted in similar acute toxicity. All these results can be used
to predict the composition of oil in decant water.

The toxicity of WAF in decant water can be predicted by the
individual compounds. The PETROTOX model can be used to
predict the acute and chronic toxicity of petroleum substances
based on their Kow. The acute toxicity of hydrocarbons to aquatic
species can be estimated by multiplying the concentration of

compounds in water and their Kow and the LC50 is approximately
5mM of tissue lipid (Lee et al., 2015). For multiple compound
exposure, the acute and chronic toxicity of a substance, namely toxic
unit, is normalized by the ratio of individual chemical concentration
to its LC50 and EC10, respectively. The acute toxicity of 50% response
and the limited chronic effects can be predictedwhen the sumof toxic
unit equals to 1. For example, Kang et al. (2014) predicted the overall
toxicity by summing up the individual contributions of BTEX, PAHs,
and alkylated PAHs to the narcosis of Vibrio fischeri. The
contribution of individual compounds was the ratio of
concentration to EC50. The results revealed that BTEX and
alkylated PAHs had the highest contribution to the acute toxicity,
while 16 priority PAHs have only a 2% contribution. Liu et al. (2021)
applied a multivariable regression model to evaluate the toxicity
contribution of aromatics and degradation intermediates to produced
water, indicating the major toxicity contribution was from phenols
and followed by bromoform and PAHs. The phototoxicity of
individual PAHs can be predicted using a phototoxic target lipid
model, which quantifies the phototoxicity by different PAHs, species
sensitivities, light sources, and irradiation time (Marzooghi et al.,
2017). The removal of aromatics can significantly reduce acute
toxicity (Liu et al., 2021; Ferreira et al., 2022).

The ecological impacts of decant water can be assessed using a
framework for the ecological assessment of potentially toxic
substances (Environment and Climate Change Canada, 2007).
The framework helps assess the ecological impacts in a defined
region, using the ratio of the predicted environmental
concentrations of hazards to their predicted no-effect
concentration in the region. The predicted environmental
concentration of an observation point is the division of the
hazard concentration in decant water to a weathering factor. It
decreases with the increase of the distance from the discharge
point. The predicted no-effect concentration is the lowest LC50/
EC50 or NOEC values of marine species of the region divided by
an assessment factor (10–1,000). The assessment factor was
varied in the types of endpoints and available data.

7 FINDINGS AND RECOMMENDATIONS

Discharge of decant water is restricted by many authorities. One
of the major concerns prohibiting the process was the consequent
ecological impacts. To date, the ecological impacts of decant
water have not yet been comprehensively studied. On the
contrary, the ecotoxicity of WAF, which has a similar
generation process as decanting, has been extensively studied.
A thorough understanding of the ecotoxicity ofWAF is needed to
assess the acute and chronic toxicities of decant water and the
potential environmental impacts on the marine ecosystem.

Monoaromatics, low molecular weight saturates and PAHs,
and phenols were dominated in WAFs. Oil fractions with low
molecular weights would cause narcosis and the deformation of
cell membranes in a short-time of exposure. PAHs can lead to
long-term effects, including cardiotoxicity, developmental
abnormality, immunotoxicity, hormone disruption,
phototoxicity decreased fertilization and transgenerational
effects. The toxicity of WAF varied in different oil
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compositions and the degrees of weathering. Reduced toxicity can
be found in heavy oil and highly weathered oil.

The ecological endpoints of WAF were different in species.
The acute EC50s of WSF to bacterium are 1.08–17.18 mg/L,
varying from oil to oil. The LC50s to invertebrates, fishes, and
plants are 0.54–49 mg/L, 0.03–5.5 mg/L, and 0.002–1,000 mg/L,
respectively. Meanwhile, most of the EC50s of PAHs were less
than 0.5 mg/L. The acute LC50s of PAHs to invertebrates are
18 µg/L-7.30 mg/L. The chronic LC50s of PAHs to fishes are
0.015–100 μg/L, in which alkyl PAHs have the highest toxicity.
In addition to dissolved oil, oil droplets in dispersed oil increase
the exposure of PAHs to aquatic species. Demulsifiers have a high
partition in water, sometimes more than their EC50.

Although the ecotoxicity of oil has been extensively studied, the
chronic effects of oil and PAHs on population, trans-generation, and
interspecies are less addressed. The chronic effects of oil droplets need
to be further investigated. There is also an urgent need for the
assessment and quantification of WAF toxicity to marine mammals
and turtles, asmost of the studies were based on the statistical changes
in population before and after oil spills.

Currently, there are no standard methods of decant water
preparation for ecotoxicological studies. Oil types, oil weathering,
and decantingmethodswould affect the composition of decant water.
Due to these variations, it is necessary to expand the chemicals of
interest and study the changes of environmental impacts caused by
the different decant water compositions. The toxicity studies on
alkylated PAHs are much less than those on the priority PAHs,
although some studies already showed a higher concentration of alkyl
PAHs inWAF and possible higher toxicity. Themetabolites of PAHs,
which sometimes show increased toxicity, and the compounds
generated from oil weathering (e.g., phenols, naphthenic acids)
should be included as well. Quantitative structure activity
relationship modeling can help simulate the aquatic toxicity of
compounds by their physical/chemical properties. Furthermore,
the interactive toxic effects, such as oil and demulsifiers, oil and
treatment intermediates, are needed to predict and avoid the negative
ecological impacts of decant water.
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