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Based on trend analysis, partial correlation analysis, and Mann–Kendall test, we analyzed
the spatiotemporal variations of net primary productivity (NPP) in the Yellow River Basin
and their responses to meteorological factors during the period 1981–2020. The results
revealed that NPP had high values in the mid-south part but low values in the northwestern
part of the Yellow River Basin. The average NPP was 195.3 g C·m−2·a−1 from 1981 to
2020, and the inter-annual fluctuation of NPP showed a significant increasing trend with an
increasing rate of 2.35 g C·m−2·a−2 (p < 0.01). The annual mean temperature showed a
positive correlation with NPP in 99.6% of the basin, and 91.4% of which passed the 0.01
significant test. NPP and annual precipitation positively correlated in 87.1% of the basin,
and 41.7% of which passed the 0.01 significant test. In 75.2% of the basin, NPP was
related negatively with annual sunshine hours, and 17.6% of which of which passed the
0.01 significant test.

Keywords: net primary productivity, climate change, Yellow River Basin, meteorological factors, spatiotemporal
analysis

1 INTRODUCTION

According to the Intergovernmental Panel on Climate Change’s (IPCC) sixth assessment report, the
last 4 decades have been successively warmer than any decade that preceded them since 1850 (IPCC,
2021). The acceleration of climate warming has increased the frequency and intensity of
meteorological disasters, severely impacting global food security and the environment (Zhou
et al., 2019a; Zhou et al., 2019b; Guo et al., 2022; Zhao et al., 2022). Vegetation, which can be
an indicator of global or regional climate change, plays an important role in terrestrial ecosystems
(Piao et al., 2006). Climate warming can strongly impact vegetation phenology and may also cause
dramatic changes in the distribution of terrestrial vegetation and environmental quality (Kong et al.,
2017; Pan et al., 2021a; Pan et al., 2021b), and global warming has positive effects in boreal and arctic
biomes but negative effects in the tropics (Piao et al., 2020). Climate change and human activities are
considered the main drivers of regional vegetation variation. Studies showed that the temperature
and precipitation exhibited high heterogeneity with changes in vegetation (Park et al., 2015; Fang
et al., 2018). Net primary productivity (NPP), which refers to the amount of carbon fixed through
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photosynthesis by green plants per unit of time and area, is not
only an important indicator of vegetation growth status and
ecosystem health, but also plays a crucial role in the terrestrial
carbon cycle (Potter et al., 2012; Chen et al., 2015). It revealed that
the climate change influenced NPP by affecting the distribution of
radiation, heat, and water in the process of plant growth (Zhu
et al., 2007a; Piao et al., 2011). Climate change had the most
dominant-negative impact on the accumulated carbon sink in
14.2% of the total vegetated area of the globe (Chen et al., 2019),
and soil drying caused by precipitation change contributes to 19%
of global GPP change (Chen et al., 2021). The influence of
climatic factors on vegetation NPP also showed strong
spatiotemporal variations (Zhu et al., 2007b), and NPP of
different vegetation types reacted differently to climatic factors
(Khalifa et al., 2018).

The NPP estimation models can be divided into four
categories based on their different operating mechanisms:
climate, ecological process, light energy utilization, and
ecological remote sensing coupled models. Ecological
process models, which simulate vegetation growth, are well
suited for simulating NPP as well as the impact and
mechanisms of global climate change on vegetation NPP.
As an ecological process model, the Boreal Ecosystem
Productivity Simulator (BEPS) model separates the canopy
into sunlit leaves and shaded leaves and uses the Farquhar
photochemical model to simulate carbon–water processes
(Liu et al., 1997; Chen et al., 1999; Liu et al., 2002). The
BEPS model has been widely used to estimate the terrestrial
ecosystem productivity globally (Amthor et al., 2001; Zhang F.
M. et al., 2012; Chen et al., 2019; Zhao et al., 2021a).

As an important ecological barrier, the Yellow River Basin
contains several fragile ecological regions and is confronted by
environmental problems such as soil erosion and ecological
function degradation. In the past decades, several
environmental projects (e.g., soil and water conservation,
forest and grassland rehabilitation from agriculture, and
afforestation) have been carried out by the government of
China and have resulted in increases in regional vegetation
cover (Sun et al., 1998; Yuan et al., 2013). Fractional
vegetation cover in the Yellow River Basin showed a positive
increase in the past 2 decades, and increase in temperature,
precipitation, and CO2 concentration presented positive
contributions to vegetation increase (Sun et al., 2021; Zhang
et al., 2021). On the other hand, the MODIS MOD17A3 NPP
product showed that NPP in the Yellow River Basin exhibited a
slightly increasing trend between 2000 and 2015 (Tian et al.,
2019). However, the influence of climate change on NPP across
the Yellow River Basin needs a longer time span than that
available through the MODIS data, which is of great
importance for the studies of global changes and ecosystem
changes. Therefore, in this study, NPP estimated from the
BEPS from 1981 to 2020 was used to explore the
spatiotemporal variation and its response to climate change
over a 40-year time span, which will strengthen our
understanding of the relationship between carbon cycle and
climate change.

2 MATERIALS AND METHODS

2.1 Research Area and Meteorological Data
The Yellow River Basin is located between 95°53′E to 119°12′E
and 32°9′N to 41°50′N, with a total area of 79 thousand km2,
covering 9 provinces of China (Zhao et al., 2021b). The Yellow
River originates from the Qinghai Province and flows into the
Bohai Sea in Shandong Province. The terrain of this basin
decreases from west to east (Figure 1). High mountain areas
with an average elevation of more than 4,000 m are mainly
located in the western part, the Loess Plateau with an
elevation of 1,000–2,000 m is located in the middle part, and
the North China Plain with elevation lower than 100 m is located
in the eastern part. The whole basin is divided into 11 secondary
water resource areas (Figure 1). Land cover types in the western
and northern parts of the basin are mainly shrub lands and
savannas, while the middle and eastern parts are mainly covered
by forests, wetlands, and croplands.

The required BEPS input data include land cover, leaf area
index (LAI), available soil water capacity (AWC), and daily
meteorological data. Land cover data came from the Institute
of Geography and Resources, Chinese Academy of Sciences
(http://www.resdc.cn/). Time series of LAI were from
GLOBMAP LAI V3, which was generated every 8 days by the
team of Liu in the Institute of Geography and Resources, Chinese
Academy of Sciences (Liu et al., 2012). Available soil water
capacity (AWC) came from the International Geosphere-
Biosphere Program, Data and Information System (IGBP-DIS;
http://www.daac.ornl.gov). Meteorological data at 318 weather
stations were used from the daily meteorological datasets (V3.0)
at the National Meteorological Science Data Center of China
(http://data.cma.cn). Data including daily precipitation, mean
temperature, and sunshine hours were averaged or summed to
the annual precipitation (AP), annual mean temperature (AMT),
and annual sunshine hours (ASH) year by year, then all data were
interpolated into 0.01 ° × 0.01 ° grid data with the Kriging method
to drive the BEPS model and analyze their influence on NPP in
the Yellow River Basin.

2.2 Research Methods
2.2.1 The Boreal Ecosystems Productivity Simulator
In this study, we used the process-based ecological model BEPS to
simulate NPP. The BEPS model was originally built using the
biological principles of forest biogeochemical cycles (FOREST-
BGC) (Hunt and Running, 1992; Kimball et al., 1997) with some
modifications. The model has been refined by incorporating an
advanced photosynthesis model, the Farquhar model, to the
canopy using a sunlit and shaded leaf stratification approach
(Farquhar et al., 1980). The instantaneous model at the leaf level is
scaled to the whole canopy at a daily timescale using a temporal
and spatial integration scheme (Liu et al., 1997), and the detailed
steps of calculation of NPP can be referred to in Chen et al.
(1999). The results of BEPS model had been widely verified in
East Asia by comparing flux site data with different terrestrial
ecosystems from China and AsiaFlux network (Zhang F. et al.,
2012; Zhang et al., 2014; Liu et al., 2015; Zhao et al., 2021a). Thus,
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the BEPS model is considered credible and its NPP results can be
used to the Yellow River Basin.

2.2.2 Trend Analysis of NPP
The ordinary least-squares method was used to calculate a linear
regression of NPP for the period 1981 to 2020 to study the annual
change trend of NPP (Gang et al., 2014; Yan et al., 2019).

slope � n × ∑n
i�1i × NPPi − (∑n

i�1i) × (∑n
i�1NPPi)

n × ∑n
i�1i2 − (∑n

i�1i)2 (1)

where slope is the inter-annual rate of NPP change; n is 40 for
years from 1981 to 2020; i is 1 for year 1981, 2 for year 1982, and
so on; and NPPi is the value of annual NPP at year i.

2.2.3 Partial Correlation Analysis
Light, heat, and water, represented as sunshine hours, mean
temperature, and precipitation, respectively, are dominant factors
affecting the vegetation growth. A statistical partial correlation
analysis was used to study the effects of a single climatic factor on

NPP and exclude the interference from others. When two other
climatic factors are used as dependent variables, the partial correlation
coefficients of NPP and individual climatic factors can be calculated
by Eq. 5 (Beer et al., 2010; Wu et al., 2015; Wen et al., 2018):

Rxy,z � Rxy − Rxz × Ryz������������������(1 − R2
xz) × (1 − R2

yz)
√ (2)

where Rxy, z is the partial correlation coefficient between x and y
when excluding the impact of variable z; x and y are the
dependent variables, and z is the control variable. Rxy, Rxz, and
Ryz are the simple correlation coefficients between x, y, and z. Rxy
was taken as an example to calculate the correlation coefficients
between NPP and climatic factor (Eq. 3):

Rxy � ∑n
i�1(xi − �x) × (yi − �y)�����������∑n

i�1(xi − �x)2
√

×
�����������∑n

i�1(yi − �y)2√ (3)

where xi and yi are the annual NPP and climatic factor, respectively;
x and y are the average NPP andmean climatic factor from 1981 to

FIGURE 1 | Terrain and secondary water resource areas of the Yellow River Basin.

FIGURE 2 | Spatial distribution of average AMT (A), AP (B), and ASH (C) in the last 4 decades.
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2020. Finally, a bilateral t-test was implemented to assess the
significance of the partial correlation coefficients.

2.2.4 Mann–Kendall Test
The Mann–Kendall test was used in the trend analysis of the
climatic factors, including the annual mean temperature (AMT),
annual sunshine hours (ASH), and annual precipitation (AP)
during the period 1981–2000. The Mann–Kendall statistic
Z-value for a time series x1, x2, x3, . . . xn was calculated as:

Z �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S − 1������
var(S)√ , S> 0

0, S � 0

S + 1������
var(S)√ , S< 0

(4)

S � ∑n�1
i�1 ∑n

j�i+1sign(xj − xi) (5)

var(S) � n(n − 1)(2n + 5)
18

(6)

sign(xj − xi) � ⎧⎪⎨⎪⎩
1, xj − xi > 0
0, xj − xi � 0
−1, xj − xi < 0

(7)

In this study, n refers to the number of time series, sign is a sign
function, and xi and xj are elements of the time series. When the
absolute value of Z is greater than 1.96 and 2.58, the trend analysis
is at the significance level of 0.05 and 0.01.

Based on the trend analysis and Mann–Kendall test, the
change slope was classified into six classes (Liu et al., 2019): 1)
extremely significant decrease, slope < 0, p ≤ 0.01; 2) significant
decrease, slope < 0, 0.01 < p ≤ 0.05; 3) nonsignificant decrease,
slope < 0, p > 0.05; 4) non-significant increase, slope > 0, p > 0.05;
5) significant increase, slope > 0, 0.01 < p ≤ 0.05; and 6) extremely
significant increase, slope > 0, p ≤ 0.01.

3 RESULTS

3.1 Climate Change in the Yellow River
Basin
The spatial distribution of AMT, AP, and ASH from 1981 to 2020
are shown in Figure 2. The distribution of AMT, AP, and ASH show
similar patterns in the Yellow River Basin, with similar values along
with the belts extending from the northeast to the southwest.

Regions with high AMT and AP are distributed in the southeast,
while the high ASH is distributed in the northwestern part of the
research region. The western part of the Yellow River Basin with the
lowest AMT lies in the Tibetan Plateau with an elevation higher than
3,000 m. The eastern part of the Yellow River Basin had the highest
AP in the Shandong Peninsula, which belongs to the coastal area.

Inter-annual variations of AMT, AP, and ASH are shown in
Figure 3. AMT shows a strong increasing trend in the past 40 years,
with the lowest value in 1983 (8.3°C) and the highest value in 2006
(10.6°C). AMT shows a stable, increasing trend between 1981 and
1997, while there is no trend after 1997. AP shows a slight increasing
trend in the past 4 decades, with the highest value in 2002
(651.4 mm) and the lowest value in 1996 (338.0 mm); the
fluctuation after 2003 seems not as drastic as before 2003. ASH
shows a decreasing trend in the past 4 decades, with the highest value
in 1996 (2,624.2 h) and the lowest value in 2019 (2,239.7 h); there
were only 2 years with higher ASH than the average after 2005.

The average value, change slope, and Z-value of the
Mann–Kendall test of AMT, AP, and ASH in the past 40 years
are shown in Table 1. The AMT of the study area from 1981 to
2020 was 9.7°C, with a change slope of 0.0410°C·a−1 in the
extremely significant level. The secondary water resource areas
with the top three lowest AMT were LYX (2.2°C), LJX-LZ (5.5°C),
and LYX-LJX (5.8°C), but they show the top three highest warming
trends, with change rates of 0.0506°C·a−1, 0.0453°C·a−1, and
0.0446°C·a−1, respectively. AMT in all 11 secondary water
resource areas shows a significant warming trend. The average
AP of the study area is 478.5 mm, with a change slope of
0.7348mm·a−1 at the nonsignificant level. A total of ten
secondary water resources show an increasing trend; only SMX-
HYK shows a decreasing trend, but the change slope in all of the 11
secondary water resource areas were at the nonsignificant level.
Average ASH in the study area was 2,414.7 h, with a decreasing rate
of −2.9043 h·a−1 in the nonsignificant level. ASH in all of the 11
secondary water resource areas showed a decreasing trend; three of
them were extremely significant and three were significant. HYK
and SMX-HYK were areas with the top two decreasing rates, both
at the extremely significant level.

3.2 Spatiotemporal Variation of NPP in the
Last 40 years
The spatial distribution of 40 years’ and each decade average NPP
are shown in Figures 4, 5. As a whole, NPP in the Yellow River

FIGURE 3 | Inter-annual variation of the AMT (A), AP (B), and ASH (C) in the Yellow River Basin.
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FIGURE 4 | Spatial distribution of net primary productivity (NPP) during 1981 and 2020.

FIGURE 5 | Spatial distribution of 10-year average NPP from 1981 to 2020.
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Basin shows the highest value in the mid-south area, and
decreases in the other parts, while the northwest region shows
the lowest values. The average NPP in the entire research region is

195.3 g C·m−2·a−1, with 82% of the pixels with values less than
300 g C·m−2·a−1, and less than 10% of the pixels with values
higher than 400 g C·m−2·a−1. The spatial distribution of 10-year
average NPP in the last 4 decades is shown in Figure 6 and listed
in Table 2. As a whole, the distribution of NPP decreased from
the southeast to the northwest.

3.3 Inter-Annual Variation of NPP
The inter-annual variation of NPP in the Yellow River Basin from
1981 to 2020 is shown in Figure 7. A slightly increasing trend was
observed, ranging from 134.5 g C·m−2·a−1 in 1981 to
257.5 g C·m−2·a−1 in 2018, with an increasing rate of
2.35 g C·m−2·a−2 across the whole basin, at the extremely
significant level with an MK test Z-value of 5.19. There were
two short time decreases, from 194.9 g C·m−2·a−1 in 1998 to
153.9 g C·m−2·a−1 in 2000, and from 257.5 g C·m−2·a−1 in 2018
to 232.3 g C·m−2·a−1 in 2020.

The trend analysis and the Mann–Kendall test show that all
the secondary water resource areas had increasing trends at

TABLE 1 | Statistical values of climatic factors in secondary water resource areas.

Region AMT AP ASH

40a
average

(°C)

Slope
(°Ca−1)

Z-value
of MK
Test

40a
average
(mm)

Slope
(mm·a−1)

Z-value
of MK
test

40a
average
(hours)

Slope
(hours·a−1)

Z-value
of MK
Test

QTX-FG 7.6 0.0411 4.11** 309.1 0.9836 0.91 2859.3 −3.9384 −2.85**
NLQ 8.4 0.0398 4.09** 280.4 1.7460 1.42 2851.3 −1.5410 −0.97
FG-LM 9.3 0.0367 4.06** 449.1 2.0957 1.39 2594.8 −3.0138 −2.13*
LM-SMX 10.9 0.0387 4.58** 514.0 0.6258 0.39 2362.5 −3.0303 −1.98*
HYK 12.6 0.0382 4.98** 792.8 1.1883 0.38 2244.7 −6.4193 −3.38**
LJX-LZ 5.5 0.0453 5.34** 362.8 1.0687 1.11 2603.6 −4.1558 −2.15*
LZ-QTX 8.1 0.0431 4.87** 311.0 0.8786 0.86 2556.5 −2.5211 −1.46
NLQ 10.1 0.0426 4.91** 585.2 0.6397 0.51 2223.2 −0.2580 −0.59
SMX-HYK 13.0 0.0393 4.92** 617.9 −0.4341 −0.28 2089.5 −5.2767 −2.80**
LYX-LJX 5.8 0.0446 5.46** 478.7 1.1801 0.95 2427.7 −3.9468 −1.85
LYX 2.2 0.0506 5.77** 494.8 1.7794 1.70 2526.4 −4.2883 −1.89

Whole
basin

9.7 0.0410 4.79** 478.5 0.7348 0.95 2414.7 −2.9043 −1.93

* Significant level, ** extremely significant level.

FIGURE 6 | Spatial distribution of the NPP change slope (A) in the last 40 years and its significance level (B) (ESD, extremely significant decrease; SD, significant
decrease; NSD, nonsignificant decrease; NSI, nonsignificant increase; SI, significant increase; and ESI, extremely significant increase).

FIGURE 7 | Inter-annual variation of the NPP in the Yellow River Basin
from 1981 to 2020.
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extremely significant levels (Table 2). The LM-SMX had the
highest increasing rate. The change slopes in 5 of 11 secondary
water resource areas were higher than 3.0 g C·m−2·a−2. The NLQ
had the lowest increasing slope but the highest MK test z-value.

The spatial distribution of the vegetation NPP variation trend in
the Yellow River Basin and its significance test are shown in
Figure 6. During the last 40 years, about 99.6% of the study
area showed increasing trends, including 94.3% at the extremely

significant level and 2.5% percent at the significant level. Some
areas showed increasing rates of more than 6 g C·m−2·a−2, mainly
distributed inWHLY, LM-SMX, SMX-HYK, and the southern part
of FG-LM. There were only small decreasing regions sporadically
distributed. Regarding the secondary water resource areas, FG-LM,
LYX-LJX, LYX, LZ-QTX, NLQ, and LJX-LZ showed at least 95%
area increase at the extremely significant level. SMX-HYK showed
83.0% of the area increased at the extremely significant level.

TABLE 2 | Statistical values of NPP in secondary water resource areas.

Region 1980s (g
C·m−2·a−1)

1990s (g
C·m−2·a−1)

2000s (g
C·m−2·a−1)

2010s (g
C·m−2·a−1)

40a (g
C·m−2·a−1)

Slope (g
C·m−2·a−2)

Z-value of MK
test

QTX-FG 83.3 71.0 94.7 102.6 87.9 1.46 5.44
NLQ 35.8 34.4 44.7 44.1 39.8 0.56 6.02
FG-LM 135.7 96.3 171.8 205.6 152.3 3.03 5.85
LM-SMX 283.1 217.9 294.9 392.0 297.0 3.51 4.81
HYK 247.8 196.6 225.1 345.7 263.4 2.53 4.50
LJX-LZ 216.8 178.9 230.4 221.5 211.9 2.16 5.04
LZ-QTX 56.9 47.6 67.9 78.6 62.7 1.07 5.97
NLQ 271.8 210.3 285.3 395.1 290.6 3.38 4.91
SMX-HYK 371.1 320.5 370.9 529.9 398.1 3.31 4.13
LYX-LJX 311.1 248.4 351.9 298.1 302.4 3.06 5.12
LYX 168.5 180.0 241.2 140.2 180.2 1.94 4.86

Whole
basin

185.1 153.5 209.1 232.3 195.3 2.35 5.19

FIGURE 8 | Correlation between NPP and AMT (A), AP (B), and ASH (C).
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3.4 Correlation Between NPP and Climatic
Factors
The spatial distribution of the partial coefficients between NPP
and climatic factors at a different significance level are presented
in Figure 8. The regions where AMT exhibited a positive
correlation with NPP occupy 99.6% of the entire research
region, and the region that correlated at the extremely
significant level occupies 83.1%, while the significant level
occupies 8.3%. The areas of negative correlation only occupy
0.4% of the whole basin and are mainly distributed in NLQ,
WHLY, and HYK.

The spatial distribution of the partial coefficients between NPP
and AP shows that positive relation areas account for 87.1% of the
whole study area, of which 25.4% at the extremely significant level
and 16.3% at the significant level. Negative correlation areas account
for 12.9%, only 0.3% at the significant level. Negative correlations are
mainly distributed in the southeast LYX, northwest of LJX-LZ, and
part of the areas in WHLY, LM-SMX, SMX-HYK and HYK.

The spatial distribution of partial coefficients between NPP and
ASH shows thatNPP is positively correlated in 24.8%of the study area.
Only 0.8% at the extremely significant level and 2.0% at the significant
level. The negative correlation occupies 75.2% of the study area, 2.7% at
the extremely significant level, and 14.9% at the significant level.

4 DISCUSSION

4.1 Vegetation Dynamics in the Yellow River
Basin
Previous studies have shown that the normalized difference
vegetation index (NDVI) and vegetation cover have increased in
the Yellow River Basin in the past decades. Vegetation cover in the
forest showed a decreasing trend, while alpine shrubs, meadow,
typical steppe, desert steppe, and forest (meadow) steppe vegetation
all showed a marked increasing trend (Nie et al., 2012). During 1982
and 2013, areas that showed a trend toward improvement accounted
for 59.49% of the Yellow River Basin area, while the area that showed
no change accounted for about 33.96% (Niu et al., 2021). The
average NDVI in the Yellow River Basin showed large fluctuations
from 2000 to 2004, but showed a rapid upward trend since 2005,
while 62.9% of the total area showed increasing trend during 2000
and 2010 (Yuan et al., 2013). From 1982 to 2019, the NDVI of the
Yellow River Basin showed a significant increasing trend with a
change trend of 0.0024 a−1 (Liu et al., 2021). The fractional
vegetation cover of the Yellow River Basin also showed a strong
rising tendency during 2000–2019, with a growth rate of 0.6,030 a−1

(Zhang et al., 2021), and the vegetation cover in the middle part of
the Yellow River Basin improved significantly.

4.2 NPP Variations
Previous studies have shown that climate constraints on the
vegetation growth relaxed with increasing temperature and solar
radiation, allowing an upward trend in NPP in the past decades. The
globalNPP in grasslands experienced a significant increase from1982
to 2008, with an increasing annual rate of 0.03 Pg C·a−1 (Liu et al.,
2019). NPP has shown an upward trend at the century scale, with an

average trend coefficient reaching 0.88 between 1901 and 2005 in
China (Gao et al., 2020). The GPP in the Yangtze River Basin showed
an increasing trend but not a significant trend, with a linear change
rate of 2.39 g C·m−2·a−1 from 2000 to 2015 (Ye et al., 2021). The
grassland NPP in Inner Mongolia has experienced an increment of
0.89 g C·m−2·a−1 from 2001 to 2018 (Guo et al., 2021). The MODIS
NPP product (MOD17A3) showed that from 2000 to 2015, the
average annual NPP was 228.2 g C·m−2·a−1 with a slightly volatile
increase (Tian et al., 2019). The NPP retrieved by the random forest
algorithm showed an increasing trend of 2.37 g C·m−2·a−1 (p = 0.09)
in theHexi Corridor of China between 2002 and 2018 (Li et al., 2021).
The NPP showed an increasing rate of 2.35 g C·m−2·a−2 across the
Yellow River Basin, which is slightly lower than in the Yangtze River
Basin and Hexi Corridor, but theMK test in this research conformed
to the change at an extremely significant level.

4.3 Response of NPP to Climatic Factors
Climate change influences vegetation ecosystems mostly through
changes in temperature, precipitation, and solar radiation, by
altering soil moisture, soil microbes, and additionally affecting the
photosynthesis and plant respiration, which are further regulated
by vegetation growth and ecosystem productivity (Horion et al.,
2013; He et al., 2015; Ma et al., 2019). Temperature is the primary
climatic factor that controls the inter-annual variation in NPP
over most ecosystems, while precipitation may play a different
role in different ecosystems (Liang et al., 2015). According to this
research, temperature, precipitation, and sunshine hours
positively correlate with NPP over 99.6, 87.1, and 24.8% of the
research region, respectively. Areas where precipitation shows a
positive correlation and sunshine hours show a negative
correlation with NPP are mainly located in the western and
northern parts of the Yellow River Basin, with an arid climate and
covered by vast shrubland, grassland, and desert areas. In arid
areas, plant growth is mainly restricted by soil moisture, and
lower soil moisture reduces the photosynthetic rate and thus
reduces the accumulation of photosynthetic products. In contrast,
the correlation between precipitation and NPP rarely reaches a
significant level in the eastern and southern parts of the Yellow
River Basin, where precipitation is above 600 mm·a−1.

4.4 Limitations and Next Work
This study analyzed the annual response of NPP to climatic factors
during the period 1981–2020. The annual values of temperature,
precipitation, and sunshine hours included the occurrence of
meteorological disasters. According to the previous research,
drought dominates the inter-annual variability in the global
terrestrial NPP by controlling semi-arid ecosystems. Soil moisture
variability drive 90 percent of inter-annual variability in the global land
carbon uptake (Vincent et al., 2021). Drought may have reduced
global NPP by 0.55 Pg C from 2000 to 2009. A drying trend decreased
NPP in the southern hemisphere (Zhao and Running, 2010), which
can explain 29% of the inter-annual variation in the global NPP in
semi-arid ecosystems (Huang et al., 2016). Extremely severe
meteorological disasters have become more frequent due to climate
change. Our study will include the impact of severe flood and drought
on the terrestrial ecosystem in future research.
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5 CONCLUSION

This article analyzed the NPP simulated by the BEPS model
and corresponding meteorological data to help understand
the spatiotemporal variation of vegetation NPP and its
response to climate change. The NPP in the Yellow River
Basin showed high values in the mid-south part, while the
lowest values were recorded in the northwestern part. The
average NPP in the 40 years was 195.3 g C·m−2·a−1 with an
extremely significant increasing trend and with an increasing
rate of 2.35 g C·m−2·a−2. All of the 11 secondary water
resource areas showed increasing trends at an extremely
significant level. The spatial distribution of AMT, AP, and
ASH showed similar patterns in the Yellow River Basin, with
similar values along belts extending from the northeast to the
southwest. AMT showed a change slope of 0.0410°C·a−1 in the
extremely significant level. AP showed a change slope of
0.7348 mm·a−1, while ASH showed a decreasing rate of
−2.9043 h·a−1, both in the nonsignificant level. NPP is
mainly positively related with AMT and AP, and
negatively related with ASH. The regions where NPP
exhibited a positive correlation with AMT, AP, and ASH

occupy 99.6, 87.1, and 24.8% of the entire research region,
respectively.
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