
Oil disturbance reduces infaunal
family richness but does not
affect phylogenetic diversity

Erin Kiskaddon1,2*, Kara Gadeken2,3, Sarah K. Berke4,
Susan Bell5, Jenna M. Moore6 and Kelly M. Dorgan2,3

1The Water Institute of the Gulf, Baton Rouge, LA, United States, 2Dauphin Island Sea Lab, Dauphin
Island, AL, United States, 3Department of Marine Sciences, University of South Alabama, Mobile, AL,
United States, 4Department of Biology, Siena College, Loudonville, NY, United States, 5Department of
Integrative Biology, University of South Florida, Tampa, FL, United States, 6Museum of Nature
Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany

Infaunal organisms are susceptible to disturbances such as hypoxia and

sediment contamination; changes in infaunal community structure are

therefore often used as indicators of anthropogenic disturbance.

Susceptibility to disturbance varies across taxa, either due to physiological

factors or to behaviors or functional roles that increase exposure. Both

sources of variability are likely to be heritable and shared among related

taxa. Thus, we would expect oil disturbance to disproportionately affect

related taxa and therefore decrease phylogenetic diversity (PD). We test this

hypothesis for a shallow water marine infaunal community using a simulation

approach that iteratively removes clades with shared vulnerability to oil

exposure. Infauna were sampled at two sites in the Chandeleur Islands, LA,

that reflect different exposures to crude oil after the Deepwater Horizon event.

Seagrass and adjacent bare sediment habitats were sampled in 2015, 5 years

after initial oil exposure, and again in 2016 after an acute re-oiling event. We

found that strong correlation between PD and family richness masked any

detectable PD patterns with oil exposure. For our full community tree, sensitivity

analysis indicated that the removal of larger clades did not disproportionately

reduce PD, against our prediction. For this pair of sites, PD did not provide a

better metric for assessing the impacts of oil exposure than family richness

alone. It is possible, however, that finer-scale taxonomic resolution of infaunal

communities may better decouple PD from taxonomic richness. More work is

needed to fully evaluate the impacts of disturbance on PD.
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Introduction

Marine benthic invertebrate taxa facilitate many critical

ecosystem functions, including serving as an important

trophic link between the base of the food chain and higher

trophic levels (Grebmeier et al., 2006; Davis et al., 2014).

Sediment invertebrates play important roles in nutrient

cycling, organic matter burial, and remineralization (Boudreau

and Jørgensen, 2001; Middleburg 2019). Benthic macroinfauna

are well-recognized biological indicators of ecosystem quality in

coastal areas (Dutertre et al., 2013) and are commonly integrated

into biological indices of ecosystem integrity and water quality

(Dauvin and Ruellet, 2007). Benthic macrofaunal diversity is also

a key variable in the development of coastal management plans

(Carstensen et al., 2014). LA, United states, is a hotspot for

coastal management activities focused on maintenance of coastal

habitats, including emergent wetlands and barrier islands

threatened by subsidence, sea level rise, extreme weather

events, and oil spills (CPRA, 2017). However, there remain

significant gaps in our understanding of benthic

macroinfaunal community composition, dynamics, and

resilience to perturbation at the base of marine food chains in

coastal Louisiana.

Crude oil exposure, like the Deepwater Horizon (DWH) oil

spill of 2010, is an ecosystem stressor capable of defaunating large

areas of the seafloor and decreasing species diversity (Montagna

et al., 2013), with long-lasting effects that may inhibit ecosystem

recovery for decades after exposure (Bejarano and Michel, 2010;

Pashaei et al., 2015). Montagna and Harper (1996) show that

chronic oil exposure resulted in decreased abundance of

harpacticoid copepods and amphipods and increased

abundances of deposit feeding polychaetes and nematodes,

which implies that related taxa may respond similarly to oil.

In recent work by Han et al. (2017), Antarctic copepods of the

genus Tigriopus exposed to a water accommodated fraction

(WAF) of crude oil exhibited oxidative stress and

reproductive impairment through upregulation of certain

enzymes, but the effects differed among species within the

genus. Reproductive impairment of certain families or genera

of marine invertebrates when exposed to WAF (Scarlett et al.,

2007; Lewis et al., 2008) further strengthens the hypothesis that

oil exposure has the potential to alter population dynamics.

One metric that ecologists can use to detect heritable

susceptibility to disturbance is an evaluation of Phylogenetic

Diversity (PD). PD is defined as the sum of branch lengths in the

phylogenetic tree connecting all members of a given community

together, indicating diversity of evolutionary lineages of a given

biological community (Faith, 1992). PD was first introduced as a

tool for conservation practitioners to determine conservation

priorities amongst diverse taxa based on quantitative measures of

feature diversity held within related phylogenetic groups or clades

(Faith, 1992). PD is commonly used to evaluate diversity in

ecosystems, measure the impacts of ecosystem stressors on

communities, and predict future biodiversity declines. If related

taxa are susceptible to the same stressor and are lost from a

community, then the resulting measure of PD will be lower than

if taxawere lost at random (Faith 1992; Cadotte et al., 2008; Srivastava

et al., 2012). The concept of shared susceptibility to stress based on

evolutionary relatedness has been used to describe a broad array of

taxa and contexts, including assessing urbanization impacts on birds

(Carvajal-Castro etal., 2021), evaluating historical extinction patterns

of mammals (Russell et al., 1998; Purvis et al., 2000), determining

geographic distributions of threatened amphibians (Bielby et al.,

2006), and identifying biodiversity hotspots and regions of

potential biodiversity decline of plants (Davies et al., 2011;

Yessoufou et al., 2012). These studies indicate that some

incidences of stress can disproportionately impact some taxa over

others (Russel et al., 1998; Purvis et al., 2000). However, recent

research has shown that PD is less useful for detecting responses of

macroinvertebrate communities to stress. Boda et al. (2021) found no

phylogenetic signal of stream restoration impacts on

macroinvertebrate communities using and Arbi et al. (2017)

observed no differences between species-level indicators (richness,

diversity) and measures of PD in macrobenthic communities in

response to nutrient pollution.

The objective of this study is to evaluate whether PD captures

changes in infaunal communities sampled from a site that was

heavily impacted by oil versus those from a site that was less

impacted. We used PD to examine whether oil exposure

disproportionately affects benthic invertebrate families based

on evolutionary relatedness and inherited susceptibility. We

hypothesize that responses to crude oil would be conserved at

the family level, resulting in lower PD overall. We also explicitly

test the prediction that removal of related taxa rather than

random taxa from a marine infaunal community phylogenetic

tree would result in a substantially lower measure of PD as

described for other biological communities.

Methods

Study design and infauna sampling

This studywas conducted in 2015 and 2016 on the inshore side

of the Chandeleur Islands, LA, a barrier island system that received

patchy oiling during the DWH oil spill in 2010. Macroinfauna

were collected in shallow water (<1 m depth) at two sites roughly

3.7 km apart, one moderately to highly oiled

(29.894658N, −88.828155W) and the other only lightly oiled

(29.864039N, −88.842443W; sites B and A, respectively,

described by Berke et al., this issue). Sampling was conducted

in the summer and fall of 2015 and 2016. During sampling efforts

in summer 2016, a visible layer of oil was observed at the sediment

surface in the nearby marsh at the previously oiled site. The origin

of the oil is unknown, but it is possible that it was transported or

unearthed during a storm event over the winter of 2016 (see Berke
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et al., in this issue for further details). We therefore concluded that

the samples collected in the summer and fall of 2015 reflect long-

term oil recovery after the DWH oiling event, and the samples

collected in 2016 (especially in summer) reflect short-term

recovery after acute re-oiling. At each shallow water site, we

sampled two distinct habitat types: seagrass (Ruppia sp., most

likely R. maritima) and unvegetated sediment. Due to a lack of

baseline data prior to the DWH event, differences in infauna

communities between sites is used as an indicator of oiling impact.

Infaunal community analysis of these sites and habitats by

Berke et al. (this issue) showed that community structures were

significantly different between the sites and habitats for all

sampling efforts. Furthermore, after the summer 2016 re-

oiling event, abundance, family richness, and Shannon

diversity were significantly lower at the oiled site. Here, we

use the same dataset as Berke et al. (this issue) to determine

whether phylogenetic diversity calculations contribute to our

understanding of the impacts of oil on these communities.

Sampling methods are described in detail by Berke et al.,

(this issue). Briefly, infauna samples were collected using

sediment cores (10 or 15 cm diam., 15 cm depth) from

both habitat types at each site. Upon collection, sediment

was sieved (500 μm) in the field and macroinfauna

immediately preserved in 95% EtOH with Rose Bengal

stain. All preserved animals were later sorted, enumerated

and identified to species-level if possible, otherwise to genus-

level. Juvenile crustaceans and mollusks too small for

confident identification were not included in this analysis.

Phylogenetic tree construction

To estimate phylogenetic diversity, we constructed a maximum

likelihood (ML) phylogeny based on 18S ribosomal RNA and

mitochondrial cytochrome oxidase subunit 1 (COI). These genes

are commonly used for phylogenetic reconstruction of the four

phyla included in our dataset: Annelida (Struck et al., 2006; Struck

et al., 2015), Arthropoda (Koenemann et al., 2010), Mollusca

(Sharma et al., 2012; Galindo et al., 2016), and Echinodermata

(Janies 2001; Okanishi and Fujita, 2013). Published 18S and COI

gene sequences were obtained from GenBank for most identified

families, and sequences were selected from the lowest level of

identification (species level where possible) to more accurately

represent their phylogenetic placement. We attempted to use

18S and COI genes from the same species, however, in a few

taxa this was not possible (see Supplementary Material). For taxa

with no publicly available 18S and COI sequences, sequences were

generated using the DNeasy Blood and Tissue Kit (Qiagen©) for

DNA extraction using the manufacturer’s instructions, followed by

PCR amplification using taxon-specific primers (Supplementary

Table 2). PCR products were sent to Integrated DNATechnologies,

Inc. for purification and sequencing using Sanger sequencing

methods. Unfortunately, a few taxa had no 18S or COI

sequence data available on GenBank at the time of analysis and

sequencing attempts failed. We therefore omitted the families

Cossuridae (Annelida), Mysidacea (Arthropoda), Tornatinidae

(Mollusa), Cystiscidae (Mollusca), and Litiopidae (Mollusca),

none of which were abundant in our samples. A complete list of

identified families, associated GenBank accession numbers (if

applicable), and DNA preparation protocols are provided in the

Supplementary Material.

Sequences were trimmed and checked using Geneious v.

9.0.5 software. Each gene was aligned separately using MAFFT

(Katoh and Standley, 2013); for COI, the L-INS-I algorithm with

default settings was used. For 18S, the E-INS-I algorithm with

default settings was used, and alignment positions comprising at

least 75% gap sites were stripped from the alignment. Alignment

ends were trimmed to exclude sites with poor coverage. The final

gene alignments were concatenated in Geneious Pro to produce

an alignment with 2,404 sites. Partitioned maximum likelihood

(ML) tree reconstruction was performed using RAxML-NG v.

1.1.0-master on the CIPRES Science Gateway (Miller et al., 2010),

under a gene-partitioned GTR + G model with 10 replicate tree

searches and 1,000 non-parametric bootstrap replicates. Because

there are limitations to the accurate reconstruction of deeper

nodes based on only two genes (Hou et al., 2007; Heimeier et al.,

2010; Zanol et al., 2010), particularly at the scale of multiple

phyla, a constraint topology based on several more robust ML

phylogenetic analyses and multiple genetic loci (Taylor et al.,

2007; Bracken et al., 2009; Toon et al., 2009; Zrzavý et al., 2009;

Bracken et al., 2010; Kocot et al., 2011; Okanishi et al., 2011;

Smith et al., 2011; Weigert et al., 2014; Weigert et al., 2014; Struck

et al., 2015; Verheye et al., 2015; Kocot et al., 2017) was generated

in the Mesquite software package (v3.51; Maddison and

Maddison, 2018) and applied in the ML analysis (Figure 1).

Use of a constrained topology during tree building ensured that

robustly supported phylogenetic relationships were retained

while allowing for variable branch lengths to calculate PD.

The tree was rooted using the sole deuterostome clade

Echinodermata as the outgroup.

The final comprehensive family-level ML tree was pruned

(i.e., branches removed) to obtain sub-trees that reflect the

snapshot community composition found in each of the

16 community treatments (oiled/unoiled sites x seagrass/

unvegetated x summer/fall x 2015/2016), hereafter referred to as

“community trees.” Topologies of all community trees are given in

Supplementary Figures 1–16. PD and family richness were calculated

for all samples (Supplementary Material) and each of the

16 community trees.

Calculating phylogenetic diversity

PD analyses were conducted separately by site, year, season, and

habitat by community tree. PD and family richness were calculated

for each individual sample and each of the 16 community trees using
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the PD function (Picante v1.8 package; Kembel et al., 2010) in R (R

Core Team, 2018). Prior studies have shown that PD decreases nearly

linearly with taxon richness (Flynn et al., 2011; Voskamp et al., 2017);

we therefore needed to statistically determine whether the observed

value of PD significantly departs from the expected value for a given

number of families. A significantly lower observed PD value could

indicate that an environmental stressor (i.e., oil) disproportionately

impacted certain families. To achieve this, we used a bootstrapping

method to construct a distribution of PD values generated through

randomized taxa groups. In other words, we created a null

distribution of PD for richness. This null distribution was created

by randomly subsampling n = family richness (with replacement)

from the comprehensive tree, then calculating PD for each subsample

using the PhyloMeasures v2.1 and ape v5.3 packages in R

(Tsirogiannis and Sandel, 2015; Paradis and Schliep, 2018). This

subsamplingwas repeated 10,000 times for each family richness value

to obtain a null distribution of PD values associated with a given

family richness.We compared PDobserved for each community against

this bootstrapped null distribution for a given richness. One-tailed

p-values were calculated as the proportion of the null distribution ≤
PDobserved (a one-tailed test was appropriate because we hypothesized

a priori that PD would be reduced following oil disturbance).

Sensitivity analysis for testing the effects
of family clade removal on PD

To test our prediction that successive losses of related families

would result in lower PD values, we implemented three extinction

scenarios using our comprehensive family tree: A) single family loss:

iterative random removal of one family branch; B) two-family clade

loss: iterative random removal of clades containing two families; C)

three-family clade loss: iterative random removal of clades containing

three families (Figure 1). Starting with PD of the full tree, PD was

calculated for the remaining branches at each removal step until no

families or specified clade sizes remained. Each scenario was repeated

for 100 iterations. For each iteration, the order of families removed

was randomized. PD values for all 100 iterations were then plotted

against family richness for each scenario. Upper bounds were used to

highlight each scenario’s lowest possible rate of PD loss; upper

bounds were calculated by sequentially removing families or

clades based on terminal branch length ordered from shortest to

longest. We predicted that PD would decrease more rapidly when

larger clades were removed, therefore scenario C would result in the

greatest rate of PD decline with decreasing richness. We also

predicted that if oiling disproportionately eliminated groups of

related taxa (i.e., larger clades), the observed PDs from the oiled

site would be closer to scenario C. If oiling did not result in loss of

related taxa, observed PD values would more closely reflect

scenario A.

Results

Calculating phylogenetic diversity

The comprehensive family-level constrained ML phylogenetic

tree included 70 families across four phyla: Echinodermata,

Arthropoda, Mollusca, and Annelida (Figure 2). Linear regression

constrained through the origin for oiled and unoiled community

FIGURE 1
Illustration of scenario A, B, and C process steps used in the sensitivity analysis to test the effects of family clade size removal.
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FIGURE 2
Comprehensive family-level ML phylogenetic tree showing all 70 families identified during sampling at both oiled and unoiled locations. Dashed
branches indicate families were not constrained during tree building.

Frontiers in Environmental Science frontiersin.org05

Kiskaddon et al. 10.3389/fenvs.2022.950493

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.950493


trees indicated strong correlation (slope = 0.33–0.36) between PD

and richness (all R2 > 0.95, Figure 3).

Family richness declined markedly following the summer

2016 reoiling event (Figure 4, see also Berke et al., this volume),

but was otherwise similar for samples from both the oiled and

unoiled sites. Samples from seagrass versus unvegetated habitats,

however, showed more pervasive differences, with two-fold

higher family richness in seagrass in some instances. As

expected, the null PD distributions were strongly correlated

with family richness (Figure 4). None of the observed PD

values were significantly lower than the randomized null

distributions of PD, indicating the observed values were not

different than those generated by a random group of families.

The only exception was summer 2015 in which observed PD in

unvegetated habitat at the oiled site was significantly greater than

the distribution created using randomized trees that maintained

richness (Table 1).

Sensitivity analysis for the effects of clade
removal on PD

We predicted that 1) PD would decline more sharply if

larger clades were removed (i.e., that the PD would be lower

for Scenario C than A), and 2) that PD for the oiled sites to fall

within the range for Scenario C and below those of the

unoiled sites, which would more closely follow Scenario A.

In contrast, we found that the trends in PD decline were

highly similar across all scenarios (Figure 5). Furthermore,

the PD values from our community trees were within the

range or slightly higher than our modelled results, regardless

of oiling history.

Discussion

Effect of oil on macrofaunal community

This analysis confirmed that family richness and PD are tightly

correlated formarine infaunal communities, as expected from studies

in other biological communities (Flynn et al., 2011; Voskamp et al.,

2017). We predicted that PD would be significantly lower than

expected for a given richness at the oiled sites, assuming that related

taxa would be removed. However, the data indicate that in most of

our sampling events, the PD of each community showed no effect of

oiling, and in the one event in which an effect was observed, it was

captured by the simpler metric of richness and calculation of PD did

not contribute to better detection of the effects of oiling. We

did find a significantly higher PD for one sampling effort, the

oiled site in the unvegetated habitat in summer 2015

(Figure 4). Examination of the community-level tree for

that effort (Supplementary Figure 14) showed the presence

of the Arthropoda family Leptochelidae, a family with a

noticeably long terminal branch length. Some arthropods

are commonly characterized with proportionally long

terminal branches when phylogenies are resolved using

18S rRNA data (Jenner et al., 2009) which explains the

higher PD observed in summer 2015. More favorable genes

and phylogenetic analyses are still being determined for

resolving the class Malacostraca.

FIGURE 3
Scatterplot of PD and family richness values calculated for (A) all samples, and (B) each of the 16 community trees, separated by site. Linear
regression lines constrained through the origin are given for each site, with slope ± 95% confidence interval and R2 provided.
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FIGURE 4
Observed community tree phylogenetic diversity (PD; solid bars) compared to null distributions (shaded areas) of PD values for the observed
family richness generated for each season, year and habitat type for both sites. The asterisk (*) indicates significantly lower community PD than
expected using one-tailed p-values calculated as the proportion of the null distribution ≤ PDobserved (Table 1). Sample-based rarefaction curves and
associated values of family richness are also shown for each site by sampling effort. Shaded colors are transparent, green shading indicates
overlap of yellow and blue regions.
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Using PD to assess disturbance to
macrofaunal communities

Our prediction that the loss of related taxa would result in

lower PD, as shown in other studies (Faith 1992; Cadotte et al.,

2008; Srivastava et al., 2012), was not supported for our

community tree. We found substantial overlap in possible PD

values when simulating loss of single family, 2-family, and 3-

family clades (Figure 5). This is consistent, however, with Parhar

and Mooers’ (2011) finding that PD estimates could not

distinguish between random and targeted cladal extinction

patterns. Phylogenetic tree topology can strongly affect how

extinction of taxa from the tree decrease PD (Nee and May

1997; Malleit et al., 2018). For trees that are comb-shaped (short

terminal branches) rather than bush-shaped (long terminal

branches), the loss of a single taxon removes a greater

proportion of the phylogenetic diversity in the tree, and

phylogenetic diversity is more closely correlated with taxon

richness (Nee and May 1997; Malleit et al., 2018). To better

understand why our prediction was not supported, we examined

our tree topology. Tree shape can be quantified using two

parameters, ß and α (Maliet et al., 2018). ß quantifies

variation in the species richness of clades, with higher values

of ß indicating more even distributions of species among clades.

ß < 0 indicates an unbalanced tree with large variation, and

ß = −2 converges on a comb-like tree in which all branches

connect at the spine of the tree. α describes the relationship

between the age and richness of a clade, with α < 0 indicating that

small clades contain evolutionarily distinct species, i.e., have long

branches. Using ß and α, Maliet et al. (2018) show that PD in

TABLE 1 Observed PD values and family richness by site, habitat, season, and sampling year for each of the 16 community trees.

Unoiled site Oiled site

Habitat Year Season Richness Observed PD p-value Richness Observed PD p-value

Unvegetated 2015 Summer 25 9.96 0.15 25 10.84 0.01*

Fall 19 6.49 0.16 18 6.69 0.32

2016 Summer 25 8.61 0.31 21 7.44 0.27

Fall 19 5.99 0.06 23 8.62 0.44

Seagrass 2015 Summer 38 13.08 0.17 31 11.14 0.27

Fall 29 9.78 0.37 28 9.98 0.42

2016 Summer 37 12.06 0.50 19 6.82 0.26

Fall 33 9.74 0.05 32 9.73 0.09

One-tailed p-values indicate the significance of observed PD against a null distribution of randomized community PD. The asterisk * indicates significance at α = 0.05.

FIGURE 5
Clade loss scenarios modeling PD decline as a function of family richness. The three scenarios include: (A) single family, (B) two-family clade,
and (C) three-family clade iterative PD loss. Iterations (n = 100 per scenario) and scenario mean (with 25 and 75% shaded quantiles) are plotted. The
upper bounds of each scenario and a line through the origin are provided for reference. For all scenarios, the iterations fell below what would be
expected from the slowest possible rate of PD loss based on removing branches/clades ordered shortest to longest total branch length (upper
bound). Individual points reflect PD values from each community tree.
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unbalanced trees (β < −1 or a < 0) can decrease almost as quickly as

taxon richness, whereas PD loss is more gradual for more balanced

trees. A post-hoc analysis of our full community tree using

apTreeshape, a package that uses statistical analysis to compare

tree topologies against null topologies generated from standard

stochastic models of evolution (Bortolussi et al., 2006), results in a

ß value of−0.80 ± (1.22) and an a value of−0.15. These ß andα values

indicate that the community tree is unbalanced in favor of a comb-

like structure, potentially explaining our finding of tight correlation

between family richness and PD. In this case, PDmay be less useful as

a metric to assess disturbances because our community tree was

strongly unbalanced when analyzed at a family level. We opted for a

family-level analysis because a key goal of our study was to assess

whether PD might be a useful metric in identifying effects of

disturbances on infaunal communities. Many infaunal community

studies identify organisms only to the family level (e.g., Gomez

Gesteira et al., 2003; Hernández-Arana et al., 2003; Bernardino

et al., 2012). Identification of infaunal taxa to species level is

much more time consuming and requires much greater

taxonomic expertise than identification to family-level.

Additionally, a species-based tree would have required us to

sequence every species rather than using available sequences from

closely related species available on GenBank. This amount of effort

was not feasible under the constraints of our study, and indeed would

not be feasible for most community-level studies of environmental

impacts.

That said, our results raise the question of whether species-

level identification of taxa would result in a more balanced tree,

and if so, whether PD might then be a useful metric for

characterizing disturbances in sediment communities. This

question is especially relevant as high-throughput DNA

sequencing (HTS) is increasingly being used to survey

diversity of microbial communities (Liu et al., 2021), fungal

communities (Nilsson et al., 2018), microphytobenthos (An

et al., 2020), meiobenthic communities (Broman et al., 2020),

and macroinvertebrate communities (Carew et al., 2018;

Mauffrey et al., 2020), among others. It would be interesting

to know whether community trees based on HTS of sediments

are more balanced than our family-level tree. Whereas HTS is

increasingly used for meiofauna (Brannock et al., 2018; Broman

et al., 2020), and has been shown to perform well for benthic

monitoring (Lejzerowicz et al., 2015; Mauffrey et al., 2020),

family richness using HTS can be much lower than that

detected using traditional morphological analysis (Lejzerowicz

et al., 2015). Additionally, Nascimento et al. (2018) found that

large sample volumes are needed for robust analysis of sediment

community diversity. However, this field is advancing rapidly,

and HTS will likely become increasingly common for surveying

macrofaunal communities as well as meiofauna. PD will be

relatively easy to calculate for HTS data, and it appears that

its usefulness depends strongly upon the tree topology.

PD is calculated from presence/absence data, but moderate

oil stress can reduce abundances without completely removing

taxa. Therefore, we explored the possibility of phylogenetic

patterning in the distribution of effect sizes for changes in

abundance at the oiled site (not shown). However, many

families were rare, making it difficult to robustly estimate

effect sizes and complicating the phylogenetic analysis.

Berke et al. (this issue) provide further analysis of

differences in infaunal communities between sites across

sampling efforts.

Overall, for this pair of sites, PD did not provide a better

metric for assessing the impacts of oil exposure on benthic

macroinfaunal communities than family richness alone. It is

possible, however, that finer taxonomic resolution of

infaunal communities achieved through high throughput

sequencing may better decouple PD from richness,

justifying further study of the acute impacts of

disturbance on PD.
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