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In the past two decades, global manufacturing of per- and polyfluoroalkyl

substances (PFAS) has shifted from long-chain compounds to short-chain

alternatives in response to evidence of the health hazards of long-chain

formulations. However, accumulating data indicate that short-chain PFAS

also pose health risks and are highly mobile and persistent in the

environment. Because short-chain PFAS are relatively new chemicals,

comprehensive knowledge needed to predict their environmental fate is

lacking. This study evaluated the capacity of machine-learned Bayesian

networks (BNs) to predict risks of exposure to short-chain PFAS in a

Minnesota region affected by PFAS releases from the 3M Cottage Grove

facility. Models were trained using long-term monitoring data provided by

the Minnesota Department of Health (n = 12,406), which we coupled to a

comprehensive dataset created by curating 88 other variables that describe

potential PFAS sources, soil and hydrogeologic characteristics, and land use.

Model performance was assessed using the area under the receiver-operating

characteristic curve (AUC), a common measure of the accuracy of machine-

learned classification algorithms. In addition, exposure risks were visualized

spatially by couplingmodel predictions to a geographic information system.We

found that machine-learned BN models had robust predictive performance,

with AUCs above 0.96 in cross-validation. Significant risk factors identified by

the BNs include distance to the 3M factory, distance to a former landfill, and

areal extent of wetlands and developed land. We also found that risks of

exposure to and the areal extent of perfluorosulfonic acids were greater

than for perfluorocarboxylic acids with the same carbon number. The results

suggest thatmachine-learned BNs could provide a promising screening tool for

assessing short-chain PFAS exposure risks in groundwater.
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Introduction

Per- and polyfluoroalkyl substances (PFAS) are a large family

of anthropogenic chemicals with similar molecular structures

consisting of a partially or fully fluorinated carbon chain and a

terminal functional group (e.g., carboxylate or sulfonate). PFAS

have been widely used in commercial and industrial products

ranging from food packaging to waterproof clothing to stain-

resistant furnishings. They also have been used in industrial

applications, including in firefighting foams and as additives and

surfactants in manufacturing processes. Consequently, PFAS

have been widely dispersed in the environment (Ahrens, 2011;

Goosey and Harrad, 2012; Kirchgeorg et al., 2016; Brusseau et al.,

2020). Because of their inert nature, PFAS are highly resistant to

abiotic or biotic degradation and, as a result, accumulate in the

environment. An increasing number of studies have revealed the

linkage between PFAS exposure and a series of health issues such

as kidney cancer, decreased immunity to infectious diseases, and

fertility problems (Joensen et al., 2009; Steenland et al., 2010;

DeWitt et al., 2012).

Due to their ubiquitous distribution, environmental

persistence, and adverse health effects, the U.S. and

international organizations have issued regulations or health

advisories for some of the most commonly used PFAS. In

2006, the U.S. Environmental Protection Agency (EPA) and

eight major PFAS manufacturers signed the 2010/2015 PFOA

Stewardship Program, aiming to reduce the emissions and

product content levels of perfluorooctanoic acid (PFOA) and

precursor chemicals (U.S. EPA, 2006). In the European Union,

both perfluorooctane sulfonic acid (PFOS) and PFOA are

restricted (EU, 2006). Regulations on these traditionally used

long-chain PFAS resulted in a global manufacturing shift to

short-chain alternatives (Ateia et al., 2019).

Although short-chain PFAS are considered less

bioaccumulative than their longer-chain predecessors

(Bowman, 2015), they may still pose significant risks to

humans and ecosystems (Brendel et al., 2018). Short-chain

PFAS tend to be more mobile due to their higher solubility in

water and lower adsorption to soil particles. Therefore, they tend

to migrate over a longer distance and pose health threats to

people in areas far away from contaminated sites (Wang et al.,

2015). Vierke et al. conducted a PFAS transport study using

saturated sediment column experiments and observed tracer-

like breakthrough curves for perfluorobutanoic acid (PFBA),

perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid

(PFHxA), and perfluorohexanesulfonic acid (PFHxS). In the

same study, transport of long-chain PFAS such as PFOA was

much slower under the same experimental conditions, with

estimated retardation factors over 20 (Vierke et al., 2014).

Previous field studies have found similar differences between

transport of short- and long-chain PFAS in unsaturated soil

(Washington et al., 2010; Sepulvado et al., 2011). Nonetheless, it

is important to note that in addition to carbon chain length, the

functional group associated with PFAS species also plays an

important role in their transport in the environment. For

example, in a bench-scale experiment, McKenzie et al.

observed that PFBS (with a four-carbon chain and a sulfonic

acid functional group) had a higher retardation factor than

PFOA (with an eight-carbon chain and carboxylic acid

functional group) (McKenzie et al., 2015). Also contributing

to potential risk differences between short- and long-chain PFAS

is that higher amounts of short-chain PFAS are usually used in

manufacturing to achieve technical performance similar to long-

chain compounds (Brendel et al., 2018; Ateia et al., 2019).

Because of their ubiquitous use and high mobility after being

released, short-chain PFAS are widely distributed in the

environment. At some contaminated sites, concentrations of

short-chain PFAS are even higher than those of long-chain

homologs, especially in aquatic phases. For example, short-

chain PFAS are dominant and reach up to 88.8% of the total

PFAS concentration in water samples from the Yellow River in

China, while long-chain PFAS prevail in the sediment (Zhao

et al., 2016).

Evidence also indicates that short-chain PFAS are as

persistent as long-chain compounds. Common processes (e.g.,

chlorination, sand filtration, and anaerobic digestion) at

wastewater treatment plants are not effective in removing

short-chain PFAS. Short-chain PFAS have been observed in

all process steps in wastewater plants due to their resistance

to microbial degradation, limited adsorption to activated sludge,

and transformation from longer-chain precursors (Gallen et al.,

2018; Houtz et al., 2018; Lorenzo et al., 2019). As a consequence,

treatment plant discharges can be a source of pollution in

receiving water bodies. In a field investigation of the spatial

distribution of organic contaminants in England’s rivers,

Wilkinson et al. found that the PFBS concentration in water

downstream from wastewater treatment plants was about twice

as high as that in upstream water (Wilkinson et al., 2017).

Moreover, although the ecological and human toxicities of

short-chain PFAS remain largely unknown, previous studies

have reported experimental evidence for their toxicity. For

example, Butenhoff et al. reported that exposure to PFBA

caused increased liver weight and histopathological changes in

male rats (Butenhoff et al., 2012). More recently, Feng et al.

reported that exposure to PFBS caused developmental

abnormalities (e.g., decreased perinatal body weight and

delayed eye-opening) in female offspring of exposed pregnant

mice (Feng et al., 2017).

Despite the manufacturing shift from long-chain to short-

chain PFAS, knowledge about short-chain alternatives is very

limited. One relatively recent review found three times as many

studies of long-chain PFAS as of short-chain alternatives (Ateia

et al., 2019). The absence of comprehensive knowledge poses a

major challenge to predicting the environmental fate of these

emerging contaminants using traditional mechanistic fate-and-

transport models. For example, the lack of understanding of the
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physicochemical properties of most short-chain PFAS impedes

model development, because mechanistic models require

parameters describing physicochemical processes (e.g.,

sorption to soil-water and water-air interfaces, abiotic/biotic

transformation from various precursors, and complexation

with natural colloids or ligands) controlling contaminant fate

(Li et al., 2019; Zeng et al., 2021). Parametrizing these processes

requires detailed experiments repeated under different

geochemical conditions. Furthermore, simulating real-world

scenarios requires an understanding of how these parameters

vary in the heterogeneous soil matrix, along with consideration of

potential co-transporters (Sima and Jaffé, 2021). A further

challenge to mechanistic modeling is the large diversity of

molecular structures among thousands of PFAS (Naidu et al.,

2020). The complex array of potential PFAS sources is another

barrier. Direct and indirect short-chain PFAS sources include

(but are not limited to) manufacturing facilities, fire stations,

wastewater treatment plants, landfills, land applications of

wastewater biosolids and sludge, and irrigation. It is

impossible to accurately estimate PFAS mass fluxes from these

potential sources without long-term monitoring data (Li et al.,

2021; Sharifan et al., 2021).

Bayesian networks (BNs) constructed using machine-

learning algorithms provide a potential approach to the

abovementioned obstacles to characterizing the risks of

exposure to PFAS in groundwater. Instead of relying on a

mechanistic description of specific environmental transport

processes, BNs can estimate contaminant occurrence by

describing conditional dependencies among variables in

observational data sets. The estimation of water flow,

contaminants’ mass flux from sources, sorption,

transformation, and other detailed parameters is not

necessary. In recent years, some researchers have started to

investigate the application of BNs to predict contaminants’

occurrence in environmental media. Bilal et al. developed a

BN-based tool to assess the environmental distribution of

engineered nanomaterials (Bilal et al., 2017). Lee et al.

proposed a mass-balance integrated BN model to assess the

fate of natural estrogen in a swine waste lagoon system (Lee

et al., 2014). In our previous work, a BN model was trained to

predict the risk of exposure to GenX (a short-chain PFAS) in

private well water around the Chemours Fayetteville facility in

North Carolina (Roostaei et al., 2021).

In this study, long-term monitoring data for PFAS in the

Minneapolis East Metropolitan Area (East Metro) were leveraged

to test the capability of machine-learned BNs to predict the

occurrence of four different short-chain PFAS in groundwater.

We combined these data with data on factors that could

potentially influence the occurrence and environmental fate of

PFAS (for example, soil and aquifer characteristics, land use and

land cover, locations of known and potential PFAS sources, and

meteorological conditions) available from public sources. Using

this curated data set, we

1) trained BNs to predict the risks of exposure to concentrations

above health-based guidelines for four short-chain PFAS:

PFBA, PFBS, PFHxA, and PFHxS;

2) assessed the accuracy of the models in predicting exposure

risks;

3) identified variables most predictive of exposure risks; and

4) used the trained models to map the spatial distributions of

risks.

Our main goal was to test whether this approach could

provide accurate predictions of short-chain PFAS in

groundwater across a relatively large geographic area based on

spatially incomplete prior sampling. We sought to develop

further evidence of the generalizability of the modeling

approach, even if the specific models may not generalize to

other geographic locations. A secondary goal was to gain

insights on environmental factors most associated with the

occurrence, fate and transport of specific short-chain PFAS in

a complex, real-world setting.

Methods

Study area and PFAS concentration data

The Minnesota Pollutant Control Agency (MPCA) and the

Minnesota Department of Health (MDH) have continuously

monitored PFAS concentrations in groundwater samples in

the East Metro area for more than two decades, accumulating

more than 12,000 measurements of multiple PFAS (Figure 1).

This widespread sampling occurred in response to concerns

about PFAS releases from a local 3M factory that produced

PFOA from the late 1940s until 2002 and that continues to

produce short-chain alternatives, such as PFBS. Other major

PFAS sources in the area include four historic dumpsites used by

3M (and others): the Washington County landfill, theWoodbury

disposal site, the Oakdale disposal site, and the former Pig’s Eye

landfill (Figure 1).

MDH data provided all PFAS data collected between

2001 and 2019. In addition to PFAS concentrations, the

monitoring data also included reporting limits, method

detection limits, sampling dates, and sampling site

geocoordinates. This study focused on four specific short-

chain PFAS: PFBA, PFBS, PFHxA, and PFHxS. For each

PFAS, an exposure risk threshold was selected according to

the health advisory value published by MDH (MDH, 2018;

MDH, 2020; MDH, 2021; MDH, 2022), summarized in

Table 1. PFAS concentrations were converted to a binary

variable according to the risk thresholds. Specifically, PFAS

measurements with concentrations greater than or equal to

the corresponding threshold were designated as “at risk."

PFAS measurements included in this data set were collected

by multiple agencies, including MDH, MPCA, 3M, and their
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contractors, each of which might apply different procedures in

sampling, chemical analysis (including PFAS species measured),

and reporting. The differences among data sources led to a

varying level of data accuracy, which might weaken the

reliability of trained models. In addition, the improvement of

PFAS detection methods over time further contributes to this

inconsistency. Therefore, the PFAS data were screened to ensure

satisfactory data accuracy. Briefly, a screening threshold was

FIGURE 1
Locations of major sources and sampling sites in the study area.

TABLE 1 Four short-chain PFAS investigated in this study.

PFAS chemicals PFBA PFBS PFHxA PFHxS

Formula C4HF7O2 C4HF9O3S C6HF11O2 C6HF13O3S

Sources Breakdown of other PFAS;
photographic film

Water- and stain-resistant coatings on
fabrics, carpet, paper; industrial
surfactant

Breakdown of other PFAS;
manufacturing impurity

Stain-resistant fabric; firefighting
foam; food packaging; industrial
surfactants

Status of manufacturing
at 3M factory

Ceased in 1998 Ongoing NA Ceased in 2002

Sample sizea 10,941 5,075 6,186 5,557

Health risk limitb,e 6.67 0.14 0.22 0.047

< HRLc 10,085 (92%) 4,403 (87%) 5,449 (88%) 3,931 (71%)

≥ HRL 856 (8%) 672 (13%) 737 (12%) 1,626 (29%)

Mean (SD)d,e 11.14 (0.73) 1.89 (0.20) 1.41 (0.28) 5.86 (1.02)

Mediane 0.595 0.006 0.021 0.010

Maximume 1,960 603 1,589 2,917

Minimume Not detected Not detected Not detected Not detected

Notes: aOnly samples with method detection limits less than or equal to the health risk limit were included.
bShort-term Non-Cancer Health Risk Limit from Minnesota Department of Health.
cHRL = health risk limit.
dSD = standard deviation.
eConcentrations and HRLs, are reported in the unit of μg/L.
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selected for each PFAS: PFAS measurements with a method

detection limit above the threshold were discarded from the raw

data. In this study, the screening threshold was set to be equal to

the corresponding health risk limit shown in Table 1 to guarantee

a confident binary variable for PFAS risk screening.

Supplementary Tables S2–S5 show summary statistics for the

full set of reported measurements for each compound and for the

screened data sets used for model training. For PFBA, all variables

in the screened and full data sets have similar distributions, except

for the year of sample collection (mean = 2013 for the screened

data set versus 2012 for the full data set). However, for the other

three PFAS compounds, the full and screened data sets differ

significantly along many of the variables. For these three

compounds, screened data sets have higher mean

concentrations of contaminants than the full data sets (though

the difference is not statistically significant for PFHxA). This latter

finding reflects the lowering of detection limits over time (and

therefore the inabilisty of samples collected in earlier years to

adequately detect samples above the health risk limit).

Supplementary Figure S1 shows histograms of the distribution

of samples by year for the full data set (includingmeasurements for

any PFAS) and for each data set used in model training. As shown,

observations were sparse before the year 2006. However, when

training the models, the variable “year” was discretized into multi-

year bins to ensure adequate training data for each time period (see

Supplementary Tables S3–S6 for variable discretizations).

Data curation

A comprehensive dataset was created by compiling data on

88 variables that could be predictors of PFAS occurrence.

Potential variables were identified based on a review of

previous studies of factors influencing the occurrence of PFAS

in groundwater. These variables can be divided into three

categories, describing PFAS contamination sources, soil or

hydrogeologic characteristics, and land use. PFAS sources

include the 3M factory and the four waste disposal sites

shown in Figure 1, wastewater treatment plants, wastewater

discharge sites, fire stations, airports, septic systems, and sites

where biosolids (such as from wastewater treatment plants) are

disposed of on land. Supplementary Table S1 describes all

88 variables and their sources. These variables were linked to

the PFAS data using the geocoordinates of sampling sites in a

geographic information system, QGIS version 3.6.3 (QGIS

Development Team, 2016).

Overview of bayesian network modeling
assumptions and approach

Bayesian networks were pioneered in the 1980s in the

artificial intelligence and computer science fields as means to

encode expert knowledge and compress large data sets, the latter

by providing an efficient means of capturing statistical

relationships among variables (Frey et al., 1998; Pearl, 1998).

Since then, with the rapid growth in computing power, BNs have

been developed as prediction and decision aids in a wide variety

of applications, ranging from medical diagnostics (such as

predicting the probability of a patient having a disease from a

set of symptoms) to credit risk scoring (Leong, 2016; Arora et al.,

2019).

Formally, a Bayesian network is a graphical representation of

relationships among variables. A BNmodel has two components:

1) A directed acyclic graph in which variables are represented as

nodes and relationships among them as directed edges (one-

way arrows), and

2) A set of conditional probability distributions for each

included variable representing its statistical dependencies

with other variables in the network.

If a given BN contains a directed edge from node (variable) A

to node B, then A is called a “parent” of B, and B is a “child” of A.

The only assumption required of a BN is that each variable is

independent of all of its predecessors in the graph, conditional on

its parents. With this assumption (known as the Markov

condition), the joint probability distribution of all the

variables can be represented as

P(x|θ) � ∏
n

i�1
P(xi

∣∣∣∣pa(xi), θi)

where x � {x1, . . . , xn} are the included variables, pa(xi)
represents the parents of xi, and θi are the parameters

specifying the distribution of xi given its parents.

BNs impose no requirements on the distributional form of

the included variables (e.g., variables can be skewed, multi-

modal, or have other non-normal distributions). Likewise,

they impose no restrictions on the functional form of the

relationships among variables; these relationships can be

linear or nonlinear, and they need not even be monotonic.

The only requirement is the Markov condition. Major

advantages of Bayesian networks over traditional statistical

modeling methods include their ability to handle nonlinear

relationships among variables (since they do not require a

priori assumptions about the nature of these relationships)

and to include multiple, potentially highly correlated predictor

variables in one model (Koller and Friedman, 2009).

Data pre-processing

Separate BN models were trained for each short-chain PFAS.

In each case, 87 potential predictor variables (except ‘year’) were

evaluated for their potential influence on occurrence of the

particular PFAS. BaysiaLab version 10.0 was used to develop

Frontiers in Environmental Science frontiersin.org05

Li and MacDonald Gibson 10.3389/fenvs.2022.958784

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.958784


all BN models (Conrady and Jouffe, 2015). The training process

was adapted from our previous work (Roostaei et al., 2021). First,

continuous variables were discretized into five bins using

BayesiaLab’s built-in R2-GenOpt algorithm. Then, curated

variables were partitioned into closely-related clusters using

the ‘variable clustering’ and ‘multiple clustering’ functions in

the BaysiaLab. Each cluster was represented by a created latent

variable. Clusters for which the latent variable was not

significantly correlated (p > 0.05) to the occurrence of the

specific PFAS above its health risk limit were removed from

subsequent steps. Retained variables were re-discretized to better

describe their relationships with the exposure risk using the tree

algorithm. The variable ‘year’ was not involved in the pre-

processing because it contained information from different

times, while the other variables were created at a single time

point. The variable ‘year’ was directly discretized with regard to

the target variable using the tree algorithm.

Model training

Then, supervised learning was conducted. The minimum

description length (MDL) score was used to evaluate alternative

BN structures, and the structures with the lowest scores were

selected. The MDL score balances model accuracy with model

complexity, penalizing more complex models to avoid over-

fitting. It represents the number of bits needed to encode a

given network structure plus the number of bits needed to encode

the data set given the model structure (for details, see Friedman

et al., 1997). BayesiaLab’s supervised learning algorithms identify

the network structure with the lowest MDL score given specified

structural constraints (such as the number of allowable parents

per network node). Multiple constraints on model structure were

compared, and final models were selected by comparing the

MDL scores of the different structural forms, selecting the form

with the lowest score. The structure types compared were naive

Bayes, augmented naive Bayes (allowing up to three parents per

network node), tree augmented naive Bayes, sons and spouses,

Markov blanket, augmented Markov blanket, and tree

augmented Markov blanket. For all four contaminants,

augmented naïve Bayes models had lower MDL scores than

the other model forms and were therefore selected as the final

models (Supplementary Table S2).

Model evaluation

The performance of the final BNs was also evaluated using

receiver operating characteristic curves (ROCs) and areas under

these curves (AUCs). An AUC greater than 0.8 indicates good

classification performance (Safari et al., 2016). After model

training, selected BNs were further tested in fivefold cross-

validation. To better understand modeling performance, the

validation was repeated by 20 times with randomly generated

seeds. Based on the validation results, mean and 95% confidence

intervals for each model’s AUC were estimated.

Exposure risk maps

Predictions from the trained BNs were used to create maps of

exposure risk. Specifically, the study area was divided into

688 grids with a side length of 790 m. An evidence dataset

(only containing model-selected variables) was created for

centroids of all grids. Then, the trained BNs were applied to

predict the probability of occurrence of each short-chain PFAS

above its corresponding health advisory level. Each prediction

was repeated 10,000 times in the BayesiaLab software to obtain

confidence intervals. The estimated mean, lower, and upper

limits of 95 percent confidence interval were curated with the

geocoordinates of corresponding grid centroid for subsequent

spatial visualization using QGIS. A minor difference was found

between the sampling site distribution of four short-chain PFAS.

In order to compare the exposure risk of different short-chain

PFAS, parts of the study area were discarded since the

observation could not well represent the exposure risk of all

studied PFAS. For example, the study area located in Dakota

County had a low sampling site density, and only PFBA was

detected in this area. The observations discarded in the spatial

visualization were less than 2% of the sampling size.

Results

Short-chain PFAS occurrence

Among the four short-chain PFAS included in this study,

PFHxS was most frequently detected above its health risk limit

(0.047 μg/L), with 29% of observations at or above the limit

(Table 1). This reflects in part that PFHxS has the lowest health

risk limit among the four compounds. The highest mean

(11.1 μg/L) and median (0.595 μg/L) concentrations were for

PFBA, for which 8% of observations exceeded the health risk

limit (6.67 μg/L). For all these compounds, mean values were

much larger than medians (Table 1), suggesting extremely

skewed distributions with most observations clustered at the

low end. The skewness of the distributions is also reflected in the

very high observed maximum concentrations; maxima were

3,000 to nearly 300,000 times as high as medians.

BN model structures

The directed acyclic graphs (DAGs) of trained BNmodels are

presented in Figure 2. Within each DAG, the central node was

the focus of the study and set as the target node in supervised
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learning processing. The explanatory variables around the target

nodes were selected by the supervised learning algorithms as part

of the optimal (lowest MDL score) model. Arcs connecting these

explanatory variables show interactions among them.

The variables with significant predictive capability varied

with the individual compound, with each final model containing

11 to 13 predictors. Most selected explanatory variables related to

PFAS sources in the study area (12 out of 20 variables selected by

at least one BN), indicating that contamination source (in terms

of number and relative location) plays a more significant role

than soil and hydrogeologic characteristics or land-use

information. Among the 20 variables selected by at least one

BN, four were selected in all BNs: distance to the 3M factory,

distance to the former Oakdale disposal site, the total number of

aircraft within 10 km, and distance to the nearest large river

(Table 2). Nine variables were selected by multiple BNs, although

they were not included in all models.

It is important to note that the arcs in these networks

represent correlations among variables and do not necessarily

indicate causal associations. For example, the PFBA model

includes an arc from “total aircraft number within 10 km” to

“sand content.” This link does not imply that the presence of an

airport alters the soil sand content. Instead, these relationships

are probabilistic in nature and may be driven by other,

unobserved spatial processes influencing each variable

independently.

Model accuracy

All models were highly accurate when trained with the full data

set, with AUCs above 0.97 (Figure 3). The BN for PFHxA had the

highest AUC (0.99), followed by the BNs for PFBA, PFBS, and

PFHxS. The high AUCs were maintained in multiple iterations of

cross-validation, in which models were trained on 80% of the data

set, and their accuracy was tested on the remaining samples. For

each model, AUCs in cross-validation (Figure 4) were very close to

those achieved with the full data set. The largest decrease was

observed for the PFHxS, for which the mean AUC in validation

was 0.004 less than the AUC in training. The AUC decrease for the

other three short-chain PFAS was even smaller. Therefore, the

trained BNs were considered not overfitted. In addition, all 95%

confidence intervals were narrow in the validation, suggesting that

trained BNs could provide a reliable prediction performance with

low variation (Kelley, 2007).

We also conducted a sensitivity analysis to assess potential

spatial variability in model performance, using PFBA as an

example. The study area was divided into four quadrants, and

FIGURE 2
The directed acyclic graphs of (A) PFBA, (B) PFBS, (C) PFHxA, and (D) PFHxS.
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model accuracy in predicting PFBA occurrence above the

health-based threshold was assessed in each. High AUCs

(close to 0.99 or above) were observed in each

(Supplementary Figure S2).

Notably, differences in sample size had a very limited impact

on the BNs’ performance. For example, although there were

nearly twice as many observations for PFBA as for PFHxS, the

difference between their BNs’ AUCs was negligible, suggesting

TABLE 2 Variables selected by automated algorithms in at least one of the four Bayesian networks.

Variable definition (Unit) Variable name Mean (SD) Value range Model

PFAS Contamination Sources

Distance to the 3M factory (m) dist_near_source0 13,473 (7,823) 336–31,347 PFBA, PFBS, PFHxA, PFHxS

Distance to the former Oakdale disposal site (m) dist_near_source2 12,667 (7,570) 22–38,095 PFBA, PFBS, PFHxA, PFHxS

Direct distance to the closest biosolids land application site (m) dist_near_biosolid 6,169 (3,453) 113–17,177 PFBA, PFBS, PFHxA

Direct distance to the closest septic system (m) dist_near_septic 256 (439) 0–2,783 PFHxS

Direct distance to the closest airport (m) dist_near_air 6,374 (2,590) 307–14,473 PFHxA, PFHxS

Direct distance to the closest wastewater discharge (m) dist_near_wwdisc 2,957 (2,142) 56–9,253 PFHxA

Number of wastewater treatment facilities within 10 km num_wwfac_10 km 22 (8) 4–73 PFBS, PFHxA, PFHxS

Number of fire stations within 10 km num_fire_10 km 11 (5) 1–32 PFBA, PFBS, PFHxS

Number of land application sites (all types) within 10 km num_totapp_10 km 50 (69) 0–400 PFBS

Number of sewage sludge land application sites within 10 km num_sludge_10 km 40 (65) 0–271 PFBA

Total number of aircraft within 10 km num_airc_10 km 104 (84) 0–212 PFBA, PFBS, PFHxA, PFHxS

Designed flow rate at the closest wastewater treatment facility (mil gal/day) wwfac_flow_rate 7 (42) 0–314 PFBA

Land-use Information

Total wetland area (1,000 m2) wetlands_area 895 (323) 10–4,140 PFBS, PFHxA, PFHxS

Total developed land area (1,000 m2) devp_area 21,371 (18,109) 383–120,572 PFBA, PFHxA

Impervious surface area percentage impv_pct 18 (23) 0–100 PFBS, PFHxS

Soil or Hydrogeologic Characteristics

Direct distance to the closest river (m) dist_near_river 6,478 (3,691) 125–13,433 PFBA, PFBS, PFHxA, PFHxS

Sand content (%) sand_1m 50 (6) 30–69 PFBA, PFHxA

Soil organic carbon content (g/kg) org_carbon_1m 23 (6) 12–76 PFHxS

Depth to bedrock (ft) br_dept 86 (57) 0–438 PFBS, PFHxA, PFHxS

FIGURE 3
Receiver operating characteristic curves for short-chain
PFAS.

FIGURE 4
95% confidence intervals for area under the receiver
operating characteristic curve of each model in 5-fold cross-
validation. Note: validation was repeated 20 times.
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sample sizes were enough to predict exposure risk in this study.

On the other hand, the measurements for PFBA had the lowest

prior probability of exposure above the health risk limit, which

led to a comparable number of observations of concentrations

exceeding the selected exposure threshold as was the case for the

other three contaminants.

Another finding of potential interest is that the BNs for the

two perfluoroalkyl carboxylic acids (PFCAs) had slightly higher

AUCs than the BNs for the perfluorosulfonic acid (PFSAs) with

the same carbon number (Figure 4). For PFBA, the lower 95% of

the confidence interval for the AUC was higher than the upper

95% confidence interval of the AUC for a PFBS. Similarly, the

confidence interval for the PFHxA model’s AUC was above that

of the PFHxS model.

Comparisons among risk factors

The importance of each risk factor included in at least one

model was compared by computing each variable’s relative

mutual information with the probability of PFAS occurrence

above the health risk level (Figure 5). Among the three variable

categories, variables describing PFAS sources had the most

influence on PFAS exposure risks. However, the contribution

of different contamination sources was PFAS species dependent.

For the two PFCAs, the distance to the 3M factory had the largest

relative mutual information with the probability of exposure

above the health risk limit (33.5% for PFBA and 42.2% for

PFHxA). Distances to other potential PFAS sources were

more important for the two PFSAs. For PFBS, the most

influential risk factor was the distance to the nearest biosolids

land application site (“dist near_biosolid,” relative mutual

information = 39.3%). For PFHxS, distance to the nearest

septic system (“dist_near_septic,” relative mutual

information = 29.0%) was most important. Other sources also

were relatively strongly associated with the occurrence of one or

more of these PFAS. These included the direct distance to the

nearest airport, distance to the nearest wastewater discharge, the

number of wastewater treatment plants with 10 km, the number

of fire stations within 10 km, the number of sites where

wastewater sludge is disposed of on land, and the number of

aircraft at the nearest airport. Another interesting finding was

that the year in which the sample was collected was more

important in predicting the occurrence of the two short-chain

PFSAs than in predicting PFCA occurrence, with relative mutual

information above 27% for both PFBS and PFHxS, compared to

less than 10% for PFBA and PFHxA.

A striking conclusion from Figure 5 is that although the

curated data set included a wide range of soil characteristics (such

as soil type, pH, bulk density, and organic carbon content), these

characteristics had limited to no predictive power. Instead, the

occurrence of these short-chain PFAS was driven almost entirely

by PFAS sources. Two land-use variables (the areal extents of

wetlands and developed area) were important for some of the

PFAS. In particular, wetland area was the second-most important

variable for predicting the occurrence of PFHxA and PFHxS.

Exposure risk maps

Figure 6 shows the spatial distribution of mean exposure risks

for each short-chain PFAS as predicted by the trained BNs (see

FIGURE 5
Heat map for relative mutual information of risk factors. Note: Variable definitions are provided in Table 2.
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Supplementary Figures S3, S4 for maps of 95% confidence

intervals for these predictions). The maps highlight that the

3M factory and historical dump sites are the most important

contributors to short-chain PFAS contamination in the East

Metro area. Groundwater in the areas surrounding these

major sources tended to have a higher probability of being

contaminated with short-chain PFAS above health-risk limits.

Nonetheless, some contamination hotspots were distant from the

major PFAS sources. For example, the northeastern side of the

study area had higher risks for PFBS and PFHxA but was more

than 5 km away from the closest major source (the Washington

County Landfill). Similar contamination hotspots were also

identified in a few other regions of the study area. Other

potential PFAS sources (e.g., fire stations, airports, wastewater

discharge sites and wastewater treatment plants) might be

responsible for these hotspots.

Compared with PFCAs having the same carbon number,

PFSAs had a broader impact on groundwater in the study area. In

the risk prediction maps, risks of exposure to PFBA and PFHxA

above health risk limits were above 50% in 37 and 72 of mapped

grids, respectively. In the case of PFSAs, there were 79 and

100 grids in the study area with predicted risks of more than 50%

for PFBS and PFHxS exposure above heath advisory levels.

Slightly different results might be obtained by shifting risk

thresholds but would not change the general trend. It was also

noticed that the prediction confidence was PFAS species

dependent. For example, the western side of the study area

had a lower uncertainty as compared to other regions for

PFBA, PFHxA, and PFHxS (Supplementary Figures S1, S2).

The smaller number and simpler profile of PFAS sources in

this rural area might contribute to a more reliable prediction.

However, PFBS risk prediction had a larger uncertainty in the

same region, especially in the southeastern corner of the study

area (Supplementary Figures S1B, S2B).

Discussion

The trained BNs in this study predicted the risks of exposure

to selected short-chain PFAS with robust performance, with

AUCs above 0.96 in cross-validation. These models had better

or comparable prediction performance than in the limited

number of previous studies employing machine learning

methods to preduct PFAS occurrence. Hu et al. evaluated two

different machine learning methods (random forests and logistic

regression) to predict PFAS in 2,300 private wells in New

Hampshire. The trained random forest models had AUCs

ranging from 0.78 to 0.86 for short-chain PFCAs (Hu et al.,

2021). George and Dixit trained linear regression and random

forest models based on a monitoring database for California

FIGURE 6
Predicted exposure risk maps for (A) PFBA, (B) PFBS, (C) PFHxA, and (D) PFHxS (mean predictions at center of each grid cell from trained
Bayesian networks).
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groundwater. Their study reported a random forest classifier that

successfully discerned total PFAS concentrations over 70 ppt

with an AUC of 0.90 (George and Dixit, 2021). In another

recent study, McMahon et al. trained boosted regression trees

for predicting whether one or more of 24 PFAS was above the

detection limit in 254 groundwater samples, which was the case

for 54% of the samples; the AUC for the complete data set was

0.97 but decreased to 0.90 in cross-validation (McMahon et al.,

2022). The robust performance of the classification models in our

study might result from the much larger sample size. In our

study, the long-term monitoring program in Minnesota

guaranteed more than 5,000 observations for all selected

short-chain PFAS (Table 1). This study also had other

potential advantages compared to regression trees. First, the

graphical structure of BNs provides a transparent view to

assess the dependencies among involved variables. In addition,

the large sample size allowed model development to target the

probability of exceeding health advisory values of each short-

chain PFAS rather than that of PFAS detection, providing more

useful information for environmental and public health decision-

making.

In the training of BN models, 20 explanatory variables in the

curated dataset were identified as significant predictors for at

least one of the four selected short-chain PFAS. Most predictors

(12 of 20) described PFAS sources within the study area. Among

the remaining 7 predictors, 4 pertained to soil or hydrogeologic

characteristics, and 3 described land-use information. According

to the comparison of relative mutual information (Figure 5) and

the spatial mapping of the BNs’ predictions (Figure 6), the major

PFAS sources have themost significant impacts on exposure risks

in groundwater. The distances from a sampling site to the 3M

factory and the former Oakdale disposal site were selected as

influential predictors for all short-chain PFAS. In one of our

previous applications of BNs, we trained a model to predict the

occurrence of GenX (a short-chain PFAS) in a three-county area

of North Carolina around a Chemours facility (Roostaei et al.,

2021). Similar to in this study, the distance to the chemical

factory was also identified as one of the most significant

predictors, with the probability of exceeding the GenX health

risk threshold increasing from 6.2% to 35% as the distance from

the chemical factory decreased from beyond 7.0 km to less than

3.6 km. In another study of PFAS contamination around the

same Chemours facility, it was found that some of the most

abundant short-chain PFAS were detected in more than 98% of

groundwater samples collected within a 5 km radius around the

facility (Pétré et al., 2021). Like our study, other studies also have

documented the migration of PFAS from current and

decommissioned landfills into groundwater (Kim et al., 2015;

Lang et al., 2017; Hepburn et al., 2019; Propp et al., 2021).

In addition to PFAS sources, three land-use characteristics

(wetlands area, developed area, and impervious surfaces) were

important predictors of the occurrence of some of the PFAS. The

wetland area could be considered a risk factor for PFAS

contamination in groundwater since a larger wetland area

would increase the possibility of PFAS migration from

potential sources. Previous studies reported relatively high

concentrations of common short-chain PFAS in wetland water

samples, especially in wetlands near point sources such as

wastewater treatment plants (Dalahmeh et al., 2018; Sharp

et al., 2021). The other land-use characteristics important in

this study were the developed area and amount of impervious

surface around sampling sites. According to the mapped BN

predictions (Figure 6), the northwestern side of the study area

had higher exposure risks than other regions (except hotspots

near major sources). Most of this area is located in or close to the

Minneapolis metropolitan area, which is highly developed and

has numerous potential PFAS sources, including fire stations,

local airports, and wastewater treatment facilities. In contrast, the

rest of the study area is more rural, especially in Washington

County. McMahon et al. investigated the relationship between

land use and PFAS occurrence in groundwater and reported that

sampling sites having PFAS detections tended to have a

significantly larger percentage of urban land within 500 m

than sites with no detections (McMahon et al., 2022).

Although the BNs trained in this study were accurate

classifiers of risk, several limitations should be noted. First,

there are an infinite number of potential BNs to represent the

data set used in this research, due to the infinite potential options

for discretizing the continuous variables in the model, and

current algorithms do not guarantee an optimal combination

of discretization and model structures. However, given a specific

set of discretized variables, it has been proven that the network

with the lowest minimum description length score (the scoring

method used to select among possible networks in this research)

is asymptotically optimal, given constraints on the allowable

number of parents for the independent variables in the network

(Friedman et al., 1997). A second limitation is that the BNs were

trained to predict the probability of exceeding the short-chain

PFAS health advisories, not absolute concentrations.

Nonetheless, this approach is useful for screening because it

allows direct comparisons with available health-based standards.

It is possible to build BNs to represent continuous outcomes;

such BNs could be explored in the future. In addition, the density

of sampling sites varied across the study area. For example, more

samples were collected near known PFAS sources. Having

additional observations from locations more distant from

known sources could challenge the current model outputs.

Moreover, water quality parameters other than PFAS

concentrations were not available. Previous studies have

indicated that chemical parameters such as pH and ionic

strength affect PFAS migration (Lyu and Brusseau, 2020; Li

et al., 2021). The presence of co-transporters would also affect

the fate and transport of PFAS (Sima and Jaffé, 2021). An

additional limitation is that depth of sampling well was not

available in our dataset. Like other aquatic contaminants, PFAS

migration would lead to a site-specific vertical concentration
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pattern (Weber et al., 2017). Generally, shallower wells would

have a higher exposure risk (Roostaei et al., 2021). Including well

depth may further strengthen model performance and allow for

three dimensional visualization of risks. Also lacking from the

data set was information about wind direction at each sampling

location, which might be helpful for explaining patterns of

dispersion from air deposition of PFAS contaminants released

from the 3M facility (Roostaei et al., 2021). In addition, the

models may fail to account for edge effects—the occurrence of

PFAS sources beyond the study area boundaries. Despite these

limitations, the trained models were highly accurate, robust

classifiers of risk. The available data contained patterns useful

for discriminating locations at risk from PFAS, even though the

observed relationships may not directly represent mechanistic

processes.

Conclusion

In this study, BNs were trained to assess the risks of exposure to

four short-chain PFAS (PFBA, PFBS, PFHxA, and PFHxS) in the East

Metro area around Minneapolis, Minnesota. Trained BNs were able

to provide highly accurate predictions for whether a specific short-

chain PFAS concentration exceeded corresponding health advisory

values in groundwater, evidenced by the robust performance in cross-

validation with AUCs above 0.96. Among 19 identified risk factors,

proximity to the 3M factory and the former Oakdale disposal site had

relatively high impacts on the exposure risks of all studied short-chain

PFAS. Land-uses (such as wetlands and developed areas) also played

important roles in predicting risks. In addition, the model prediction

outputs were used to generate exposure risk maps for the study area.

Mapping of risk predictions illustrated that risks from PFSAs were

distributed more widely across space compared to PFCAs with the

same carbon number.

This study indicates the potential for BNs to serve as screening

tools to identify areas where groundwater used for drinking water

may be at risk from short-chain PFAS above health-based

guidelines. While research to characterize partitioning behavior of

PFAS is advancing (Brusseau et al., 2019), information to

understand this behavior for the thousands of PFAS varieties

circulating in the environment under real-world conditions is

unlikely to be available in the near future. Complicating this task

is evidence that partitioning behavior cannot be predicted from bulk

soil properties (Barzen-Hanson et al., 2017). BNs could be used to

prioritize geographic areas for more detailed investigation, including

additional groundwater sampling and the development of

mechanistic fate-and-transport models.
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