
Impact of COVID-19 lockdown
on the ambient air-pollutants
over the Arabian Peninsula

Rama Krishna Karumuri1, Hari Prasad Dasari1,
Harikishan Gandham1, Yesubabu Viswanadhapalli2,
Venkat Ratnam Madineni2 and Ibrahim Hoteit1*
1Physical Sciences and Engineering Division, King Abdullah University of Science and Technology,
Thuwal, Saudi Arabia, 2National Atmospheric Research Laboratory, Gadanki, India

Lockdowns imposed across the world to combat the spread of the COVID-19

pandemic also reduced the anthropogenic emissions. This study investigates

the changes in the anthropogenic and natural pollution levels during the

lockdown over the Arabian Peninsula (AP), a region where natural pollutants

(mineral dust) dominate. In-situ and satellite observations, reanalysis products,

and Weather Research and Forecasting model (WRF) coupled with Chemistry

module (WRF-Chem) simulations were analyzed to investigate the influence of

COVID−19 lockdown on the aerosols (PM2.5, PM10, and AOD) and trace gases

(NO2 and SO2). WRF-Chem reasonably reproduced the satellite and in-situ

measurements during the study period, with correlation coefficients varying

between 0.6–0.8 (0.3–0.8) for PM10 (NO2 and SO2) at 95% confidence levels.

During the lockdown, WRF-Chem simulations indicate a significant reduction

(50–60%) in the trace gas concentrations over the entire AP compared to the

pre-lockdown period. This is shown to be mostly due to a significant reduction

in the emissions and an increase in the boundary layer height. An increase in the

aerosol concentrations over the central and northern parts of the AP, and a

decrease over the north-west AP, Red Sea, and Gulf of Aden regions are

noticeable during the lockdown. WRF-Chem simulations suggest that the

increase in particulate concentrations over the central and northern AP

during the lockdown is mainly due to an increase in dust concentrations,

manifested by the stronger convergence and upliftment of winds and

warmer surface temperatures (15–25%) over the desert regions. The

restricted anthropogenic activities drastically reduced the trace gas

concentrations, however, the reduction in particulate concentration levels is

offset by the increase in the natural processes (dust emissions).
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1 Introduction

Economic activities were strongly disrupted around the

world during the COVID-19 pandemic (coronavirus

2019 disease). The first COVID-19 case was reported on

November 2019 in Wuhan City, the capital of Hubei Province

in China (Zhou et al., 2020; Zhu et al., 2020), and thereafter it

spread all over the world. As of 7 July 2022, COVID-19 infected

nearly about 550 million people globally and 6 million people in

the Arabian Peninsula (AP) (https://www.worldometers.info/

coronavirus). Many countries have implemented preventive

measures to combat COVID-19, such as social distancing,

lockdown, movement restrictions etc., to minimize the spread

of the virus. This has led to a significant reduction in the global

emissions and accordingly an improvement in the air quality

index over many regions around the world. Shakoor et al. (2020)

investigated the changes in the pollutant’s concentrations during

the pre and post-lockdown periods over the United States and

China. They reported a reduction during the lockdown in carbon

monoxide (CO), nitrogen dioxide (NO2), and particulate matter

(PM2.5) concentrations by 19%, 37%, and 1.1%, respectively, over

the United States, and 27%, 39%, 18%, 18%, and 38% reduction in

CO, NO2, sulphur dioxide (SO2), PM2.5, and PM10

concentrations, respectively, over China. Le Quéré et al.

(2020) reported a global CO2 reduction of about 17%

compared to 2019 levels due to COVID-19 restrictions.

20–70% reductions in NOx concentrations were also reported

over several countries due to the lockdowns (e.g., Broomandi

et al., 2020; Siciliano et al., 2020; Bauwens et al., 2020; Matthias

et al., 2021; Misra et al., 2021; Kang et al., 2022).

Apart from the emission sources, the meteorological

conditions (temperature, rainfall, boundary layer height, winds,

etc.) play a vital role in modulating the pollutants levels over a

region through washout, advection and dispersion processes (e.g.,

Ma et al., 2020; Ratnam et al., 2020; Sachin et al., 2020). A few

studies (e.g., Krishna et al., 2019; Wang et al., 2019; Dasari et al.,

2020; Le et al., 2020) have indeed indicated an increase in the

concentrations of pollutants associated with the local and synoptic

meteorological conditions. More recently Ratnam et al. (2021)

emphasized the role of natural processes in increasing particulate

pollution over central India during the lockdown period.

Over the Middle-East, Anil and Alagha. (2020) reported

reductions in NO2 (12–86%), CO (5.8–55%), SO2 (8.7–30%),

and PM10 (21–70%) between March and June 2020 over the

eastern parts of the Kingdom of Saudi Arabia (KSA). Over Iran,

Broomandi et al. (2020) observed that the primary pollutants

decreased by ~5–28% in SO2, 1–33% in NO2, 5–41% in CO,

whereas ozone (O3) and PM2.5 concentrations were increased by

~0.5–103% and 2–50%, respectively. Faridi et al. (2020) also

suggested 16.5% and 20.5% increase in PM10 and PM2.5

concentrations respectively during the period of COVID-19

outbreak in Tehran, which they attributed to the failure of the

administration at enforcing the lockdown measures.

The Gulf countries i.e., KSA, United Arab Emirates, Bahrain,

Iran, Iraq, Kuwait, Oman, and Qatar, share nearly 60% of world

oil reserves, and about 40% of the world natural gas reserves

(Riazi et al., 2007), and all involve extensive industrial activities in

oil and natural gas production and export. Several studies (e.g.,

Dix et al., 2020; Filonchyk et al., 2020) argued that the major

anthropogenic emissions over the AP are produced by activities

related to fossil fuel combustion, electricity generation, water

desalination plants, oil and gas production. Day-to-day activities

of oil refinery operations, power generation, and water

desalination produce mainly NO2 and SO2 emissions (Barkley

et al., 2017), which are then converted to nitrate and sulfate

aerosols by gas-to-particle conversion and contribute to the

PM2.5 concentrations (Barkley et al., 2017). These activities

were significantly affected by the lockdown measures in the

AP and globally.

The first positive COVID-19 case in KSA was reported on 2nd

March 2020 (Anil and Alagha., 2020). The KSA government

started implementing the lockdown measures at different stages.

Workplace attendance was halted from 15th March, a complete

suspension on entry to the two holy mosques in Mecca and

Medina from 20th March, a suspension of all domestic and

international flights from 21st March, a nation-wide curfew

between 7 p.m. and 6 a.m. from 23rd March, and a 24-hour

curfew implemented from 6th April. A few days later, most of the

AP countries announced complete lockdowns until 20th June,

after which the restrictions were gradually eased. The lockdown

over the KSA and surrounding Gulf countries took place mainly

between 23rd March and 1st May; 15th February—15th March is

considered as the pre lockdown period. The COVID-19

lockdown offered an unprecedent opportunity to investigate

the impact of natural and anthropogenic pollutant

concentrations over this region.

This study investigates the effect of COVID-19 lockdown on

the changes in air pollutants over the AP using available

observations and Weather Research Forecasting model

coupled with Chemistry module (WRF-Chem, Grell et al.,

2005; Skamarock et al., 2008) simulations. Section 2 describes

the model configuration, and datasets. Section 3 presents WRF-

Chem validation results against in-situ and satellite

measurements, and analyzes the changes in aerosols and trace

gases concentrations during the pre-lockdown and lockdown

periods and the relative role of local meteorological conditions.

The main findings of the study are outlined and discussed in

Section 4.

2 Model and datasets

2.1 WRF-chem configuration

WRF-Chem version 3.9.1 (Grell et al., 2005; Skamarock et al.,

2008) was implemented to simulate the meteorological and
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atmospheric chemistry conditions over the AP. This model is

widely used to study the spatio-temporal distribution of

aerosols, air quality, cloud-chemistry interactions, trace gas

reactions, transport, deposition, chemical transformations,

and photolysis at regional scales (e.g., Grell et al., 2011;

Spiridonov et al., 2019; Ghude et al., 2020; Ukhov et al.,

2020). WRF-Chem was configured here with 90 vertical levels

extending up to 10 hPa, and a 10 km horizontal resolution

(495 × 395 grid points) covering the AP (27°E−65°E,

8°N−40°N). The model was integrated from 0000 UTC of

10 February 2020 to 0000 UTC of 01 May 2020 using

atmospheric initial and boundary conditions from the

National Center for Environmental Prediction (NCEP)

Final analysis data available at 1o × 1o resolution. The

boundary conditions were updated at 6-hourly intervals.

Time-varying sea surface temperature fields from the Real-

Time Global High-Resolution data (Genmill et al., 2007) was

imposed as the sea surface boundary conditions. The first

5 days of the model simulation was considered as a spin up

time and was therefore not included in the analysis. The

following parametrization schemes were selected: Lin scheme

(Lin et al., 1983) for cloud microphysics, Mellor Yamada

Janjic (MYJ) scheme (Janjic, 2001) for PBL parameterization,

new Grell scheme for cumulus convection, NOAH MP

scheme (Niu et al., 2011) for the land surface processes,

and the RRTMG radiation scheme (Iacono et al., 2008) for

both longwave and shortwave.

To simulate the gas phase chemical processes, we

employed the Regional Atmospheric Chemistry Mechanism

(RACM) (Stockwell et al., 1997), coupled with the aerosol

TABLE 1 Sector wise percent reduction in anthropogenic emissions
over Arabian Peninsula during DLD.

Sectors Percentages reductions

Energy sector 40%

Industrial sector 60%

Transport sector 60%

Residential sector Nill

FIGURE 1
Comparison of pollutants NO2, SO2 and PM10 between ground-based observations (A, C, E) over different regions in KSA and WRF-chem
simulations (B, D, F) during PLD.
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scheme Goddard Chemistry Aerosol Radiation and

Transport (GOCART) (Ginoux et al., 2001). The chemical

initial and boundary conditions are extracted from the Whole

Atmosphere Community Climate Model dataset (WACCM;

Marsh et al., 2013). The chemical boundary conditions were

updated at 6-hourly interval, and the monthly varying

anthropogenic emissions from Emission Database for

Global Atmospheric Research (EDGAR) Hemispheric

Transport of Air Pollution (EDGAR-HTAP-v2). The

EDGAR monthly varying global emissions were generated

at a spatial resolution of 0.1 ° × 0.1 ° by combing local,

regional, and national reported emissions (Janssens-

Maenhout et al., 2015).

To account for the impact of COVID-19 lockdownmeasures on

the anthropogenic emissions in WRF-Chem, we reduced different

emission sectors by scaling factors as outlined in Table 1 based on

the recent studies of Anil and Alagha. (2020) and Aljahdali et al.

(2021), the COVID-19 measures by the government of KSA and

surrounding countries over the AP, and also from observational

evidences. Francis et al. (2022) reported a decrease in the pollutant

concentrations by up to 40% over the UAE following the reduction

in emissions. These scale factors were adopted by considering the

reduction of emissions in the industries, power plants,

transportation, etc., to estimate the relative changes in

anthropogenic emissions during the lockdown period compared

to normal conditions. Reduced/updated anthropogenic emissions

were then used as emissions scenarios during the lockdown. These

scaling factors do not represent the real emission scenarios that

prevailed during the COVID-19 lockdown, which requires a

coordinated national effort, but it provides us a near realistic

framework to investigate the impact of emission reduction

during the COVID-19 lockdown.

2.2 Satellite measurements

The global daily tropospheric columnar dataset of NO2

and SO2 derived from the TROPOspheric Monitoring

Instrument (TROPOMI) onboard Sentinel-5 is used to examine

changes in the pollutants and further to validate the WRF-Chem

FIGURE 2
Comparison of pollutants NO2, SO2 and PM10 between ground-based observations (A, C, E) over different regions in KSA and WRF-chem
simulations (B, D, F) during DLD.
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simulated fields. TROPOMI is equipped with a nadir-viewing

imaging spectrometer, which allows it to collect data at a high

spectral resolution (covered between ultraviolet-shortwave infrared).

TROPOMI data is available at a high spatial resolution of 3.5 ×

5.5 km2 with an average estimated error of about 5% (van Geffen

et al., 2020). The algorithm used to derive NO2 from TROPOMI is

basically adopted from theOMI instrument (vanGeffen et al., 2020).

The vertical column of SO2 is retrieved in near-real time

(i.e., typically 3 h after measurement) using the Differential

Optical Absorption Spectroscopy (DOAS) technique (Veefkind

et al., 2012.).

The simulated aerosol concentrations are also compared

against the corresponding AOD estimates from the Moderate

Resolution Imaging Spectroradiometer (MODIS) onboard Terra

satellite (MOD04_L2) C6.1 Level 2 (Levy and Hsu., 2015).

2.3 In-situ measurements

We further used 42 air quality monitoring stations (AQMS)

measurements of surface PM10, NO2, and SO2 with hourly

concentrations during 15th February—1st May 2020 to evaluate the

WRF-Chem outputs. The AQMS observations distributed over KSA

are managed by the General Authority for Meteorology and

Environmental Protection (GAMEP). The AQMS stations are

equipped with MP101M (measurement Method ISO 10473),

AC32M (Environmental S.A), AF22M (Environmental- S.A)

sensors for measuring PM10, NO2, and SO2 respectively. Anil and

Alagha. (2020) used this dataset to study air quality during the

lockdown period over the Eastern Province of KSA.

2.4 Reanalysis data

Boundary layer height (BLH), temperature, zonal and

meridional wind components from the fifth generation European

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-5

reanalysis (Hersbach and Dee., 2018) available at every hour with a

horizontal resolution of 0.25° × 0.25° were used to validate theWRF-

Chem simulated meteorological parameters.

3 Results

We first validate the WRF-Chem simulated NO2, SO2, PM10,

AOD, and different meteorological parameters against the

FIGURE 3
Time averaged spatial distribution of NO2 as inferred from TROPOMI during (A) PLD and (C) DLD periods. (B, D) are the same as (A, C) but from
WRF-Chem simulations.
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observations collected during the two study periods: 1) Pre-

lockdown (PLD) i.e., between 15th February and 15th March,

2020, and 2) Lockdown (DLD) i.e., between 23rd March and 01st

May, 2020. Once validated, we analyzed the model simulated

fields to study the effects of lockdown on the aerosols

distributions and trace gases concentrations, and analyzed

their variations with the meteorological conditions.

3.1 Particulate matter and trace gases
concentrations

3.1.1 WRF-chem vs. in-situ observations
Figures 1, 2 indicate that the mean observed NO2, SO2, and

PM10 concentrations over KSA during PLD and DLD are

overall well simulated by WRF-Chem, albeit slightly

overestimated (Figures 1, 2). The model was also able to

reproduce the observed hotspot regions of high NO2

concentrations (~5–20 ppb) located over the major cities

along the Red Sea coast, and central and eastern KSA. The

simulated spatial distributions of the mean concentrations of

PM10, NO2, and SO2 during PLD (DLD) range between

170–460 μg/m3 (110–700 μg/m3), 0.7–18 ppbv (0.2–12 ppbv),

and 1–29 ppbv (0.3–12 ppbv), compared to the observed

ranges 90–490 μg/m3 (70–720 μg/m3), 1.4–24 ppbv

(0.6–15 ppbv) and 2–28 ppbv (0.3–12 ppbv), respectively

during PLD (DLD) (Figures 1, 2). WRF-Chem exhibits a

positive bias of about 10–15% in the simulation of NO2 over

the central and eastern KSA, and a negative bias of about 5–10%

in the simulation of SO2 over the northwest KSA in both PLD

and DLD. The spatial distributions of observed PM10

concentrations and WRF-Chem simulations during PLD and

DLD show similar patterns, with the highest values over the

eastern KSA, followed by the northwest KSA. A significant

increase in PM10 concentration is noticeable during DLD in

both observations and WRF-Chem simulations.

The modeled PM10 suggests high correlation between

0.6–0.8 with the ground-based observations (Supplementary

Figure S1C). The correlation coefficients between the model

and observed trace gases (NO2 and SO2) vary between

0.2 and 0.8, relatively lower than those of PM10

(Supplementary Figures S1A,B). This shows that the adjusted

anthropogenic emissions used inWRF-Chem simulations during

the lockdown were relatively well tuned and provided reasonable

estimates of the air pollutant concentrations. We have also

noticed (not shown) a slight time-lag in the simulated WRF-

FIGURE 4
Time averaged spatial distribution of SO2 as inferred from TROPOMI during (A) PLD and (C) DLD periods. (B, D) are the same as (A, C) but from
WRF-Chem simulations.
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Chem peaks of aerosols and trace gases compared to the observed

peaks. However, at the majority of the locations, the correlations

are significant at 95% confidence level for PM10, NO2, and SO2,

indicating that the WRF-Chem is able to reproduce the observed

variations during PLD and DLD over the KSA.

3.1.2 WRF-chem vs. satellite measurements
The time-averaged spatial distributions of the total

column NO2 and SO2 simulated by WRF-Chem compared

well with these inferred from the satellite measurements

during PLD and DLD (Figures 3, 4). WRF-Chem and

TROPOMI identified similar hotspots regions of NO2 over

central KSA (~6 mol/cm2), west-central KSA (~5 mol/cm2),

Arabian Gulf (~4 mol/cm2), Iran (~7 mol/cm2), and the

eastern Mediterranean coast (Beirut and Cairo regions)

(~5–7 mol/cm2). The model also successfully identified the

SO2 hotspots (Figure 4A) over Iran and Iraq (~24 mol/cm2),

Kuwait (~17.5 mol/cm2), and west-central KSA regions

(~25 mol/cm2). Most of the NO2 and SO2 hotspot regions

are located in the regions of high fossil fuels combustion and

power generation industries (Alyemeni and Almohisen, 2014;

Simpson et al., 2014; Barkley et al., 2017).

As expected, during the lockdown the observed intensity

of NO2 and SO2 over the hotspot regions are reduced due to

reduced industrial and transport activities (Figures 3C, 4C).

The changes in NO2 and SO2 hotspots and their spatial

distributions (Figures 3, 4) as observed by TROPOMI over

the north-western AP, Jeddah and Riyadh between PLD and

DLD periods are generally well reproduced by WRF-Chem.

The spatial distribution of AOD and surface winds from

WRF-Chem are compared against those of MODIS satellite and

ERA-5 reanalysis, respectively (Figure 5). The AP is one of the

world’s largest dust source regions (Ginoux et al., 2001) and

experiences the highest dust concentrations between March to

September due to frequent passages of dust storms (e.g.,

Kunchala et al., 2018, 2019; Dasari et al., 2019; Gandham

et al., 2020, 2022; Karumuri et al., 2022). The spatial

distribution of MODIS AOD exhibits high values over the

southern Red Sea and central AP during PLD (Figure 5A),

mainly associated with the presence of an anticyclonic

circulation over the central AP. Strong southeasterlies winds

favor the transport of dust from the central AP towards the

southern Red Sea and the convergence of winds over this region

favors the accumulation of dust over the southern Red Sea.

FIGURE 5
Time averaged spatial distribution of AOD over AP obtained from MODIS overlaid with surface winds from ERA-5 reanlysis, during (A) PLD and
(C) DLD periods, (B) and (D) are the same as (A) and (C), but simulated by WRF-Chem simulations.
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During DLD, a large increase in the AOD is noticeable

throughout the AP and the Arabian Gulf regions, while a

reduction is observed over the southern Red Sea (Figure 5C).

The increase in the AOD levels during the lockdown is mainly

due to the dust activity mediated by the convergence and

associated uplift of winds (Supplementary Figure S2) and also

due to the presence of Arabian heat low over the Rub’-al-Khali

(The largest desert in AP) (Attada et al., 2019a; Attada et al.,

2019b). The spatial distributions of the AOD as simulated by

WRF-Chem (Figures 5B,D) are in good agreement with those

of MODIS, except over the north-eastern parts of AP where

the AOD is increased. During DLD, WRF-Chem is able to

simulate the enhanced AOD over the central and north-

eastern parts of AP as seen in MODIS. The vertical

distribution time series of aerosol extinction coefficient

and winds averaged over the central AP during PLD and

DLD periods (Supplementary Figure S2) indicate that the

thick aerosol layers observed during the DLD period is

associated with strong low-level convergence and

upliftment of winds, which contributed to the increase in

AOD. Between PLD and DLD, a decrease (increase) of

approximately 30–50% (50–60%) in the AOD is observed

over the southern Red Sea and Gulf of Aden regions (central

and northern parts of AP).

The simulated particulate matter PM2.5 and PM10

concentrations over the AP and surrounding regions during

PLD and DLD show (Figure 6) similar spatial distributions.

However, an increase in the particulate matter concentrations

is observed from PLD to DLD over the central AP and Arabian

Gulf. This is mainly due to an increase in dust activity over the

Rub’-al-Khali during DLD following the seasonal changes. An

increase in particulate matter (both fine and coarse modes)

concentrations is observed over the central AP. During this

season (March–April), the dust emissions are higher over the

AP (Notaro et al., 2013; Kunchala et al., 2019).

To assess the changes in particulate and trace gases

concentrations from the lockdown, we estimated the

percentage change of these concentrations from WRF-Chem

outputs between PLD and DLD as:

Percentage Change (%)
� DLD concentration – PLD concentration

PLD concentration
.

The percentage difference in the particulate matter (PM2.5

and PM10) between PLD and DLD (Figures 7A,B) suggests a

decrease (increase) by approximately 30–60% (20–80%) over the

southern Red Sea, northwestern parts of the AP and the Gulf of

Aden regions (central AP, Arabian Gulf and northeastern parts

FIGURE 6
Time averaged spatial distributions of PM2.5 and PM10 during PLD and DLD periods as simulated by WRF-Chem.
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of the AP). The percentage changes in trace gas concentrations

(Figures 7C,D) also shows a decrease of approximately 50–60%

in the NO2 concentrations during the lockdown over the entire

AP. The SO2 levels decreased by 40–50% over several parts of the

AP, however few hotspots of NO2 and SO2 persist over the

Mediterranean and Tokar gap regions.

To further assess the contributions from local and long-

range transport of different pollutants during DLD, we

present the spatial distributions of aerosol pollutants

PM2.5, PM10 and their ratios, OC, BC, Sulfate and sea salt

(Figure 8). In general, high (low) values of the PM2.5/PM10

ratios indicate the dominance of anthropogenic (natural)

contributions to the particulate levels. (Khodeir et al.,

2012; Sugimoto et al., 2016; Munir 2017; Xu et al., 2017).

The results reveal high concentrations of PM2.5 (Figure 8A),

PM10 (Figure 8B) and low PM2.5/PM10 ratio (Figure 8C) over

the permanent dust source regions. High PM2.5/PM10 ratio

values (0.5–0.7) are observed over the Arabian sea,

Mediterranean and Southern Red Sea regions, which are

far from the main dust sources. Coarse particles cannot be

transported far from the source regions because of their short

lifetime (gravitational settlement and dry deposition

processes). This suggests that the increased ratio values

over the Red Sea are probably due to fine dust particles

transported by south-westerly winds from North Africa

dust source regions.

The sum of surface concentrations of organic matter and

black carbon shows (Figure 8D) lower values over the

northern AP. High concentrations of sea salt (Figure 8E)

are noticeable over the Red Sea, Arabian Sea and

Mediterranean Sea regions and high sulfate

concentrations (Figure 8F) over the industrial regions of

Iran, Iraq, and Arabian Gulf. As particulate matter is

composed of dust and non-dust particles (OC, BC, and

sea salt), the ratio of dust PM2.5 concentration to total

(natural dust + anthropogenic) PM2.5 concentration, and

the ratio of dust PM10 concentration to total (natural dust +

anthropogenic) PM10 concentration (Figures 8G,H) provide

an idea on the contributions of dust. High dust contribution

(>80%) are found near the dust source regions and relatively

low (30–60%) dust contribution over the Arabian sea and

the Mediterranean Sea. The ratio between the concentration

of sulfate aerosol with respect to the total non-dust aerosols

of PM2.5 concentrations is relatively high (> 0.6) over the

northern AP (Iran and Iraq regions) during DLD

(Figure 8I).

FIGURE 7
Percentage differences in (A) PM2.5, (B) PM10, (C) NO2, (D) SO2 between the mean PLD and DLD periods based on WRF-Chem simulations.
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The reduction in trace gas concentrations is likely related

to the reduction in anthropogenic emissions during the

lockdown, but also to seasonal variations in atmospheric

circulation. To address this, we have performed a WRF-

Chem simulation in which we reduced the anthropogenic

emissions and compared them against the outputs of an

identical model simulation but using the default

anthropogenic emissions from EDGAR-HTAP (Section

2.1). This enables to assess the impact of anthropogenic

emissions changes on the changes in the air-quality over

the AP. Overall, the results indicate (Supplementary Figure

S3) that the reduced emissions lead to a 10% reduction in the

aerosol concentration (PM2.5 and PM10), and about 40–50%

reduction in the trace gases (NO2, and SO2) concentrations

over the AP and surrounding regions. The detailed results are

provided in the supplementary material.

We have also examined the percentage changes between

the PLD and DLD periods in the meteorological variables,

such as boundary layer height (BLH), and surface

temperature, from WRF-Chem and ERA-5 reanalysis to

examine the role of meteorological conditions on the air

quality during the lockdown. The results suggest that the

surface temperatures increased by 20% over the central AP

and about 35% over the northern parts of AP during the DLD

period. The increased surface temperatures enhanced the

surface heating and caused an increased in BLH by about

40–75% (Figure 9A,D) during DLD. Strong winds during DLD

were also noticeable, blowing from south east and west

directions and converging over the central AP desert region

(Figure 4) were also noticeable, which enhanced the dust

activity. The changes in temperatures, BLH, and wind

speeds increased the dust loading over the AP, causing an

increase in the surface particulate concentration during the

DLD period.

4 Summary and conclusion

This study investigated the effect of COVID−19 lockdown

on the aerosol (PM2.5, PM10, and AOD) and trace gases (NO2

and SO2) concentrations over the Arabian Peninsula (AP).

The AP is the largest dust region and a major producer of

FIGURE 8
Spatial distributions of (A) PM2.5, (B) PM10, (C) ratio between PM2.5 and PM10, (D) organic matter and black carbon ((OC hydrophobic + OC
hydrophilic) x OCmass fraction (1.8) + BC hydrophobic + BC hydrophilic, (E) Sea salt, (F) Sulfate, (G) ratio between dust PM2.5 and total PM2.5, (H) ratio
between dust PM10 and total PM10, and (I) ratio between sulfate and PM2.5 total non-dust as simulated by WRF-Chem during the DLD period. All
concentrations are in μgm-3 except for ratios.
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petroleum products, contributing significant amounts of

natural and anthropogenic pollution. We use in-situ and

satellite observations to investigate the changes in natural

and anthropogenic pollutants during the pre-lockdown (PLD)

and lockdown (DLD) periods between February and April

2020. We conducted WRF-Chem simulations to study the

observed features of air-quality due to COVID-19 lockdown

and to identify the possible mechanisms behind noticeable

increases, or decreases, in the natural and anthropogenic

pollutants during the PLD and DLD periods over the AP.

The main findings of this study can be summarized as follows:

1) WRF-Chem simulations of trace gases (NO2 and SO2) and

PM10 concentrations exhibited a good correlation with the

ground-based observations over KSA during the DLD and

PLD periods. This suggests that the adjusted anthropogenic

emissions in theWRF-Chem simulations were well tuned and

relatively well reproduced the observed changes in the air

pollutant concentrations during COVID-19 lockdown.

2) BothWRF-Chem and in-situmeasurements show an increase

in the PM10 concentration by 30–70% over the central and

northern parts of AP, and a reduction in trace gas

concentrations by 50–60% over KSA between DLD and PLD.

3) WRF-Chem simulations with and without reduction of

emissions during DLD indicate a reduction in the pollutants

concentration due to reduced emissions (lockdown). A 10%

reduction in aerosol concentrations and 40–50% reduction in

the trace gases (NO2, and SO2) concentrations were observed

over the AP and surrounding regions.

4) Surface temperatures, wind speeds, and boundary layer

heights increased over the major dust source regions

during DLD. The enhanced surface heating associated with

the increased surface temperatures favored an increase in the

boundary layer height and stronger winds over the central

AP. This generated dust loading and favored an enhancement

of dust aerosols and particulate concentrations during DLD

over the central and northern AP.

The reported results suggest that the reduction in the

anthropogenic activity during COVID lockdown significantly

reduced the trace gases concentrations. However, it had a little

impact on the particulate concentrations over the central and

northern AP, due to the dominant contribution of the dust

emissions to the particulate concentrations. COVID-19 helped

to setup a unique opportunity to investigate the role of

anthropogenic and natural pollution sources and their impact

on the regional air quality. This analysis proves that a reduction

in anthropogenic emissions over the AP will reduce the

concentration of gaseous pollutants, as expected. Nevertheless,

it may not improve the particulate air quality due to the

FIGURE 9
Percentage differences between DLD and PLD periods for BLH, and 2m Temperature from ERA-5 reanalysis (A, C) andWRF-chem simulations (B, D).
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important dust activity over the region, as has been shown in this

study. It is therefore prudent to conclude that dust emissions and

large-scale dynamics play an important role in particulate

pollution levels over the AP.
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