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Landslides are a major geohazard that endangers human lives and properties.

Recently, efforts have been made to use Synthetic Aperture Radar

Interferometry (InSAR) for landslide monitoring. However, it is still difficult to

effectively and automatically identify slow-moving landslides distributed over a

large area due to phase unwrapping errors, decorrelation, troposphere

turbulence and computational requirements. In this study, we develop a new

approach combining phase-gradient stacking and a deep-learning network

based on YOLOv3 to automatically detect slow-moving landslides from large-

scale interferograms. Using Sentinel-1 SAR images acquired from 2014 to 2020,

we developed a burst-based, phase-gradient stacking algorithm to sum up

phase gradients in short-temporal-baseline interferograms along the azimuth

and range directions. The stacked phase gradients clearly reveal the

characteristics of localized surface deformation that is mainly caused by

slow-moving landslides and avoids the errors due to phase unwrapping in

partially decorrelated areas and atmospheric effects. Then, we trained the

improved Attention-YOLOv3 network with stacked phase-gradient maps of

manually labeled landslides to achieve quick and automatic detection. We

applied our method in an ~180,000 km2 area of southwestern China and

identified 3,366 slow-moving landslides. By comparing the results with

optical imagery and previously published landslides in this region, the

proposed method can achieve automatic detection over a large area

precisely and efficiently. From the derived landslide density map, we

determined that most landslides are distributed along the three large rivers

and their branches. In addition to some counties with known high-density

landslides, approximately 10 more counties with high landslide density were

exposed, which should attract more attention to their risks for geohazards. This

application demonstrates the potential value of our newly developed method

for slow-moving landslide detection over a nation-wide area, which can be

employed before applying more time-consuming time-series InSAR analysis.
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1 Introduction

As a major geological hazard, landslides, which are often

triggered by factors such as earthquakes or heavy rainfall, greatly

endanger human lives and property (Petley 2012; Fan et al.,

2019). Even though ongoing and slow-moving landslides are

widely distributed in mountainous regions, their locations are

difficult to identify, particularly when landslides are located in

areas inaccessible for detailed field-based surveys. This is due to

the complex geographic environments and/or high costs of time

and human resources. Thus, determining how to effectively

update the inventory of moving landslides distributed over

large areas is important for preventing disasters. Slow-moving

landslides can be identified and monitored with field surveys and

through aerial and optical remote sensing imagery. However, the

identification of landslides by optical remote sensing requires

strong expertise on regarding the morphology of landslides and

recognition of ancient landslides as well as clear signs of

deformation (Lacroix et al., 2018). The fact that the amount

of displacement on the slope is a few centimeters per year before

the occurrence of a catastrophic event (Hungr et al., 2014),

coupled with the difficulty of field investigation, poses a great

challenge for pre-identification and determining a warning of

disaster for landslides.

Synthetic Aperture Radar Interferometry (InSAR) can capture

small deformation signals on the earth’s surface and has been widely

used to study landslides (Hilley et al., 2004; Chen et al., 2014; Hu

et al., 2016; Handwerger et al., 2019; Dini et al., 2020). Although

InSAR techniques have some challenging issues, such as

decorrelated signals caused by vegetation, large deformation

gradient and atmospheric effects (Liang et al., 2018; Murray

et al., 2019), several multi-temporal InSAR-based techniques,

including the Persistent Scatterers InSAR (PS-InSAR, Ferretti

et al., 2001) and Small Baseline Subset InSAR (SBAS-InSAR

(Berardino et al., 2002; Lanari et al., 2004), have been successfully

applied in the early identification of slow-moving landslides (Zhao

et al., 2012; Herrera et al., 2013; Ciampalini et al., 2016).

To improve applicability, different methods have been

proposed with great success, such as Intermittent SBAS

(Novellino et al., 2017), Coherent Scatterer Interferometry

(CSI, Dong et al., 2018), and adaptive InSAR (ADS-InSAR, Jia

et al., 2019). Nevertheless, due to the complexity of the landscape

and the high computational cost of time-series analysis from

large-scale interferograms, most applications have been limited

to small and regional scales (Dai et al., 2016; Stumpf et al., 2017;

Chaoying Zhao et al., 2018; Feng Zhao et al., 2018; Zhang et al.,

2018). In addition, it is a challenge to set a rational threshold for

detecting landslides in the velocity map calculated from the

above-mentioned methods due to the influence of

decorrelation, atmospheric, and phase unwrapping errors. To

suppress random noises in velocity maps, Bekaert et al. (2020)

propose a spatial differencing method to reveal the deformation-

gradient pattern of the landslide in the velocity map covering

Nepal. Liu et al. (2021) conducted the SBAS-InSAR analysis

using Sentinel-1 and ALOS-1 images covering the Jinshajiang

River and detected more than 900 active landslides over a large

area. These attempts show promising results of applying InSAR

to large-scale landslide detection. One recent achievement was

proposed by Festa et al. (2022), which is a semi-automatic

procedure for deriving a velocity map from large-scale

interferograms. Using spatial clustering and setting a velocity

threshold, they could identify 14,638 instable areas in the Italian

Peninsula. However, detection is still based on InSAR-derived

velocity maps and geomorphology features and requires a fair

amount of computation and human resources. Generally, a fast

and automatic landslide detection method with InSAR over a

large-scale is still rare.

Compared to velocity maps, the interferometric phase

gradient is sensitive to local deformation. This is because

phase differences between adjacent pixels is likely dominated

by localized deformation due to landslides rather than

atmospheric delays, which have a typical correlation distance

of several kilometers (Ferretti et al., 2001; Bekaert et al., 2020).

The deformation gradient can reveal small-scale displacement

variations, while stacking the phase gradients can effectively

reduce the noise level in the data. Price and Sandwell (1998)

used phase gradients to highlight strain concentrations on

secondary fractures during the 1992 Landers earthquake,

which allowed them to obtain fault extension distributions

that were difficult to geologically trace. Recently, phase-

gradient stacking has been successfully applied to detect small

fractures produced by the 2019 Ridgecrest earthquake (Xu et al.,

2020b; Xu et al., 2021). Using certain landslide applications, Hu

et al. (2020) could calculate the phase gradient of L-band

UAVSAR interferograms to identify the boundary of the

Slumgullion landslide in the United States.

With these promising applications, phase-gradient stacking

shows the capability of enhancing the localized deformation

signal, and a method to automatically locate these localized

deformation signals is the goal next. Recently, deeplearning

network not only achieved outstanding performance in

computer vision fields but has also been applied in the InSAR

process for mining-induced deformation (Wu et al., 2022) and

generated decorrelation masks (Zhang et al., 2021), which

promoted us to search for a proper network structure to

detect slow-moving landslides from the phase-gradient images.

Algorithms of target detection with deep learning can be divided

into two categories. One category is a two-stage detection
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method, including the RCNN and its improved versions

(Girshick et al., 2014; Girshick 2015; Ren et al., 2015), which

achieves this detection task via the generation of regional

proposals of possible objects for training the classifier. The

disadvantage of the two-stage algorithm is slow processing

due to separate steps. The other category is an one-stage

detection method, and the representative algorithm is the

YOLO series (Redmon et al., 2016; Redmon and Farhadi

2017; Redmon and Farhadi 2018). Since the first YOLO

version, the YOLOv1 network has been used to integrate the

two individual steps of the two-stage method into one step and

achieved a more than 50% faster inferring speed than the Faster-

RCNN (Girshick 2015). Particularly, YOLOv3 adopts the robust

backbone of Darknet-53 and increases the three anchors in

YOLOv2 into nine anchors in the layers of different reception

fields to predict the different-size objects, which results in a good

effect for small target detection and is the representative version

for the YOLO series.

Using the advantage of the high sensitivity of the phase

gradient to small deformation, we use the pattern of the

deformation gradient for landslide detection. Instead of

unwrapping all interferograms for phase stacking or applying

the time-series InSAR analysis, we stack the gradient maps of the

wrapped phase in the time domain to enhance signals of local

deformation. Considering the inferring speed and network

performance, we use and adapt the widely used

YOLOv3 network to detect localized deformation that is

mostly due to slow-moving landslides from stacked phase-

gradient maps. The spatial distribution of detected slow-

moving landslide is further analyzed to evaluate the potential

geological hazards in the study area.

2 Region of interest

Our study area is a 180,000 km2 region in southwestern

China (Figure 1). It is in the transition zone between the

Yunnan-Guizhou Plateau and the Sichuan Basin with an

elevation range of 480 to 7,140 m. Three large rivers, the

Dadu, Yalong and Litang, flow through the region. The river

valleys, gullies and loose deposits caused by numerous

earthquakes lead to landslides, mudslides and other

geohazards that frequently occur and bring significant losses

to the local population and economy (Dai et al., 2016). Recently,

developments of infrastructure, such as water conservancy and

transportation, have resulted in drastic changes to the

environment and greatly increased the risk of geohazards and

threatened hydropower stations along rivers. Several studies have

been conducted in this area, including the early identification of

landslides in the middle section of Yalong River (Dai et al., 2020)

and recognition of a landslide group in Danba County (Dong

et al., 2018) and in the area between Shimian and Hanyuan

counties (Huang et al., 2020). The positions of certain previously

identified landslides are also shown in Figure 1.

3 Data

In this study, we use Sentinel-1 C-band SAR images from

Ascending Track 26 (AT 26) and Descending Track 135 (DT

135) acquired from October 2014 to October 2020 (Figure 2).

There are 145 images for AT 26 and 97 images for DT 135 and

both contain three standard frames. The maximum temporal-

FIGURE 1
Study area and data coverage. Blue lines indicate the Litang,
Yalong and Dadu rivers. Black boxes indicate Sentinel-1 data
coverage by Ascending Track (AT) 26 and Descending Track (DT)
135 (bothwith three frames). Themagenta triangles represent
locations of studied landslides from previous time-series InSAR
analysis (Dong et al., 2018; Dai et al., 2020). The snow-covered
areas are colored white. The black boxes and triangles in the left-
down inset map display locations of the study area (ROI) and other
regions for collecting training samples for our deep-learning
network. These areas are prone to slow-moving landslides in
China and provide abundant and diverse training samples for
training the deep-learning model. These regions are as
mountainous as the study area but some have denser vegetation
(southeast of the ROI), some have a clay-loess landform (northeast
of the ROI) and some have steep reliefs (southwest of the ROI).

Frontiers in Environmental Science frontiersin.org03

Fu et al. 10.3389/fenvs.2022.963322

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.963322


baseline is set as 36 days, and 348 and 191 interferometric pairs

are generated from the Ascending and Descending orbits,

respectively. The whole processing time took less than 3 days

by avoiding merge bursts and carry on time-series analysis with

84,564 ascending and 46,413 descending burst interferograms

analyzed on a normal desktop computer.

Meanwhile, we collected 67multispectral Sentinel-2 L2A images

acquired between January 2020 andMarch 2020 with cloud content

less than 20% (12% on average) and topographic normalization,

radiometric calibration and atmospheric correction were applied.

We used the Sentinel-2 data processing package of the Sentinel

Application Platform (SNAP) provided by the European Space

Agency (ESA) to extract spectral band 3 (0.543–0.578 μm) and

band 11 (1.565–1.655 μm) and to calculate the normalized

difference snow index (NDSI, Zhu and Woodcock, 2012; Zhu

et al., 2015) for masking out snow-covered areas (i.e., the white

areas in Figure 1).

4 Method

Due to the acquisition adjustment of Sentinel-1 satellites,

some bursts are missed in standard-frame images, and the

stitched interferograms may have incomplete parts of

corresponding data coverage. To avoid this situation, we

performed our analysis based on burst instead of stitched

frames. Thanks to the 1.5 km-wide overlap between each

burst, the entire area will be analyzed and burst-overlap

interferometry and spectral-diversity co-registration can be

avoided. The extreme case is that a landslide located in the

middle of the burst-overlap area and its length in the azimuth

direction is longer than 1.5 km. For such cases, the northern and

southern parts of the landslide are imaged by adjacent bursts and

maybe detected as two landslides. However, such extreme

situations are rare, and even so this landslide can still be

detected without the need for merging bursts.

For each burst, we first produce interferograms with temporal

baselines no-more-than 36 days and stack their phase gradients

along the azimuth and range directions. We then implemented a

designed deep-learning network to detect landslides from stacked

phase-gradient maps. After detection, the final stacked gradient

maps and detection results of each burst are geocoded and

superimposed with optical images in Google Earth for final

examination of the source of the detected deformations. The

snow-covered areas are derived from Sentinel-2 imagery and are

masked in our result. The workflow is shown in Figure 3.

4.1 Stack phase gradients

We processed the SAR images using the burst-based

Sentinel-1 InSAR processor (https://sarimggeodesy.github.io/

software/, Jiang et al., 2017). The topographic phase

component is removed using the AW3D 30 m resolution

DEM acquired in 2011. The multi-look parameters are 2 and

8 and correspond to the azimuth and range direction,

FIGURE 2
Image acquisition and perpendicular baselines of (A) ascending track AT 26 and (B) descending track DT 135 from Sentinel-1 data in the study
area. The blue dots indicate the individual SAR acquisitions and lines show interferogram pairs. The black lines are for sequence acquisitions and the
green lines show redundant interferograms used with no-more-than 36 days. Note that for the descending track, images acquired before 2018 are
irregularly sampled in time due to much fewer acquisitions.
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respectively, resulting in a ground resolution of ~40 m.

Meanwhile, we replaced amplitude values of the interferogram

with the corresponding coherence values and conducted a 2D

convolution with a window size of 10 × 10 pixels. This procedure

is equivalent to a simple moving-window filtering with coherence

as weight, which can significantly preserve information on highly

coherent pixels and suppress noise on isolated noisy pixels.

After interferometry, the phase differences of adjacent pixels in

the wrapped interferogram are calculated to represent the phase

gradients in range and azimuthal directions. Because interferometric

phases are wrapped into [ −π, π ), the calculated phase differences

must also be wrapped into [ −π, π ) to represent the true phase

difference between adjacent pixels. Then, we sum the wrapped phase

differences of all interferograms to obtain stacked phase gradients.

During this stacking procedure, we keep wrapping the sum of the

wrapped phase differences into [ −π, π ), which results in an image

of a wrapped stacked phase gradient. The unwrapping operation is

finally completed for the wrapped, stacked phase gradients using

SNAPHU software with average coherence values as the weights

(Chen 2001).

Notably, the stacking of the phase gradient is based on an

assumption shared with most phase unwrapping methods, which

is the unwrapped-phase differences between adjacent pixels is

smaller than π/2. Under this assumption, wrapped phase

differences between adjacent pixels, i.e., the phase gradient we

calculated from each wrapped interferogram is equal to the

unwrapped-phase differences. Given the short-temporal

baseline, the assumption can be largely held that the

deformation difference between adjacent pixels can hardly be

over ¼ of the radar wavelength for a natural deformation field.

Then, the stacked phase gradient actually represents the

deformation gradient after unwrapping.

In particular, after the stacking of phase-gradient maps, the

temporally uncorrelated atmospheric signals are further reduced

while the deformation gradients are enhanced. Thus, we can neglect

the influence of atmospheric turbulence on the stacked deformation

gradient maps. Assuming that the landslide deformation is represented

as increased phases, the phase gradient becomes positive from non-

deforming to the peak of the deformation area, and then changes its

sign to negative from the peak of deformation to non-deforming area

along the direction for calculating the phase gradient. The patterns can

be continuously reinforced with the increasing number of stacked

phase-gradient maps.When patterns are distributed on the same slope

surface, an active landslide is identifiedwith coupled red-blue patches as

shown in Figure 4.

The phase-gradient stacking results on a selected burst show

that the random signals and noise have been effectively

suppressed (Figures 4A,B). Compared with results obtained by

stacking unwrapped phases (Figure 4C), the local deformation

signals in the phase-gradient maps (coupled red-blue patches)

can be clearly distinguished from background noise and features

are more significant and easier to identify. However, similar

patterns appear along high ridges shown as scattered red-blue

patches (Figures 4A, B, circles). Such patches are mainly

distributed on the top of mountains above the snow line in

this region. We use Sentinel-2 images to mask them as shown in

the next section (Figures 4D–F).

4.2 Mask areas with snow coverage

The decorrelation and movement of snow- and ice-

covered areas resemble landslide movement (e.g., the

encircled areas in Figures 4A, B), which can interfere with

the identification. To mask the snow- and ice-covered regions,

we use the multispectral optical image from Sentinel-2 L2A

images to calculate the NDSI for extracting snow cover

information (Zhang and Zhang 2020):

NDSI � (band3 − band11)/(band3 + band11) (1)

FIGURE 3
The workflow of the proposed method for one burst image. The phase-gradient stacking and detection are both performed in the radar
coordinate for each burst of interferograms.
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where band 3 and band 11 represent the spectral band images

from Sentinel-2 data. Here, we apply the nearest resampling

algorithm in the SNAP software to refer all images to a resolution

of 20 m by 20 m. NDSI can effectively distinguish snow cover and

cumulus cloud pixels by comparing the reflectivity between green

and near-infrared bands. However, only using NDSI may mask

water bodies and dense vegetation as their NDSI values are also

high. Because the reflectance of water is pretty low in the near

infrared, we can set a threshold of band8A (wavelengths:

0.86 μm) data to remove water pixels. Compared with snow

pixels, dense vegetation is associated with lower Band 3

(wavelengths: 0.56 μm) data and they can be distinguished

from snow pixels. Suitable thresholds are important for

accurately masking snow pixels. According to our visual

investigation in the study area, we found that 0.4 for NDSI,

0.28 for spectral band 3, and 0.15 for band 8A is the optimal

combination for generating a snow mask most consistent with

optical images. Note that this approach can only approximately

mask snow-covered areas and some snow speckles may still exist,

which can be manually masked from the phase-gradient maps

with the aid of optical images. Finally, the masked area covers

~18.57% of the study region.

4.3 Adaptation of the YOLOv3 network
structure for slow-moving landslide
detection

The stacked phase gradients make the it clear between the

local deformation signals and background noise. A quick

localization of the deformation signal is a key problem that

needs to be solved. Particularly, Wu et al. (2022) present two

deep-learning networks for the aim: one is to detect mining-

induced local subsidence from wrapped interferograms and the

other is to unwrap the detected interferogram patches with dense

fringes. However, we cannot directly adapt the strategy of Wu

et al. (2022) for landslide detection for two reasons as follows: one

is that mining-induced subsidence is so rapid that it is apparent

in single interferograms even with 6-day temporal baselines. Yet,

the deformation of most landslides is slow without any visible

features from single interferograms. Second, because of their

simple mechanisms, it is easy to simulate the fringe pattern

produced by mining subsidence using a randomly distorted

Gaussian surface as training samples (Wu et al., 2022). Yet,

the deformation patterns of landslides are extremely complicated

and cannot be simulated with a simple model. Therefore, we

must conceive another detection strategy for our task at hand.

We use the object detection algorithm YOLOv3 (Redmon and

Farhadi 2018), which has been widely used in both industry and

academic communities (Tang et al., 2020; Deepan and Sudha

2021) to quickly and automatically detect areas of local

deformation. YOLOv3 has three detection layers, which set

anchors of three aspect ratios, respectively, on each cell of the

feature maps of three receptive fields to achieve the detection of

small, medium, and large objects. As new YOLO series networks

have been published, we designed the detection network based on

YOLOV3 but also adopted data augmentation methods, loss

functions of YOLOv4 (Bochkovskiy et al., 2020) and other

advanced deep-learning modules to better adapt to the needs

of our task.

FIGURE 4
Comparison between phase-gradient stacking and unwrapped-phase stacking in the azimuth (A) and range direction (B). (C) Shows stacked
unwrapped phases. (D) Sentinel-2 image for masking acquired on 26 March 2020 and (E) derived NDSI map and (F) snow mask. (G,H) are zoom-in
views of the rectangle areas in (A) and show the stacked phase gradients in the azimuth (g1, h1) and the range (g2, h2) directions as well as the result of
stacked unwrapped phases (g3, h3). The background is basically smooth except for the encircled areas shown in (A), which is caused by the
decorrelation of glaciers and snow as shown in Sentinel-2 imagery (D–F).
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Initially, we used a weighted convolutional kernel to allow the

network to allocate more attention to features of landslides for

improved recognition ability. Consequently, we add the

Convolutional Block Attention Module (CBAM, Woo et al.,

2018) to the backbone of YOLOv3. Specifically, we embedded

the CBAM to the position that is exactly after each residual block

in the backbone of YOLOv3. Meanwhile, to prevent the gradient

dispersion caused by layer increasing, we use themodule shortcut

to connect the adjacent features before and after CBAM

(Figure 5A). Thus, we add the attention mechanism of

channel and space to the backbone of YOLOv3 and improve

the capability of the network to extract and screen key features of

the object (hereafter we call this network Attention-YOLOv3).

Note that YOLOv3 is proposed to tackle with the detection task

of eighty-category in the massive ImageNet database that has

millions of images (Redmon and Farhadi, 2018). While, our task

is a two-category detection problem to distinguish local deformation

signal from background noise with thousands of images. To avoid

the over-fitting phenomenon, we test two strategies to decrease the

complexity of the network and compare their detection effects. The

first scheme is that we apply regularization approaches to Attention-

YOLOV3. Specifically, we put the Drop-Block (Ghiasi et al., 2018)

into three detection layers of Attention-YOLOv3, which is a

structured form of dropout for the convolution layer. As shown

in Fig.5b, the Drop-Block abandons the neurons in the adjacent

regions of the feature map together within a certain probability to

reduce the fitting ability of the network. The second scheme is that

we adopt Attention-YOLOv3-Tiny (a simplified structure of

Attention-YOLOv3) which has only two detection layers and

shallower layers of backbone, to deal with our task.

For the regression loss of anchor coordinates, we utilized

CIoU loss to replace the MSE (Mean Square Error) loss in

YOLOv3. This is because MSE loss only calculates the

Euclidean distance between the coordinates of anchors

and ground-truth boxes (GT box) and is unable to reflect

the accurate overlapping effect of two detection boxes.

Figures 5A–C represent the area of the prediction box

(green) and GT Box (gray). U and I are the smallest

enveloped and intersection areas. C is the complement

area that equals U minus I. d represents the Euclidean

distance between their center points. C is the diagonal

length of U. ] is the parameter for measuring the

difference of the aspect ratio between the prediction and

GT boxes, and α is a weight factor. IoU, GIOU, CIOU, and

LCIoU are defined in Eq. 2:

IOU � A ∩ B

A ∪ B
� I

U − C

GIOU � IoU − C

U

FIGURE 5
The network design of the Attention-YOLOv3. (A) Residual Block with Convolutional Block Attention Module (CBAM). (B) Diagram of Drop-
Block (the white and green cells represent the non-activated and activated neurons, respectively. The black crosses represent the dropped neurons.
(C) The diagramof CIoUwas used as the loss for the proposed network andGIOU formergence. Please refer the corresponding definitions in Section
4.3. Note that YOLOv3 is proposed to assess the detection of eighty categories in the massive ImageNet database that has millions of images
(Redmon and Farhadi, 2018). In contrast, our task is a two-category detection problem to distinguish the local deformation signal from background
noise with thousands of images. To avoid the over-fitting phenomenon, we tested two strategies to decrease the complexity of the network and
compare their detection effects. In the first scheme, we apply regularization approaches to Attention-YOLOV3. Specifically, we put the Drop-Block
(Ghiasi et al., 2018) into three detection layers of Attention-YOLOv3, which is a structured form of dropout for the convolution layer. As shown in
Figure 5B, the Drop-Block abandons the neurons in the adjacent regions of the feature map together within a certain probability to reduce the fitting
ability of the network. The second scheme is that we adopt Attention-YOLOv3-Tiny (a simplified structure of Attention-YOLOv3), which only has two
detection layers and shallower layers of backbone to deal with our task.
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CIOU � IoU − d2(b, bgt)
c2

− α]

LCIoU � 1 − CIoU

ν � 4
π2
(arctanwgt

hgt
− arctan

w

h
)

2

α � ]
(1 − IoU) + ]

(2)

The CIoU loss considers the overlap area, the distance of the

center points, and the aspect ratio between detection boxes and

becomes one of the best loss functions in recent object detection

applications (Zheng et al., 2020). The GIOU value ranges

from −1 to 1, where a larger overlap between two boxes

means larger GIOU (Rezatofighi et al., 2019). When the two

boxes are separated from each other, GIOU approximates

toward −1. Through experimentation, we chose to merge two

detection results as one landslide if their GIOU is larger than

zero. By calculating the GIOU, we can merge the overlapping

anchor boxes from stacked azimuth and range gradients.

4.4 Model training

We produced stacked phase-gradient images covering not only

the study area, but also other regions in China (Figure 1, black

triangles in insetmap) to enrich the diversity of training samples and

cropped these burst-based phase-gradient images into thousands of

sub-images with a size of 416 by 416 pixels. Among them, we

carefully selected 712 (azimuth gradient) and 581 (range gradient)

cropped images with red-blue patches that were well distributed.

Then, wemanually assigned rectangle frames to include the red-blue

patterns as labels (e.g., red boxes in Figure 6). Finally, we obtained

5,692 labels as localized deformations, and divided these labels into

training, validation and test datasets according to the ratio of 8:1:1.

We also applied the Label Smoothing method (Szegedy et al., 2016)

to enhance the generalization ability of the network. The label

smoothing is conducted by adding random values to the binary

label images during each training epoch to smooth the classification

labels.

Since anchors are the prior boxes that need to be trained to

regress toward the GT boxes, setting the size and shape of

anchors has a crucial impact on the speed and accuracy of the

initial regression process. Because anchors of YOLOv3 have

9 kinds of scales and aspect ratios, which focus on the

prediction to the objects of different shapes and sizes, we used

a clustering method of k-means to cluster the width and height of

all GT boxes in our dataset into nine categories. According to the

clustering results, we set anchors in three detection layers

(Table 1).

The implementation of the network is based on Pytorch 1.7.0.

The training machine is a server equipped with an Intel (R) Xeon

(R) Gold 6132 CPU (2.60 GHz), 256 GB RAM, NVIDIA Tesla

V100 GPU. In data preprocessing, we applied the data

augmentation of a mosaic that zoomed four images and

incorporated them into one image to achieve bigger batch size

training (Bochkovskiy et al., 2020). The total training epoch is

FIGURE 6
The detection result of different networks (in radar coordinate: 416 by 416 pixels). The gradients are scaled to [−4, 4] radians. Note that some
yellowish and light bluish bands are visible in the phase-gradient maps, and there is background noise related to the shortening and shadowing
effects. Actually, magnitudes are very small compared with the areas with localized deformation. The box with the blue boundary is the prediction
from the network and with the red boundary is the ground-truth (GT) Box. Sub-plates (A,B, and C) represent the landslide detection result by
YOLOv3, A-YOLOv3-R, and A-YOLOv3-T, respectively. Sub-plates (D1,D2) display the stacked phase gradients in the azimuth and range direction of
another sample and showmis-location cases of the A-YOLOv3-R with numbers. Sub-plate (D3) shows a case (indicated as 1) that is detected by our
network without being labeled.
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300. In the first 100 epochs of training, we used an Adam

automatic optimizer (Kingma and Ba 2015) to find a rough

converging direction, and in the next 200 epochs, we utilized an

optimizer of SGD Momentum (Goodfellow et al., 2016) to

carefully adjust the learning rate to achieve a better training

effect.

We employed the original YOLOv3, Attention-YOLOv3 with

regularization (A-YOLOv3-R), and Attention-YOLOv3-Tiny

(A-YOLOv3-T) to tackle the landslide detection task and

compared the metrics of MAP (Mean Average Precision),

Precision (confidence ≥ 0.8), and Recall (confidence ≥ 0.8) of

different networks (Table 2). Here, precision and recall indicate

the percentage of detected targets with labels in all predictions

and ground truths, respectively. A confidence score is a value

between 0 and 1 that is predicted by the network for each

detected location and represents the probability of the

detection. MAP is the weighted average precision of

detections with ten confidence scores from 0.1 to 1 and

reflects the comprehensive detection capability of different

networks.

From the detection results shown in Table 2, the A-YOLOv3-

R presents the highest metric scores. We compare the detection

effect of different networks on the test dataset (Figure 6). The

A-YOLOv3-R not only detects all landslides in the image but also

predicts the most accurate position of bounding boxes

(Figure 6B). Although the original YOLOv3 also determines

all the landslides in Figure 6A and guided by the MSE loss,

the position of bounding boxes is inferior to the performance of

A-YOLOv3-R such as the prediction boxes 1, 2, and 3 in

Figure 6A. For A-YOLOv3-T and due to the limitation of

network fitting ability, it only detects part of the landslides

like the prediction boxes 1, 2, and 3 in Figure 6C. Therefore,

we chose A-YOLOv3-R as our detection network in the following

study.

Figures 6D–F show the performance of A-YOLOv3-R in

another sample with failure detections. For instance, the number

1 landslide in Figures 6D, E was labeled in the range-gradient

map but was not detected by our network. This is rare (5% in all

labeled targets according to the Precision value derived from the

validation dataset) and probably due to the very weak gradient

pattern. The target was human recognized and facilitated by the

azimuth-gradient map with a clear signal (Figure 6D). Numbers

2 and 3 in Figure 6E show cases that landslides were not detected

by either humans or our network in the azimuth-gradient map

because no visible gradient pattern can be recognized. However,

they were successfully detected by our network in the range-

gradient map. Such failure cases show that combining detections

from both azimuth- and range-gradient maps can largely prevent

missing deforming signals, which further improves the precision

in real applications.

For landslide detection and despite that the signal of

background noise has been largely reduced, sometimes the

existing phase gradient of topography residues caused by the

calculation of phase difference is still similar to the feature of

landslide signal. Figure 6F shows a case where the gradient

pattern was detected by our network without being labeled.

This is mainly due to the weak signal that was ignored by

visual investigation or the false signal that occurred across the

mountain ridge. Additionally, the accumulated value of

topography residues in the phase-gradient maps is likely

smaller than the deformation phase gradient of the

landslide thanks to the configuration of small baselines of

Sentinel-1 satellites. To reduce the number of false alarms and

put prior attention to the local deformation area with a large

phase gradient, according to our test dataset we exclude a

target if the gradient value in the detection boxes is lower than

1.2 radians or larger but only appears in less than 10% of the

pixels.

5 Results

5.1 Detection results along three large
rivers in southwestern China

We employed a trained network to the stacked phase-

gradient maps calculated from Ascending and Descending

Tracks of Sentinel-1 data burst by burst and cropped each

TABLE 1 Setting of anchor sizes (Unit: pixels).

Detection layer Feature map size Anchor 1 (w/h) Anchor 2 (w/h) Anchor 3 (w/h)

Layer1 52 × 52 19/17 14/24 16/25

Layer2 26 × 26 21/23 19/32 28/22

Layer3 13 × 13 24/29 33/35 50/48

TABLE 2 Metrics of different networks.

Network MAP Precision Recall

YOLOv3 0.71 0.92 0.82

A-YOLOv3-R 0.75 0.95 0.87

A-YOLOv3-T 0.61 0.91 0.78
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burst to a series of 416 × 416 images with an overlapping area to

prevent the loss of information, which was the same as preparing

the training samples. We scaled the gradient values to [−4, 4]

radians to enhance the visual contrast of the red-blue pattern.

After detection, we merged the detection results from ascending

and descending tracks if two overlapping detection boxes, which

are associated with a GIOU larger than zero. Also, if the central

locations of two separated boxes are within 500 m, we also

consider them as the same deformation source with their

largest common boundary. The merged detection results are

shown in Figure 7 with a total of 3,366 potential landslides. Note

that images from ascending and descending tracks are sensitive

to slopes oriented to different aspect angles because of their

different imaging geometries. As a result, their distributions of

the detections look different, especially for mountainous areas

with steep terrains (Figure 7).

To further verify these deformation phenomena, we

employed optical images to investigate the morphology

feature caused by slow-moving landslides. This morphology

feature was caused by the movement of active landslides for

years and represents evidence of long-term slow motion (Xu

et al., 2020a). Thus, the sparse acquisition dates of optical

images hardly impacts the identification of active landslides.

We randomly selected 100 detected targets for verification on

the Google Earth platform (red dots in Figure 7). Based on our

experiences in identifying landslides from optical imagery (Xu

et al., 2020a), we found that 72 detected targets were

confirmed as active landslides based on their morphology

features represented in optical images (e.g., Figure 8). Eight

targets were deforming areas likely associated with human

activities such as mining. The rest could not be judged as

landslides. Thus, the false-alarm rate is ~30%.

We show boundaries of 3 active landslides among the

100 random selected targets in Figure 8. Based on the

calculation of phase gradient, the area between positive

and negative gradients is associated with the maximum

deformation. From the three examples, it is clear that

maximum deformation occurred on the top of slow-

moving landslides, and likely resulted from subsidence on

the upper part of a sliding body. Therefore it is difficult to

derive the landslide boundary from the phase gradient map,

which only reflects the sign of deformation. This validation

procedure also provides clues that in a real application, we

can conduct the quality check based on open optical images

to exclude obvious false detections before the time-series

InSAR analysis.

5.2 Spatial density distribution of slow-
moving landslides

The 3,366 detected slow-moving landslides are mostly

distributed along the three large, north-south flowing rivers

(Figure 9), namely, the Litang, Yalong, and Dadu rivers from

west to east. This feature is consistent with the susceptibility to

slope deformations in deep river canyons and steep mountains.

We further calculated a density map based on the detected

landslides and superimposed it with large rivers and their

branches and residential counties (Figure 9). It shows that the

high-density belts are following large rivers and some of their

branches. The density of active landslides along the three major

rivers increases from northwest to southeast, which is likely due

to the increasing precipitation from west to east (Bontemps et al.,

2020; Jin et al., 2021).

The areas with highest landslide density preferably appear

in the junction of rivers where some counties locate. Among

these counties, landslides in Danba have been well studied and

a group of landslides have been detected from time-series

InSAR analysis (Dong et al., 2018; Zhang et al., 2018).

Moreover, alluvial fans and loose deposits within the gorge

topographic in Danba county have caused plenty of hazards

FIGURE 7
Slow-moving landslides are identified by phase-gradient
stacking and the Attention-YOLOv3 network from AT26 (green
triangles) and DT135 (light blue diamonds) images. Red dots
indicate randomly selected landslides for verification with
optical imagery, and the three bigger red dots from north to south
correspond to landslides a-c in Figure 8. Themagenta triangles are
the same as in Figure 1.
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since 2003 (Li et al., 2008a; Li et al., 2008b), and the

deformation clustering indicates that the deformation is

still undercurrent.

Our detection results also suggest that Muli County

along the Litang River, Garzee along the Yalong River,

Xiaojin and Hanyuan counties along the Dadu River, and

Ganluo, Yuexi, Xichang, Meigu and Mianning counties are

all located in high-risk areas with a landslide density higher

than 0.1/km2. However, much fewer studies or concerns, at

least from the scientific literature, have been focused on

these counties. They are probably also endangered by

surrounding landslides as the Danba County. The time-

series InSAR analysis could be conducted to further

investigate the landslide dynamic in such areas. In the

following sub-sections, we focus on Danba County and

the middle section of Yalong River (white rectangles in

Figure 7) to present the detection results in detail and

compare them with recently published results from

traditional InSAR methods. All are high-risk areas with

numerous active landslides.

5.3 Sub-regions 1, Danba County

Figure 10 shows landslides in Danba County detected from

ascending and descending data. River erosion, hydropower

development and construction of related facilities leads to many

slope instabilities in this area. The landslides detected through phase-

gradient stacking agree well with the landslide catalog by manually

flagging active landsides with large velocities derived from time-series

InSAR analysis (e.g., small circles labeled 1 to 15 in Figure 9A from

Dong et al., 2018) but with more local deformation areas clearly

showing typical gradient characteristics. In addition, different slope

directions may show different features in phase-gradient maps. For

example, cumulative gradient features in the azimuth direction are

more obvious on narrow slopes in the east-west direction, and some

landslides such as 16, 17, and 18 in Figure 10A show obvious gradient

features in the azimuth direction but not in the range direction.

We detected fewer landslides using descending (Figures 10C,D)

than ascending data (Figures 10A,B). Apart from the detected

landslides labeled 2, 4, 12, and 14, the phase-gradient patterns on

the rest of the slopes are not present or slightly weak, such as 5, 6, 11,

and 15, in the range direction. This is likely caused by the fewer

FIGURE 8
Verification of three slow-moving landslides detected from phase-gradient stacking in the azimuth (left column) and range (right column)
directions and superimposed onGoogle Earth. The gradients are scaled to [−4, 4] radians as shown in Figure 6. The red polygons depict boundaries of
these landslides identified from optical images based on their geomorphological features.
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number of interferograms for descending data. In addition, the side-

look imaging geometry of SAR data limits the observation capabilities

due to shadowing in the narrow valleys.

5.4 Sub-region 2, comparison with
traditional InSAR methods

We apply our method in the middle section of the Yalong

River and compare detection results with those obtained from

the time-series SBAS-InSAR analysis (Dai et al., 2020). As

shown in Figure 11, many active landslides present clear

phase-gradient patterns near the junction of the Yalong

and Litang rivers, including the Yangshan and Dujiacun

landslides that were found by Dai et al. (2020). The

landslide cluster northeast of the river junction does not

exhibit clear gradient patterns in the range-gradient map

(Figure 11B). This is probably because the north-south

flowing river blocks the gradient calculation along the

range direction from a deforming to non-deforming area.

FIGURE 9
A landslide density map based on our detection result with county locations in the studied region.
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Nevertheless, the azimuth gradient map clearly exhibits a

coupled red-blue pattern. For comparison with traditional

InSAR analysis techniques, unwrapped-phase stacking from

ascending data has been conducted as well as time-series

analysis using SBAS-InSAR implemented by the StaMPS

(Hooper et al., 2007) as shown in Figures 11C, D,

respectively. We also show boxes after merging azimuth

and range detections in Figures 11C, D.

From the results, it is observed that there are many

deforming areas distributed in this area, among which the

annual displacement of the Yangshan and Dujiacun landslides

can be up to 150 mm/year. Nevertheless, some local

deformation signals may be polluted by the tropospheric

residuals that make their velocity indistinguishable from

background noise such as the deformation areas labeled

from 1 to 5 in Figures 11C, D. However, the stacked phase

gradients enhance the deformation signals so that they can be

easily distinguished from the background noise, which

improves the capability of local deformation detection.

More importantly, the coupled red and blue pattern

provides more spatial features for the deep-learning

network to recognize its appearance. Consequently, our

proposed network detects much more moving targets along

valleys even though they are small objects. Although large

displacement fields such as Yangshan and Dujiacun landslide

can be detected by setting velocity thresholds using advanced

time-series InSAR analysis, similar thresholds cannot

distinguish many other localized deformation areas that are

FIGURE 10
Detected slow-moving landslides (boxes) in Danba County using phase-gradient stacking and Attention-YOLOv3 network in (A,C) azimuth and
(B,D) range directions obtained from AT26 (A,B) and DT135 (C,D) images. Circles labeled 1 to 15 mark locations of landslides identified in Dong et al.
(2018).
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automatically detected by our network. Therefore, the new

strategy not only significantly reduces the calculation burden,

but also enables capture of more slow-moving landslides in

large-scale applications.

6 Discussion

6.1 The impact of a landslide’s temporal
behavior

The temporal behavior of a landslide can affect the signal-to-

noise ratio after phase-gradient stacking. Also, the number of

images required for conducting phase-gradient stacking needs to

be discussed from the operational point of view. Low-gradient

signals require more phase-gradient maps in stacking to be

enhanced. Otherwise, gradient features may be too weak to be

identified, particularly in areas with low coherence values. We

conducted a test to quantitatively evaluate the effect of the

number of images used in stacking by analyzing the number

of landslides that can be detected with different numbers of

phase-gradient maps. According to our test, few landslides can be

detected if there are less than 50 short-temporal baseline

interferograms, i.e., phase-gradient maps. The number of

detected landslides begins to increase along with the number

of stacked phase-gradient maps until a certain level (about

250 interferograms in this study area). Then, further

increasing interferograms has little effect on improving the

FIGURE 11
Slow-moving landslides in themiddle section of the Yalong River detected by Attention-YOLOv3 in phase-gradientmaps along azimuth (A) and
range (B) directions. Surface velocity maps derived by the SBAS-InSARmethod (C) and unwrapped-phase stacking (D) for the same area. Black boxes
aremerged results from (A,B)with numbers indicating a weak signal in the InSAR velocity maps. Circles show Yangshan and Dujiacun landslides from
previous studies (Dai et al., 2020).
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number of detected landslides because the noise is largely

suppressed and existing deformation features are effectively

enhanced.

However, for a specific case, if a landslide only moves

temporally in a certain year or only moves in a short period

within each year, increasing the number of interferograms

may reduce the effective value of stacked phase gradients and

make the phase gradients weaker. This is particularly the case

for the Luri landslide located on the Yalong River (Figures

1, 12A).

The Luri landslide has been investigated by Dai et al. (2020)

from the velocitymap derived from time-series InSAR analysis using

Sentinel-1 images acquired from 9 September 2017 to 10 October

2018. However, our method failed to locate this landslide, which is

the only one among the published landslides. We used images

acquired at the same period asDai et al. (2020), and the landslide still

cannot be detected with a clear phase-gradient pattern (Figure 12B),

which is likely due to the small amount of interferograms with

deformation signal in this short period.

To understand the temporal behavior of this landslide, we

conducted a time-series InSAR analysis using the StaMPS

software. The time-series from 2016 to 2020 demonstrates a

strong seasonal motion behavior (Figure 12D). The LOS

deformation velocity is small and slightly positive from

September to the following March but large and negative

from Apr to September. This can be reflected in the

stacked phase-gradient maps in different periods of the

year with contrast gradient patterns (Figures 12E,F), and

they are both detected by our network. Such temporally

moving landslides might be missed if we use a long-term

dataset to calculate the phase-gradient map because their

gradient patterns are canceled with each other. From the

hazard migration point of view, we need to focus particular

attention on the deformation accumulated in the raining

season by processing more interferograms acquired in such

seasons when landslide motion is accelerated due to

precipitation.

6.2 Possible improvement and further
work

Combining phase-gradient stacking and a deep-learning

network greatly improves the efficiency of landslide

identification and localization. However, due to complex

deformation behaviors in a wide variety of landslides, the

cumulative phase-gradient may still show irregular gradient

patterns, which makes targets identifiable only in either the

azimuth or range direction. Therefore, it is necessary to

combine patterns obtained from both directions to improve

the recognition rate. Merging detection results from both

ascending and descending images also helps fill the

monitoring gap due to the SAR imaging geometry (Liu et al.,

2021).

As for our proposed deep-learning network, in the

complicated application scenario with many interferences

FIGURE 12
Stacked phase-gradient maps in the azimuth direction for the Luri landslide from (A) 2014 to 2020, (B) from September 2017 to October 2018,
(C) from November 2018 to October 2020, and (D) the deformation series of the Luri landslide. Stacked phase-gradient maps in azimuth from (E)
only images in September to the following March and (F) in April to August from 2016 to 2020. The black box indicates slow-moving landslides
detected using the Attention-YOLOv3 network.
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of confused background noises, some key structures and

parameters actually play essential roles in deriving a

promising detection result, which is worth discussing.

First, an attention mechanism is a key factor for

improving the detection accuracy, which endows the

network with the ability to focus on the most

representative feature (the coupled red and blue pattern)

during the training process. In the comparison experiment,

A-YOLOv3-R achieves the highest detection metric score

with MAP 0.75, which increases 4% and 10% compared to

those of the original YOLOv3 and A-YOLOv3-T (Table. 2).

Besides the detection accuracy, the precise location of

detection boxes is also highly concerned in practice. Here,

regressive loss for bounding boxes determines the accuracy of

detection boxes. Our experiment shows that A-YOLOv3-R

trained by CIOU loss shows optimal detection performance

with little boundary error to ground truth compared with the

result obtained by the original YOLOv3 (Figure 6) as the

CIOU loss not only considers the positions, but also the shape

of both boxes.

The performance of a deep-learning-based method highly

depends on the quality of training samples. Here, our

preference is to increase the number of detections as much

as we can even with the consequence of higher false-alarm

rates (~30% based on our validation with optical imagery). In

other words, we prefer to keep all possible moving targets

rather than miss someone with tiny signals. Therefore, we

prepared a large amount of training samples by visual

investigation not only in the study area but also other

mountainous regions and labeled as many landslides as we

could. The richness of various gradient features in the samples

used in the network training plays an important role in the

detection performance, which is essential for preventing

misidentification and omission in practical applications.

When humans are involved, inaccurate samples exist and

affect the training of the network. For instance, the target

we labeled may be an area with local deformation, but not

necessarily a landslide. This is because a local subsidence area

can also produce similar gradient patterns. Therefore, further

analysis based on geomorphology with DEM and optical

imagery are suggested to finally determine whether a

detected target is a slow-moving landslide. Nevertheless,

the proposed method can significantly reduce the amount

of interactive work by focusing the investigation on the

detected areas with local deformation, given the fact that

most of the areas with deformation have been detected.

Although the phase gradients can qualitatively enhance

the deformation signals based on the magnitude and scope of

the gradient values, phase-gradient maps lack the quantitative

information on the velocity or deformation series. The trained

deep-learning network can only locate the deformation within

a rectangular based on the phase-gradient characteristics and

is not able to map the exact boundary of slow-moving

landslides. However, we can then spend much less

computational resources by focusing on the manual

investigation using optical images and applying time-series

InSAR analysis within those detected small areas to explore

their spatial distribution and temporal behavior rather than

the whole study region. This should be much faster and

reliable because of large-scale errors, e.g., phase

unwrapping errors, and tropospheric delays can be limited

by referring the movement on the landslides to a nearby

reference point. This will be the focus of our further work

for the complete chain of large-scale landslide detection and

analysis using InSAR.

7 Conclusion

In this work, we conduct phase-gradient stacking for

enhancing local deformation signal that is sparsely distributed

in a large area. Combined with the Attention-YOLOv3 network,

we detect this type of signal automatically as slow-moving

landslides. We applied the proposed approach in the

~180,000 km2 mountainous region of southwestern China

using Sentinel-1 data from both ascending and descending

tracks acquired from 2014 to 2020 and identified

3,366 possible active landslides. We evaluated our results with

results from standard time-series InSAR analysis, published

inventory and interpretation from optical imagery. Although

our method cannot quantify the velocity of the deformation, the

phase-gradient patterns reveal many small and localized

deformation areas, which are likely ignored from velocity

maps derived from traditional multi-temporal InSAR

methods. Our results imply that the detection of instable areas

can be efficiently achieved from wrapped interferograms and by

avoiding unwrapping large-scale interferograms. As for further

work, a fast time-series analysis can be designed and deployed on

small areas with dense detected targets for geohazard monitoring

and risk assessment.
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