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Recent developments in remote sensing research have resulted in a large

amount of variability in the data provided by researchers. Synthetic aperture

radar (SAR) is a tool used tomeasure surface deformation and assess changes in

the Earth’s surface. Here, we consider the usefulness of Interferometric

Synthetic Aperture Radar (InSAR) in assessing past volcanic activity as a key

to learning the characteristics of the deformation around a volcano. The

Hantangang River volcanic field (HRVF) is a geoheritage site in the Korean

Peninsula that has interesting geological characteristics. This volcanic field has

formed along 110 km of the paleochannel of the Hantangang River. Since the

eruptions occurred from 0.15 to 0.51 Ma, the source is limited, which has raised

interest in the assessment of volcanic landforms. The recent integration of

machine learning and InSAR processing has shown promising results for many

purposes, such as classifying, modeling, and detecting surface deformation. To

examine the future impact based on information from the past, we utilized a

synthetic interferogram with the Okada model and transferred it to a machine

learning algorithm. The synthetic interferogram was formed based on Sentinel-

1 C-band satellite data to simulate the deformation phases. The orbital errors,

the topographical data errors, and the atmospheric effect were also simulated

and added to the synthetic interferogram to enrich the learning input. A

convolutional neural network (CNN) trained with the unwrapped simulated

interferogram data and its performance was evaluated. Our proposed method

exhibits the capability to detect volcanic activity’s deformation patterns with

synthetic interferogram data. The results show that an overall accuracy of more

than 80%was achieved using the CNN algorithms on the validation dataset. This

study is the first to use machine learning approaches for detecting prehistorical

volcanic deformation and demonstrates potential techniques for developing an
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approach based on satellite imagery. In addition, this study has introduced the

possibility of developing a rapid detection of surface deformation using InSAR

data based on a machine learning approach.

KEYWORDS

simulation, InSAR (interferometric synthetic aperture radar), CNN-convolutional
neural network, orisan, okada model

Introduction

Volcanic eruptions are destructive events that threaten

human life on Earth but can provide benefits such as rich

agricultural soils and geological heritage values of volcanic

landforms (Siebert et al., 2015). The significant geodiversity of

volcanic heritage sites has cultural, scientific, and educational

value for local communities (Németh et al., 2017; Casadevall

et al., 2019b). These values are recognized by the United Nations

Educational, Scientific and Cultural Organization (UNESCO) as

a world heritage, and these natural environments are protected

by the UNESCO Global Geopark Program (Casadevall et al.,

2019a). One of the national geoparks in the Republic of Korea

that has been established as a UNESCO Global Geopark is the

Hantangang River Geopark (https://en.unesco.org/global-

geoparks/hantangang). The primary rock in the Hantangang

River Geopark consists of stream-eroded basalt, gorges,

columnar joints, and river cave geomorphologies formed in

the Quaternary Period Cenozoic Era (Lee and Shin, 2019).

The Hantangang River Geopark was previously named the

Hantangang River Volcanic Field (HRVF) or Hantangang

Basalt due to the existence of volcanic basalt adjacent to river

valleys (Kil et al., 2019). A series of volcanic eruptions formed the

river valley and caused topographical changes in the paleoriver

channel that became inundated by basaltic lava flows. The

rejuvenated river system eroded the columnar jointed lava,

which resulted in the current Hantangang River formation

(Woo et al., 2018; Shin et al., 2020).

Orisan Mountain, which is known as the origin of the

Hantangang River Volcanic Field (HRVF), erupted in a series

of basaltic lava flows approximately 0.15 and 0.51 million years

ago, i.e., the eruptions occurred during the late Pleistocene epoch

of geologic time (Faul, 1960; Ryu et al., 2011; Kil et al., 2019).

Basaltic lava from the Orisan Mountains flowed along a 110 km

stretch of the paleoriver channel of the Hantangang River; as this

flow length reached over 100 km, it is considered long basaltic

lava flow (Keszthelyi and Self, 1998; Kil et al., 2019). This type of

lava flow has not occurred in human history or in any geologic

records. The rarity of long flows is hypothesized to be related to

the lack of effusive basaltic eruptions with volumes greater than

10 km3 (Keszthelyi and Self, 1998). Meanwhile, the general

volume characteristics of basaltic volcanic fields fall in the

range of 0.1–5 km3 (Valentine and Connor, 2015). Volcanic

eruptions are usually associated with seismic activity, in which

both events are connected. Seismic activity can reduce the

strength of the magma chamber that leads to an eruption, and

significant dike intrusion can induce seismic activity

(earthquakes) (Caricchi et al., 2021; Seropian et al., 2021).

These events could lead to surface deformation in the volcano

topography and its surrounding area (Biggs et al., 2014; Ripepe

et al., 2015). The two types of deformation in volcanic eruptions,

uplift and subsidence, are caused by the magma inflating the

magma chamber and then deflating it due to the volcano’s

eruption, respectively (Biggs and Pritchard, 2017). A volcanic

eruption can be characterized by the deformation caused by

seismicity changes that can be recognized by satellite imagery

using the InSAR technique (Biggs et al., 2014). Due to seismic

activities and volcanic eruptions, the deformation mechanism

has been widely studied using Okada modeling (Okada, 1985;

Okada and Yamamoto, 1991; Song and Lee, 2019; Fadhillah and

Lee, 2021). There was a lack of satellite imagery during the

eruption of Orisan Mountain.

Application of machine learning in remote sensing has been

developed from the classification for land use or disaster related

from optical imagery (Doblas et al., 2020). Besides, classification

on amplitude SAR images also has been combined using machine

learning approaches for analyzing forest condition or object

detections (Lapini et al., 2020; Garg et al., 2021; Li et al.,

2022). In terms of application on InSAR data, several machine

learning approaches has been employed such as optimization

parameter on source deformation using cluster algorithms (Lee

and Kim, 2021), volcanic deformation detection (Ghosh et al.,

2021; Milillo et al., 2022). Several developments have been made

on the InSAR method to increase its effectiveness and reliability

in recent years, such as modeling the source of deformation or

exploration (Iio and Furuya, 2018; De Novellis et al., 2019). A

study conducted by Marghany using fuzzy B-spline in the phase

unwrapping process in the DInSAR process (Marghany, 2012a).

Deformation analysis development is also carried out using a

three-dimensional simulation of coastal deformation (Marghany,

2012b). In order to study deformation, statistical and machine

learning approaches are widely applied, such as the use of the

Bayesian approach (Bagnardi and Hooper, 2018; Sreejith et al.,

2020). The use of machine learning has been used in the analysis

of the source of deformation with the method of artificial neural

network (Lee and Oh, 2018) and the use of principal component

analysis to optimize the parameters of the source of deformation

(Remy et al., 2014). In the semi-automated process of

deformation detection using SAR data on Volcán De Colima

in Mexico and Mt. Thorbjorn in Iceland using the machine
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learning algorithm. This detection focuses on detecting volcanic

deformation signals on interferogram patterns using synthetic

data based on mogi model source deformation (Ghosh et al.,

2021). Therefore, several study has been carried out to analyze

deformation using multi resource and combination of algorithm

in geological and anthropological events. Based on the

description of the previous research found several obstacles

that affect the level of reliability of the method. Some of these

things include human manual intervention in determining the

operational parameters used in model training, the imbalance of

training input data used causes risk in determining model results

(Iio and Furuya, 2018; Anantrasirichai et al., 2019; Yang et al.,

2020). Besides, network structure of algorithms should be reliable

to get better results with many combinations (Krizhevsky et al.,

2017). In addition to the operational parameters based on

machine learning algorithms, the quality of the input data also

affects the output results. The deformation of Mount Baekdu has

been modeled using InSAR simulation data with various VEI

indices limited to a single-interferogram (Achmad et al., 2020).

One of the limitations is the effect of atmospheric error and

decorrelation which commonly appears in the interferogram.

Atmospheric and topographic corrections are needed to improve

the quality of the interferogram to maximize the deformation

pattern detection process using machine learning algorithms. In

addition, the application in ancient volcano areas is still minimal

in literature, where comparative field data is limited.

Therefore, in this research, we try to apply deformation

detection to the ancient mountain Orisan Mountain on the

Korean Peninsula. The InSAR deformation detection studies

on ancient mountains are still rarely carried out so that the

existing references focus on the use of geological and other field

data. The approach to the study of ancient volcanoes can provide

new insights in the application of remote sensing in

understanding these geological events, especially on Mount

Orisan. In this research, we use SAR data from the Sentinel-1

satellite as the basis for synthesizing interferograms in Orisan

Mountain. As for overcoming the data imbalance, we use data

augmentation techniques in the training process using the

interferogram algorithm. This process is a simple process

compared to other steps carried out without reducing the

focus on the InSAR-based deformation review. As a result, the

aim of this study is to estimate the source of surface deformation

of the Orisan Mountain eruption through Okada modeling

calculations. The results of this study can be used as a

preliminary study to determine the mechanism of volcanic

activity that occurred in the Orisan Mountain.

In this research, we aimed to exploit the ability of a CNN deep

learning algorithm to detect deformation signals from

interferogram data. Synthetic interferogram data were used to

overcome the lack of availability and imbalance of training

datasets. Synthetic interferograms were composed of the

deformation signal and some of the commonly encountered

errors in InSAR process that have been modeled. Deformation

modeling with the Okada method, which is quite simple and is

widely used in volcanic deformation modeling, was used as a

source of synthesized deformation signals. For error modeling, we

used topographic error modeling with isotropic two-dimensional

fractals, orbital disturbances using the polynomial method, and

simulations of atmospheric disturbances based on topographical

modeling. In the interferogram classification process with the

CNN model, we used an efficient transfer learning strategy with

a pretrained network architecture, namely, ResNet-18, ResNet-50,

and AlexNet. To the best of our knowledge, the usefulness of the

interferogram classification method with a CNN deep learning

algorithm has never been applied to ancient volcanoes, which have

limited data availability and are therefore a challenge in this

research. Nevertheless, the classification performance test on

volcanoes was carried out by testing the classification accuracy

and presenting an analysis of deep learning detection. In addition,

the use of the CNN classification method was not only aimed at

increasing knowledge about volcanic activity but was also aimed at

inspiring an initial study of the development of ancient volcanic

deformation detection. Additionally, this research can inspire the

development of rapid detection of surface deformation from

InSAR data based on deep learning algorithms in the future.

Study area

The Hantangang River Volcanic Field (HRVF) is known to

have been formed by lava sources from Orisan Mountain, which

FIGURE 1
The Hantangang River Volcanic Field (HRVF) is depicted with
Sentinel-2 satellite imagery with an RGB composite band in the
middle Korean Peninsula.
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is located at 38°23′27″N, 127°16′5″ E, in the Democratic People’s

Republic of Korea (North Korea), with a peak height of 444 m

above sea level (Woo et al., 2018; Kil et al., 2019). This volcanic

field consists of basaltic lava flow that spread along the middle of

the Korean Peninsula, as shown in Figure 1. The Hantangang

River is the primary water resource that contributes to various

uses in local communities (Cho et al., 2020). Based on

topographical analyses and aerial photographs of the

Hantangang River Volcanic Field (HRVF), it has been

suggested that this field originated from Orisan Mountain,

which erupted with a fissure eruption along the Chugaryeong

fault system (Kil et al., 2019). Recorded fault events occurred

along with volcanic eruptions in the Chugaryeong fault system

during the Quaternary period; this fault system is located along

the study area (Shin et al., 2020). The geological conditions

around the study area most consist of Precambrian and

Paleozoic metamorphic rocks, Mesozoic Jurassic and

Cretaceous granites, Mesozoic Cretaceous volcanic rocks, and

Quaternary Hantangang River basalts (Kil et al., 2019).

Fluvial sediments overlay the unique geological conditions of

the Hantangang basalt with pillow lava features (Woo et al.,

2018).

Materials and methods

The deformation simulation of the late Pleistocene eruption

of Orisan Mountain that formed the Hantanggang River basalt

was produced by implementing a synthetic deformation

interferogram. The synthesized data and deformation models

were carried out in various studies (Lee et al., 2012; Achmad et al.,

2020). Several studies has provided the deformation model such

as analyze the source of deformation and the magma chamber

were determined by using the Mogi model (Mogi, 1958) and

simulated the mechanism of the deformation source from the

eruption of Mount Etna and earthquakes using the Okada model

(Okada, 1985; Okada and Yamamoto, 1991). In addition, the

synthesis data were used as training data in the automatic process

of detecting volcanic eruptions. Synthetic data generated from

the modeling process can mimic what happened during the

eruption.

The synthetic deformation map takes into account the LOS

deformation based on the strike-slip and dip-slip faults, source

depth, strike angle, and slope angle. In addition, we considered

geometric aspects such as length and width based on the Okada

model. After the deformation map was generated, we included

various errors in the deformation map to obtain a synthesized

interferogram. Atmospheric disturbance was added to reflect the

delay due to changes in the atmosphere during data acquisition.

In addition, topographical errors and orbital errors were used to

interfere with the deformation model and were generated using

the Okada model.

Synthesis of the synthetic aperture radar
interferogram process

To create InSAR simulation data in this study, we used the

single look complex (SLC) data from the Sentinel-1 satellite with

a wavelength of 5.6 cm. Using the two SLC images from this

satellite, we obtained an image of the interferogram and the

unwrapped phase as input for the deformation synthesis process.

Before the process was carried out, the SLC data obtained were

coregistered with subpixel level accuracy to reduce geometric

errors and increase spectral diversity in the interferogram process

and we used 8 × 2 multilook factor for range and azimuth

directions (Li and Bethel, 2008). For the topographic phase

reference, we used the digital elevation model data from the

SRTMwith a resolution of 1 arc-second (30 m) (Farr et al., 2007).

The result from the interferogram process was used as input for

the synthetic deformation interferogram simulation. In this study

we simulated an interferogram based on the Sentinel-1 SAR

satellite with a wavelength of ~5.4 cm using the full resolution of

the phase array in the range and azimuth described by (Amelung

et al., 1999). In the interferogram there are various phases that

compose an interferogram which can be described as follows.

Δφ � φtopo + φatmo + φdeform + φnoise + φerr

The phase includes the effect of topography φtopo,

atmospheric conditions on data acquisition φatmo and also

phase noise which consists of various kinds of errors, one of

which is orbital error φerr. However, of course, the surface

deformation phase that is the target of the research is

included in the interferometry phase. Therefore, in this

research, we conducted the formation of an interferogram

simulation by compiling a surface deformation signal using

the Okada Model and the formation of a more detailed error

simulation will be explained in the method section below. The

Okada model is one of the inverse modelling methods used to

determine the deformation source based on rectangular slip

faults and is widely used for volcanoes and earthquakes

(Okada, 1985; Okada and Yamamoto, 1991; Fadhillah and

Lee, 2021). In the modeling process, geometric data such as

length, width, and depth are considered to obtain an idea of how

the deformation may have occurred. The additional geometric

parameters that need to be utilized are the strike angle and the

strike-slip fault. With this information, the possibility of

deformation of volcanoes can be obtained, mainly those with

dike intrusion in their deformation (Albino et al., 2019; Bonforte

et al., 2019). The parameter assumptions to generate the synthetic

deformation interferogram were based on data from seismic

activity on the Chugaryeong fault and previous volcanic

eruptions (Shin et al., 2020). The changes in surface

deformation could be further estimated by referring to the

volcanic eruption ejecta volume based on the volcanic

explosion index (VEI) (Newhall and Self, 1982). We
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categorized the explosivity of the effusive eruption in the Orisan

Mountain as ranging between 1-3 VEI.

When synthesizing the deformation map data with the Okada

model, there are two steps after determining the operational

parameters. The first step is to use the Levenberg–Marquardt

algorithm to obtain the slip mechanism and fault geometry in a

non-linear optimization process. The Levenberg-Marquardt

algorithm is a general confidence area method for non-linear

calculations (Moré, 1978). This algorithm can be considered as

a combination of the Gauss-Newton method and the steepest

derivation method in the calculation process (Coleman and Li,

1994). This can be described by the behavior of the damping

parameter which works like a steep drop method when the point is

far from the correct solution. However, the conditions will change

and work like the Gauss-Newton method when this point is close

to the correct solution. In its application the algorithm is generally

used in the case of infinite non-linear optimization, although this

algorithm can be developed for constrained problems. Some of the

region of belief methods used include the trust-region reflective

and the Dogleg method (Lee and Kim, 2021). The second step is

the iteration process using the Monte-Carlo restart method to

obtain a linear inversion and avoid falling into local minima during

the iteration process (Achmad et al., 2020). In addition, we can use

a Monte-Carlo restart which generates many initial starting points

and then solves the non-linear least squares problem for each

starting point as well as obtaining results from multiple starting

points helps to find the global minimum. After defining the

boundaries of operational parameter, the algorithm performs a

Monte-Carlo restart for the wide initial search space described in

the operational parameters. Since the Strike, Dip and opening

parameters represent angles, the lower and upper bounds defined

in the range are physically available. The geometry parameter of

the fault which is described in units of length is defined to be able to

describe the maximum movement that may occur in the study

area. Then, restarting the Monte-Carlo is done to get the

combination of parameter pairs for the next deformation

simulation. In order to expedite the restart process, it is carried

out with five thousand iterations. And in order to calculate the

loose termination tolerance of the non-linear method we used a

random subsample of 20% of the measured deformation data to be

extracted and analyzed. In solving the non-linear least squares

problem, we aim to minimize the objective function

‖G(m)samp − dsamp‖2 to take the parameter that best fits the

minimum residual. As a result, the corresponding mp
i and

RMSE optimization results are calculated in each iteration. The

synthetic deformation map image that is projected on a three-

dimensional surface changes based on the Line-of-Sight satellite.

After obtaining the deformation model of the Okada process

it will be called simulated deformation phase (φsim deform), we
also simulated the phase errors that often appear in InSAR such

as topographic errors (φtopo err), atmospheric effect (φatmo err ),
and orbital errors phase (φorbit err). Those simulated error phase

will be summarized to become simulated error phase (φsim err)

φtopo err + φatmo err + φorbit err � φsim err

The error phase is simulated with calculations which are

described in more detail in the (3.2 Simulated Error Generation)

section. Then to integrate the fault simulation phase with the

deformation simulation phase we add up the phases into an

interferogram simulation phase. We show the flowchart of the

simulated interferogram process in Figures 2A–E.

φsim deform + φsim err � Δφsim insar

Simulated error generation

In this synthesis process, we added the effects of atmospheric

changes that may occur during data acquisition at different times.

Atmospheric disturbance is one of the most common disturbances

in interferograms and dominates the signal-to-noise ratio and

decorrelation noises. In general, atmospheric disturbances are

correlated with altitude and often occur in mountainous areas

(Remy et al., 2015). Differences in water vapor conditions and

pressure affect the phase delay in data acquisition. This atmospheric

error can be formulated as follows (Biggs et al., 2007; Lee et al., 2012).

atmo(x, r) � a0 + a1H0(x, r)
where a0 is the phase constant, a1 is the slope phase, andH0 is the

area’s height at the x and r coordinates.

In addition to atmospheric disturbances, we also added

tropospheric disturbances associated with errors in

topography and baseline effects. The topographic error is

caused by disturbances in the DEM value used in the

interferogram formation process. One of the methods used in

the topographic simulation is the isotropic two-dimensional

fractal surface, which can be represented in the following

formula (Masterlark, 2007).

Δϕtopo(x, r) �
4πBperp

λrsinθ
Δz

where topo is the topographic error phase that exists in the

interferogram with the baseline perpendicular to the range is

obtained with azimuth at the r and x coordinates, and lambda is

the satellite wavelength SAR. Finally, we have the addition of the

orbital error that affects the SAR data acquisition process using the

first-order polynomial method (Lee et al., 2012). The distortion limit

caused by the orbit is limited to approximately 4 cm in each image.

Δφorbit(x, r) � ax + br + c

Convolutional neural network

The application of machine learning has become a popular

approach in the analysis of image data such as those obtained
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from remote sensing. ML offers data analysis, and patterns in

the input image can be separated into classes that have

been studied or predefined. One of the popular and well-

known ML models is the convolutional neural network

(CNN), which relies on the hierarchical feature learning

method in the database, and the advantages of feature

extraction on the data make CNN more adaptive without user

intervention. From generating disaster hazard maps to

predicting deformation analysis, the CNN model has been

widely used in the geospatial field. By using the CNN and a

metaheuristic algorithm, the reliability of generating landslide

susceptibility mapping in South Korea was demonstrated

(Hakim et al., 2022a). In addition, CNNs were used to build

an automated system for surface deformation analysis using

SAR data from volcanoes (Anantrasirichai et al., 2019; Valade

et al., 2019).

In general, CNN, which is a learning model that can extract

features from data, is composed of five main layers, namely, 1) a

convolution layer, 2) a normalization layer, 3) an activation layer,

4) a pooling layer, and 5) a linear layer, as shown in Figure 3

(Brengman and Barnhart, 2021). The convolutional layer is an

important element in CNN and is combined with filters to

analyze the input image. The size of this filter is generally

small (5x5 pixels) and is used in the training process to learn

and identify more specific features in the input data. In the

interferogram application, this filter is used to identify the

frequency fringes, fringe shapes, or areas of surface

deformation to study the deformation patterns in the input

data. Then, these filters are applied to the input and output

images and they relate to how well the features identified in each

filter are represented in the input data (Panahi et al., 2020; Hakim

et al., 2022c).

FIGURE 2
Workflowof the simulation interferogram process using theOkadamodel for simulated deformation (A) and simulated error generation such as
atmospheric effect (B), orbital phase error (C), and topographic error (D) to generate the simulation interferogram (E).

FIGURE 3
The overall CNN workflow consists of input layers,
convolution layers, pooling layers, fully connected layers, and
output layers.
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After being processed in the convolutional layer, the output

data is standardized during the training process in the

normalization layer. The aim of normalization is to reduce the

amount of training required and increase the learning efficiency

in each network (Sameen et al., 2020). The output of the

normalization process is processed in the activation layer,

which is where the data are input for the next process. The

pooling layer aims to reduce the sample output from the

convolutional layer. The pooling layer allows the CNN to

better identify information on features that have changed,

such as shifts, rotations, or chunks in the input data. In terms

of the interferogram process, this is useful for identifying

different deformation magnitudes or fault orientations in

objects (Long et al., 2015). The last layer is the linear layer,

whose task is to translate spatial information in the CNN model

into activation, which is a probability for a certain network class.

In its application, the linear layer takes the final pooling layer and

translates it as a possible input image containing only noise or

containing surface deformation mixed with noise. In the

development of a CNN model, different numbers of these

layers can be combined in a variety of ways. The various

CNN network structures can provide their own advantages

according to the characteristics of the network, and some

well-known network structures include AlexNet and ResNet

(He et al., 2016; Krizhevsky et al., 2017; Zhao et al., 2021).

The whole workflow of this research is shown in Figure 4 and

consists of the simulation interferogram process and the learning

process for detecting the surface deformation pattern. In the

CNN training process, we used pre-prepared interferogram

simulation data. In this process, the CNN method will study

the fringe pattern associated with the case of surface deformation.

In addition, an error phase related to topographical and

atmospheric errors was also prepared to anticipate learning

errors related to the deformation fringe pattern. The error

simulation phase which consists of simulating topographical

errors, atmospheric disturbances and orbital errors is

categorized into negative samples in the dataset. Each sample

will then be randomly selected in the training process to study the

fringe pattern. In addition, some of the datasets, namely the

testing dataset, were also used to validate the training process in

order to obtain an analysis of the model’s performance. In this

training process, we use three pre-trained networks that already

have reliability in image classification. The use of this structure

aims to minimize the process of trial and error in the

combination of structures and try to apply it to the

introduction of interferogram data.

Results

synthesized interferogram results

The deformation phase was simulated using the Okada

method. The adjustment of the operational parameters of the

simulation was based on existing literature on this topic. In

addition, the calculation of the phase error that often appears in

FIGURE 4
Workflow of the surface displacement identification of the synthetic interferogram using the CNN model.
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the interferogram was added to the deformation model. Then,

the simulated deformation signal and error phase were generated

and are shown in Figure 5. These images were also used for the

training process of the CNN. Data were separated into two

datasets: 2-class datasets and 4-class datasets. The 2-class

datasets consisted of labelled and non-labelled deformations

for the training process. The non-labelled deformation was a

form of the simulated error phase, including the topography

error, atmospheric disturbance, and orbital error. Meanwhile, the

labelled deformation was composed of the synthetic

interferogram image generated by the deformation model and

the simulated error. The 4-class datasets consisted of the labelled

deformation and the separate simulated errors (i.e., the

topography error, atmospheric disturbance, and orbital error)

for the training process.

The results of the interferogram synthesis can be seen in

Figure 6 and include various available operational parameters.

Here, the synthesis of the interferogram was simulated with

deformation changes based on the possible VEI levels, namely,

the 1–3 scale. In addition, the change in deformation was based

on the probability level of lava flow, which is the basis for this

study, where lava can flow as far as 100 km to the south (Shin

et al., 2020; Hakim et al., 2022b). Based on the interferogram

simulation, we can see the recorded deformations of 7, 14, and

28 cm in Figures 6A,B,C, respectively. This deformation is

thought to be caused by the presence of lava pads around the

Cheorwon area, which is now flat land that spreads widely

around the Orisan Mountain. The level of deformation is

based on the probability of volume changes that emerged by

taking into account the geological aspects at that time; this can be

achieved by simulating lava flows, as in previous research (Hakim

et al., 2022b).

In addition, we attempted to use the combined error

simulation and deformation simulation data to form a wrapped

interferogram simulation. Simulations of topographic error,

atmospheric disturbance, and orbital error were used in the

process of generating the synthetic phase of the interferogram.

The combination of the interferogram simulation data was used

for the deep learning training process in identifying deformation

patterns. The use of the wrapped interferogram phase has the

advantage of identifying features for the machine learning training

process because of the presence of fringes in the interferogram

phase. To increase the capacity of the training data, the synthesis

phase was carried out with data augmentation. With the increase

in sample training data, the goal was to balance the machine

learning process. There are several data augmentation options,

including 1) horizontal and vertical flipping, 2) image rotation with

angles of 15°, 30°, and 45° and 3) image distortion with pixel

variations on the horizontal and vertical axes. The results of the

augmented data for the interferogram images are shown in

Figure 7. More than 1,000 images were used in the deep

learning training process after augmented data were applied; as

FIGURE 5
Examples of the synthesized image results of (A) topographic errors, (B) orbital errors, (C) atmospheric disturbance, and (D) surface deformation
model using the Okada model.
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a result, the algorithm learned shapes and extracted the useful

information from the available dataset. In addition, the increase in

the dataset can help to overcome the imbalanced data, which is

commonly found in machine learning processes.

Deep learning performance analysis

In this research, we used a transfer learning approach with a

pretrained network as opposed to training a new network. By

using this training approach, there is an advantage in terms of

time efficiency, where the pretrained network features are

pretrained using a large number of images and various types

of natural images. In general, the pretrained network can classify

images into 1,000 categories, but we adjusted the network to

achieve our identification goal. Therefore, we used two

classification categories, namely, deformation and non-

deformation, for the first dataset. Meanwhile, four

classification categories were used in the second dataset.

Adjustments to the training layer, such as the fully connected

layer, were also made to achieve classification into the chosen

categories. The operating parameters used include a maximum

epoch of 50 and a batch size of 100. The final probability was the

output of each network structure for image classification.

In this research, three pretrained network architectures were

used for deformation classification, namely, ResNet-18, ResNet-

50, and AlexNet, which have been popular and used in previous

research. The performance of the three architectures was

objectively evaluated by using the receiver operating

characteristic curve (ROC curve) (Fawcett, 2006). This curve

is used to describe the identification performance by comparing

the true positive rate and the false-positive rate. Quantitatively,

machine learning performance is indicated by the area under the

curve (AUC) result, which is the integrated area under the ROC

curve. The higher the AUC values (maximum = 1), the better the

performance, with an AUC = 0.8 indicating good performance

FIGURE 6
Synthetic interferogram results of the Orisan Mountain with different VEIs: (A) VEI 1, (B) VEI 2, and (C) VEI 3.
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(Lee and Park, 2013). As a result, the AUC values of ResNet-18,

ResNet-50, and AlexNet were 0.968, 0.965, and 0.955,

respectively, for the 2-class label classification categories, as

shown in Figure 8A. In Figure 8B, for the 4-class label

classification categories, the AUC values were 0.978, 0.981,

and 0.983 for ResNet-18, ResNet-50, and AlexNet, respectively.

Discussion

In this study, we have demonstrated the capability of the deep

learning convolutional neural network (CNN) algorithm in

classifying interferogram images based on synthetic data. This

algorithm has also demonstrated its capability in processing

images of interferograms as part of machine learning training

on large datasets. The performance of the model is quantitatively

evaluated based on the confusion matrix. The confusion matrix

performs a quantitative analysis based on the true positive and

true negative as the correct classification and false-positive and

false negative in the incorrect classification (Truong et al., 2018).

The combination of these assessments can be translated into the

accuracy of model performance. In Table 1, a comparison of the

performance accuracy values for each network structure with the

type of training dataset is given. In the 2-class datasets, the

highest accuracy of 94.01% was achieved using AlexNet. The

accuracies of ResNet-18 and ResNet-50 followed with values of

92.58% and 93.62%, respectively. Meanwhile, in the 4-class

datasets, the highest accuracy, which was above 90%,

indicating good performance, was achieved using ResNet-18;

ResNet-18 performed 2% better than the other network

structures. This decrease in accuracy is a result of the 1.93%

increase in false-positives for the ResNet-50 structure, while there

is a 2.63% increase in false negatives when using AlexNet

compared to using ResNet-50.

In addition, the accuracy of detecting the deformation

interferogram generated by CNN is high, as values of >85%
were achieved using each network architecture. Further analysis

can be carried out to identify features that are used as references

for determining the classification of surface deformation in the

input image data. One of the methods used to visualize and

reason detection in CNN is the class activation map (CAM)

(Brengman and Barnhart, 2021). CAM is the visualization of

information deep in the network, specifically the weights of the

last convolution layer (Feng et al., 2021). The CAM is an

intensity map that highlights the region of pixels that

correspond to a certain class activation value. This approach

is useful for recognizing machine learning progress in the

determination of the classification of input images into

certain categories (Kwásniewska et al., 2017). As the result,

we use two images of deformation images in Figures 9A,B and

noise data in Figure 9C. For example, Figures 9D,E show the

correlation of pattern recognition between the deformation

images, while Figure 9F shows the correlation between the

inputs of the classified noise data. The probability levels are

98% and 91.2% for the deformation in Figures 9D,E,

respectively, and 90.4% for the disturbance in Figure 9F.

This analysis provides an interesting picture of how a system

can recognize input data after machine learning training has

FIGURE 7
Data augmented image of a synthetic interferogram to training the CNNmodel to overcome imbalance and limited data in the training datasets.
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taken place. The correlation results also show that the deep

learning algorithm is quite reliable in detecting interferogram

deformation.

As a result, CNN can be a breakthrough model in its

application to detect the deformation phase of the wrapped

InSAR data. In addition, the use of synthetic data in CNN

training provides an advantage compared to relying solely on

real interferogram data. The process of augmenting data on the

dataset also provides an advantage in time efficiency by providing

learning input for CNN to obtain optimal results (Panahi et al.,

2020). The use of these various approaches has resulted in the

ability to overcome some limitations, such as the small number of

observed deformation signals.

Therefore, the results from these approaches can be

developed for rapid deformation detection based on SAR

data in the future. In the case of this study, the detection

of deformation is focused on the area of the ancient Orisan

volcano which had eruptions more than before the last

century which is still rarely the object of research.

Volcanic activity on the Korean peninsula has attracted the

attention of researchers to study the characteristics of

volcanoes in the past. In previous research, the Orisan

volcano has been modeled using a 3D printer to study lava

flows in HVRF by simulating lava flows (Hakim et al., 2022b).

In addition, the use of machine learning is also carried out in

the process of classifying lava flows in computer and physical

simulation processes. Even so, there are some limitations that

faced in this research from the characteristic deformation and

typical simulations of signal used in this research. In this

research we try to employ the Okada model as source

deformation to simulate the deformation in eruption event

in Orisan mountain. The use of the deformation model is still

limited to one type of deformation model, namely, the Okada

model. By carrying out further tests for various deformation

characteristics, it is possible to determine the reliability of this

technique in detecting sources of deformation such as

anthropogenic effects, including resource extraction or

other forms of signal deformation patterns

(Anantrasirichai et al., 2019). Consequently, this limitation

leads to inflexibility in the detection of deformations with

other characteristics. In addition, hardware limitations are

one of the other current challenges in processing large

amounts of data. Activation of the pooling layer and

managerial data processing is some of the future

improvisation efforts that will be made to obtain

maximum results under more efficient conditions

(Brengman and Barnhart, 2021). The characteristics of the

FIGURE 8
Receiver operating characteristic (ROC) curve from the
synthetic image on the Hantangang River using three different
pretrained networks: (A) 2-class classification and (B) 4-class
classification.

TABLE 1 Performance analysis of the CNN pretrained network in each class dataset.

Evaluation criteria 2-class datasets 4-class datasets

ResNet-18 ResNet-50 AlexNet ResNet-18 ResNet-50 AlexNet

Overall accuracy 92.58 93.62 94.01 97.82 95.75 94.99

Error rate 7.42 6.38 5.99 2.17 4.25 5.01

True positive rate 3.39 98.27 96.94 95.64 94.46 93.98

False-positive rate 96.32 1.56 2.86 1.45 3.38 4.00

False negative rate 11.46 11.20 9.11 4.34 6.29 6.97
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error simulation can also affect the performance of the

detection with given the limitations of the error

simplification made in this study. Such coherence

characteristics in the study area, which influence the

formation of the interferogram, were not considered at this

time. Regions with a low level of coherence can provide

random phase disturbances that are difficult to interpret.

Other developments also need to be considered with the

application of unwrapping phase data, which is useful in

detecting continuous deformation.

In addition to the various limitations faced, there are still

some potentials that arise. Based on previous research, the use of

the Mogi model as a source of deformation still limits the

influence of other sources of deformation, such as an

earthquake that occurs during an eruption (MacQueen et al.,

2020). Therefore, in this research the Okada method is used as a

deformation model in the synthesis of interferograms which is

expected to provide a better image in the training process on the

deformation signal. Even so, in practice there are still some

vulnerabilities in identifying interferograms such as

ionospheric problems or interference with the unwrap process

that often arise (Rongier et al., 2019). The combination of these

errors can be integrated in the development of deformation

detection with machine learning in the future process. The

InSAR approach that describes simulations is a potential in

this study area research, especially in studying ancient

volcanic eruptions. By looking at the potential for detecting

the InSAR deformation pattern in this area, it is hoped that it

can be applied to other areas, especially in the case of real

eruptions for mitigation mapping efforts. The use of the

algorithm this research has the potential for development in a

wider direction, because of the limitations of the simulation

signal on the interferogram, various other inputs are needed

to complete the rapid detection progress. Spatial input data such

as geological conditions, volcanic activity, and others-relative

factor can be input in the mapping process or deformation

detection. Therefore, the application of optimized algorithm

can be integrated in this further research to overcome the

FIGURE 9
Input image from training dataset (A) synthesis deformation label, (B) synthesis deformation label, (C) atmospheric label and overlaid CAM
analysis of image (D) deformation label with a probability of 98%, (E) deformation label with a probability of 91.2%, and (F) atmospheric label image
with a probability 90.7%. The red area of the CAM represents a high probability of classification detection.
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limitations in operational parameter to minimize the interfere of

trial and error (Tien Bui et al., 2017). Therefore, the usefulness of

machine learning algorithm can be integrated to retrieve the

time-series deformation in the future (Sun et al., 2020). However,

the currently application of the rapid detection of SAR data based

on deep learning is an initial approach to cases of past eruptions

such as the Hantangang UNESCO Global Geopark. Further

research can be continued to improve the existing limitations

and can be applied to several other deformation characteristics as

a rapid detection effort that is useful in risk management.

Conclusion

This research provides a knowledge-gaining framework that

routinely searches through large amounts of wrapped InSAR data

to rapidly detect deformation. The synthesis of this interferogram

is based on a simulation of a volcanic eruption that previously

occurred in Hantangang. With the limitation of deformation

data, the use of synthetic data is a solution to understanding

deformation detection. In addition to these limitations, the use of

augmented data is one solution to avoid data imbalance and

enrich the training dataset to achieve optimal results. In addition

to the deformation synthesis, we also perform error simulations

including atmospheric disturbances, topographical errors, and

orbital errors. The combination of deformation and error

synthesis is then used in the interferogram synthesis.

In terms of performance, a CNN deep learning model is used

to carry out the learning process using datasets from interferogram

synthesis. The pretrained network is used to streamline the

performance of training the model and has shown its reliability

on ResNet-18, ResNet-50, and AlexNet. Based on the performance

analysis using AUC, it was found that the analytical model can

detect deformation with an accuracy greater than 85%. In addition,

based on the class activation map (CAM), which can visualize

machine detection, high probability can be achieved. This shows

the potential use of CNN in the rapid detection of interferogram

data in the future. However, some limitations are still an obstacle in

this research. The limited amount of previous deformation data

provides an overview of the deformation when the event occurred.

Then, the limitations of the deformation model are used to make it

possible to be inflexible in recognizing other deformation

characteristics. Therefore, development can be achieved by

increasing the enrichment of more varied deformation

characteristics so that various types of deformation can be

detected. The enrichment of error simulation data is also useful

for studying errors that arise in the case of interferogram

deformation. In addition, the application of unwrapping

interferogram data can also provide interesting research in the

detection of slow and continuous deformation. Besides, the

development of machine learning algorithm can be carried in

the future for using optimizing algorithm and integrated to retrieve

time-series deformation measurement. In general, this study is an

initial study reconstructing past deformations and projects in the

rapid detection of deformation based on SAR data.
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