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The rapid development of information and communication technologies has

brought the concept of digital economy into the limelight. Data elements have

played a more important role in economic production. As an environmentally

friendly economic model, the data factor-driven economy, compared to the

traditional one, has low energy consumption and less pollution emissions.

Hence, the effect of digital economy development on ecological

performance is worth exploring. We measured the digital economy index

and the ecological performance index for 30 provinces in China.

Furthermore, the relationship between the two was analyzed with the help

of a dynamic spatial Durbin model. The results showed the following: 1) closely

related to the regional economic foundation, the development level of the

digital economy showed obvious spatial characteristics that were high in the

eastern region and low in the western region in China. 2) Over time, the pattern

of ecological performance in China has changedmarkedly, showing a high level

in the south and a low level in the north. 3) The digital economy showed a

significant promoting effect on ecological performance, with a strong

externality in space that could have a spillover effect on the surrounding

areas. 4) The effect of the digital economy on ecological performance had a

significant positive effect, although it lagged behind over time. In addition, the

effect has regional heterogeneity and was more obvious in developed regions.

Based on these findings, we recommend that the role of ICT in economic

activity be strengthened in some developed regions. However, in some

developing regions, a balance needs to be struck between digitalization and

environmental benefits. At the same time, developed regions should be

encouraged to realize economic collaboration with developing regions, with

the help of data elements in an effort to narrow the regional gap.
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1 Introduction

After the industrial revolution, the process of global

industrialization and urbanization has been accelerating, and

the economy has developed rapidly. However, the reason behind

the rapid development of the economy is the huge demand for

resources. The overexploitation of resources, especially fossil fuel

resources, has exacerbated the problem of resource shortages and

the deterioration of the ecological environment (Wu et al., 2020;

Wang et al., 2022c; Yang et al., 2022a). Currently, grassland

degradation and soil erosion are becoming more serious,

bringing great negative effects on people’s production and life,

as are land desertification and other problems. Moreover,

excessive energy consumption has caused large emissions of

greenhouse gases and has led to the emergence of global

extreme climate phenomena. Increasingly frequent natural

disasters continue to threaten human settlements and reduce

the resilience of cities day-by-day (Yang et al., 2021; Ge et al.,

2022; You et al., 2022). Hence, it is necessary to explore the

relationship between economic development and the ecological

environment to seek future development directions.

Some studies have shown that the improvement of

environmental regulation and technical level is conducive to

sustainable development and ecological performance. The

former can reduce pollution emissions during production to

ensure the quality of the ecological environment, and the latter

can drive energy efficiency to reduce the consumption of

resources (Lorenzoni et al., 2007; Zhu et al., 2014; Zhang

et al., 2019; Zhou et al., 2020). More specifically,

environmental regulation can effectively prevent economic

activities from deteriorating the current ecological situation,

which contributes to ecological restoration. Technological

advances can improve energy efficiency and reduce pollutant

emissions. During this evolution, the same economic output

would have consumed fewer resources due to advances in

production technology. However, improving the quality of the

environment is never such a simple matter. It is a complex

system. For developing countries still with a low level of

industrialization, including China, simple and rough

environmental regulation in such a stage may have a negative

influence on industrial agglomeration. This could bring the

pollution shelter effect (Copeland and Taylor, 1994; Biswas

et al., 2012); that is, as an external constraint on economic

activities, the environment will break the production balance

of manufacturers in the existing factors of production. In this

case, manufacturers have no choice but to adjust their production

strategies to face environmental regulation, resulting in an

increase in their production cost (Gollop and Roberts, 1983;

Gollop and Roberts, 1983). As a result, enterprises have to seek

technological breakthroughs to reduce costs.

Although technological progress is more important for these

developing countries, not all technological advances can reduce

pollution emissions (Adha et al., 2002; Acemoglu et al., 2012;

Anasuya and Narayan, 2022). A new clean technical element is

increasingly urgently needed to improve ecological performance

and realize the transformation to green and sustainable

development. Since the beginning of the 20th century,

computer science has been developed continuously, and

communication technology has become increasingly mature.

Blockchain, artificial intelligence, cloud computing, and the

Internet of Things have promoted the transformation of

economic development models (Wang et al., 2022b). The

digital economy is a new economic form born in this process.

As shown in Figure 1, the global trade volume on ICT services has

maintained steady growth since 2006. Particularly in Asia, the

trade volume increased from $221.37 billion in 2006 to

$2010.50 billion in 2019. The trade scale among Africa and

Oceania has increased by more than 100% as well (the growth

rate of Africa is 105.76% and that of Oceania is 149.69%). This

showed that the effect of the digital economy on the global

economy was great and obvious.

With information and communication technology, the

digital economy takes data or information as key production

factors, regulating a series of economic activities such as

production or consumption (Miao, 2021). Although data

resources are a relatively virtual resource compared to

traditional resources such as water and fossil fuel, they can be

copied and shared conveniently. Hence, its marginal utility

continuously increases while the marginal cost is almost zero.

Clearly, data resources are a kind of low cost, high-return factor

of production. When data elements participate in economic

activities, they can have huge effects on the traditional

economic growth style that has high energy consumption and

high pollution (Ding et al., 2021). In the digital drive mode,

manufacturers are able to use fewer natural resources to generate

greater economic benefits and less pollution. This can alleviate

the deterioration of the ecological environment and the shortage

of resources to a certain extent. Undoubtedly, the digital

economy can now be regarded as an important medium to

adjust the contradiction between economic development and

the ecological environment.

After the entrance of the digital economy into people’s vision,

the relationship between the digital economy and the ecological

environment has become the focus of scholars. Zhou et al. (2021)

pointed out that the digital economy has improved the energy

consumption structure by optimizing the industrial structure,

thus curbing air pollution. This effect was more obvious in

developed areas (Zhou et al., 2021). The conclusion of Wu

et al. (2022) was similar, and they found that this result could

be applied to surrounding regions as well (Wu et al., 2021). Some

studies revealed that the digital economy could also promote the

level of green innovation in cities to improve cleaner production

technology (Wang et al., 2022d; Fang et al., 2022; Wang et al.,

2022a). However, some different conclusions have been put

forward that the development of the digital economy is not

beneficial to the ecological environment in all regions. In those
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areas that have not yet reached the environmental Kuznets curve

(EKC) inflection point, the development of the digital economy

has unexpectedly stimulated the demand for electricity in the

short term, thus increasing the consumption of fossil fuel

resources (Haldar and Sethi (2022); Adha et al., 2022).

In summary, most of the current studies have aimed to

investigate the influence of the digital economy on energy

consumption and environmental pollution. However, few

studies have been concerned about the relationship between

the digital economy and ecological performance. In fact,

resource constraints and environmental protection are two

major issues faced by the Chinese government at the same

time (Lan et al., 2012). Energy consumption is related to

China’s economic growth, while pollution control is related to

China’s ecological environment (Shakib et al., 2022). Obviously,

especially for China, which has not completed the

industrialization process, this is a complex problem (Wang

et al., 2022; Wang et al., 2022c). Thus, based on the studies

mentioned earlier, this article focused on the dynamic spatial

relationship between the digital economy and ecological

performance. The following work was carried out: 1) a set of

evaluation systems of the digital economy was designed, and then

the development level of the digital economy in 30 provinces in

China during the period 2013–2019 was quantified. 2) The super-

SBM model was used to calculate the ecological performance

level of various regions in China from 2013 to 2019. 3) The spatial

distribution patterns of the digital economy and ecological

performance were summarized. 4) Based on the obtained

results, the spatial influence of the digital economy on

ecological performance was finally examined.

The contribution of this study was mainly reflected in the

following aspects: 1) this study designed a set of index systems to

evaluate the digital economy from the three dimensions of digital

industrialization, industrial digitalization, and information

facilities, providing a set of scientific calculation methods for

related research. 2) The investigation of the influence of the

digital economy on ecological performance, combined with the

discussion of its spatial spillover effect from the perspective of

spatial economics, confirmed the role of the digital economy in

building an environmentally friendly society. 3) According to the

level of economic development, China was divided into eastern

regions and central and western regions for discussion. In fact,

this was also in line with the actual situation of most developing

countries: not all regions had a good digital economy foundation.

The results of the heterogeneity analysis also provided empirical

evidence for many other developing countries.

The article is structured as follows: the relevant literature,

theoretical analysis, and hypotheses are given in Section 2. In

Section 3, the measurement system of the digital economy index

and ecological performance index was constructed, and the results

were calculated. The construction of the regression model and the

data sources are displayed in Section 4. The role of the digital

FIGURE 1
2006–2019 trade volume on ICT services in different regions of the world. Note: source from the United Nations Conference on Trade and
Development Statistics (UNCTAD stat). Unit: billion USD.
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economy on ecological performance is empirically tested in Section

5, with the discussion of the time lag, regional heterogeneity, and

endogeneity. Further discussion, conclusions, and policy

recommendations are given in Sections 6, 7.

2 Literature review and research
hypothesis

2.1 Digital economy

The concept of the digital economy was first proposed by

Don (2022). At that time, he used it to refer to the various new

economic relationships that emerged after the advent of Internet

technology. Since then, with the development of Internet

technology, the digital economy has gradually attracted

widespread attention from the academic community. Lane

(1999) pointed out that the widespread growth of

e-commerce, new competitive strategies, and changes in

organizational structure were precisely caused by the digital

economy. Driven by the combination of information,

computing, and communication, the digital economy was

considered to have a great influence on the Internet industry.

However, some scholars believe that the essence of the digital

economy is digital trade in goods and services and view it as a

new economic model derived from the traditional economic

model, Teo (2001); Kim (2006) gave a broader definition: the

economic development model is driven by information and

communication technology. He pointed out that the digital

economy could effectively improve the organizational form of

enterprises and the cooperation efficiency of various departments

(Balcerzak and Pietrzak, 2017). In addition, Mentsiev et al. (2019)

thought that the digital economy was a commercial and trade

activity based on the Internet. E-commerce is a representative

form of the digital economy. Most scholars believe that the digital

economy has benefited from the development of information

technology. It could promote production and consumption

through the replication and sharing of data elements; Li et al.

(2021); Li and Liu (2021); Miao (2021) proposed that the digital

economy was a collection of industrial digitization and digital

industrialization, including the transformation and upgrading of

traditional industries by data elements and new industries

derived from digital technology (Miao, 2021). In addition,

studies have shown that the digital economy has a significant

positive impact on environmental quality, sustainable economic

development, and the health of the population (Lange et al., 2020;

Wu et al., 2022; Wang et al., 2022d).

2.2 Ecological performance

With increasingly serious environmental problems, people

have attempted to use fewer resources to produce more profits.

“Ecological performance” is often used to measure the

relationship between resources and benefits to evaluate the use

efficiency of natural resources. The concept of “ecological

performance” was first proposed by Bruce and Rupert (1983).

They aimed to create a more reasonable evaluation index system

and calculation model to measure the benefits produced by the

use of natural resources. For a long time, many scholars all over

the world have had a heated discussion on this concept that used

four ecological performance indicators to quantify the influence

of the use of natural resources on the ecological environment

(Whitford et al., 2001). Mickwitz et al. (2006) proposed that

ecological performance, as a ratio between economic benefits and

resource consumption, could be used to detect the changes in

ecological situations in a region (Mickwitz et al., 2006).

With the deepening of research in this field, the index

selection and calculation method of ecological performance

have been gradually improved using the superefficient data

envelopment analysis (DEA) model to measure the ecological

performance of Chinese cities. The results showed that there was

an N-shaped relationship between resource consumption and

ecological performance (Bai et al., 2017; Biswas and Farzanegan,

2012). Estimated ecological performance from different

perspectives and measured resource use efficiency in the

context of urban development (Chen et al., 2020; Copeland

and Taylor, 1994). To calculate the ecological performance,

China’s ecological footprint was taken as the sample. Using

the empirical method of a dynamic panel regression model,

they revealed that the improvement of resource utilization

efficiency would have a positive effect on ecological

performance (Dong et al., 2020). Although the selection of

ecological performance evaluation indicators in the existing

results was different, the research methods and models were

relatively similar.

2.3 H1: The digital economy can
effectively improve ecological
performance

Research on the digital economy and ecological performance

by scholars in various fields can be divided into two areas, the

effects of the digital economy on resource saving and the digital

economy on pollution reduction. On the one hand, it is argued

that the development of the digital economy has increased the

level of production technology, which has led to a reduction in

energy consumption. Specifically, the digitalization of production

processes enables manufacturers to better manage consumables

including energy and production materials. Computer science

and technology can help planning departments allocate these

resources more rationally and avoid waste in production

activities. In addition to the production sector, digital

technology can also affect the distribution sector. With the

help of Internet technology, the efficiency of logistics has been
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greatly improved. Transactions between buyers and sellers have

become much easier. This has stimulated market consumption to

a large extent. Unlike traditional distribution and sales activities,

the data element acts as the medium for completing these

transactions, and its costs are almost negligible. In other

words, the resources previously spent on this part of the

consumption have been saved. At the same time, digitalization

has highlighted the role of communication technology in

economic activity. Some unnecessary commuting and

gatherings are replaced by electronic communication, reducing

the energy consumption of economic collaboration activities.

This shows that the development of the digital economy can be

effective in saving resources and improving energy efficiency

(Zhong et al., 2021).

Another aspect is the mechanism of the impact of the digital

economy on pollution reduction. From the production side, the

development of the digital economy can effectively alleviate the

problem of information asymmetry. This has led to greater

mobility of technological factors and promoted cooperation

and innovation in production technology (Jaffe et al., 2002;

Yang et al., 2022b). This means that manufacturers will be

more productive and the pollution emissions from the

production process will be reduced. Specifically, manufacturers

can use platforms such as the Internet to quickly exchange

technical issues, form stable cooperation, and expand the

added value of their goods. According to the Porter

hypothesis, manufacturers can invest this capital in research

and development. This will lead to more improved and

cleaner production techniques (Wang et al., 2022e). Similarly,

in the process of digitalization, environmental regulation has

given rise to many new forms. For example, with the help of

Internet of Things (IoT) technology, it is possible to monitor the

situation regarding the generation and treatment of pollutants in

real time. The production department can use its feedback to

adjust the scale of production. This technology can also be used

in the collection and analysis of environmental monitoring data,

using cloud computing to quickly access environmental pollution

data in the area (Chen et al., 2022). On this basis, the

environmental quality and pollutant emissions are analyzed.

This helps the government curb the excessive emissions of

some enterprises in a timely manner. We speculate that the

development of the digital economy can curb pollution

emissions.

Figure 2 shows the possible impact of the digital economy on

ecological performance more clearly. Therefore, we believe that

the digital economy is closely related to both resource

conservation and ecological quality and propose H1 in this

regard: The digital economy can effectively improve ecological

performance.

2.4 H2: There is a spatial spillover effect of
digital economy on ecological
performance

There is a significant feature in data elements, that is, strong

liquidity. When different production departments work together,

data elements can be transferred with little time, thus improving

the efficiency of information exchange. As shown in Figure 2,

another key point is that the transmission of data elements is not

limited by geographical distance. The digital economy forms

spatial spillovers through three channels. The first channel is the

use effect. For example, the digital economy can drive the

construction of information and communication service

facilities in surrounding areas (Shahnazi and Dehghan

Shabani, 2019). The second channel relates with derivatives of

FIGURE 2
Mechanisms of the digital economy to ecological performance.
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the digital economy that have an effect on relevant developments

in various regions. These effects are known as substitution effects,

which replace physical goods with virtual goods. Virtual mobile,

e-commerce, e-government, e-shopping, remote work,

e-banking, e-commerce, virtual education, and virtual

conferencing are all alternative forms (Jorgenson 2001; Toffel

and Horvath 2004; Schmidt and Kløverpris 2009). The last

channel is cost-effective. The cost of data transmission,

processing, computing, and storage continues to decline as

digital technologies continuously evolve (Goldfarb and Tucker,

2019). Therefore, driven by the digital economy, the possibility of

data elements being transferred to other regions is also greatly

increased.

As shown in Figure 3, as the level of production cooperation

improves, interregional cooperation becomes the mainstream form

of regional economic development. Projects such as natural gas

transmission from west to east China, the West–East electricity

transmission project and the South-to-North Water Diversion are

typical cases of cross-border cooperation in resources.

However, the difference in the technological level and resource

distribution among regions causes a certain gap in the industrial

structure and economic development level. Consequently, regional

economic cooperation has also brought some unexpected

environmental problems. Most intuitively, the wastewater

generated by the upstream plant is likely to cause diffuse

pollution to other areas downstream. Undoubtedly, it increases

the sewage treatment cost in the downstream area. In addition,

some factories have been relocated to the edge of the city under the

consideration of the cost of environmental restoration. Their

exhaust gas may diffuse with the atmosphere and eventually

form cross-border pollution with other pollutants in the air (so

called the spatial agglomeration effect of environmental pollution)

(Sun et al., 2020; Sun et al., 2022). Figure 4 depicts the spatial effects

of environmental pollution.

Similarly, we propose H2: there is a spatial spillover effect of

the digital economy on ecological performance.

3 Measurement of digital economy
and ecological performance

3.1 Digital economy index

At present, several indicators have been proposed to measure

the development of the digital economy. Li et al. (2021), referring to

the standards issued by the Ministry of Industry and Information

Technology of China and Tencent Research Institute, constructed a

set of evaluation systems from three levels: digital talent, digital

infrastructure, and digital industry value (Li et al., 2021). In addition,

some indicators that consider the development level of the Internet

and digital finance have also been put forward in several studies.

However, there is no widely used indicator to measure the

development of the digital economy. Consequently, a scientific,

objective, and comprehensive digital economy index

measurement system was certainly needed. Based on these

studies, the digital economy was divided into three parts:

“information infrastructure,” “digital industrialization level,” and

“industrial digitization level.”

Among the three parts, the information infrastructure is viewed

as the basis of the development of the digital economy. It mainly

included the length of optical cable lines, the number of mobile

Internet users, and the number of 4G users. These selected indicators

could objectively reflect the scale of demand for information and

communication services and the activity of the digital economy in the

region. The development of industries such as e-commerce, software

business, and software products, formed by using information

technology, is the performance of digital industrialization. Hence,

indices such as the number and sales of e-commerce enterprises,

FIGURE 3
Spatial effect mechanism of resource consumption.
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software business income, software product income, and the total

assets of the electronic information manufacturing industry were

taken into consideration here. For the last part, industrial digitization

refers to the utilization level of digital technology by enterprises. The

expenditures on technology introduction, technology improvement,

computers per 100 people, and websites per 100 enterprises were

selected to quantify the level of digitization in this part. The specific

indicators are shown in Table 1, and the relatively objective entropy

method was selected for the determination of weight (Li et al., 2021).

The specific calculation for the entropy method is as follows:

Calculate the characteristic proportion degree in the ith year

under the jth index:

Pij � xij

∑n
i�1
xij

, (i � 1, 2, 3/n; j � 1, 2, 3/m) (1)

Calculate the entropy of the jth index:

ej � −k∑n
i�1
Pij ln(Pij), (j � 1, 2, 3/m), (0≤ ej < 1) (2)

Coefficient of difference calculation:

dj � 1 − ej (3)

Determine the weight of evaluation index:

ωj � dj

∑m
j�1
dj

, (j � 1, 2, 3/m) (4)

Three representative years: 2013, 2016, and 2019 were chosen

in this article (Figure 5):

FIGURE 4
Spatial effects of environmental pollution.

TABLE 1 Digital economy index system.

Criterion layer Index layer Weight

Information infrastructure Length of optical cable lines 0.1125
Number of mobile Internet users 0.0667
Number of 4G users 0.0913

Digital industrialization level Total assets of the electronic information manufacturing industry 0.0789
Number of e-commerce enterprises 0.0514
Sales of e-commerce enterprises 0.1371
Software business income 0.1181
Software product income 0.0987

Industrial digitization level Expenditure on technology introduction 0.1025
Expenditure on technology improvement 0.0417
Number of computers per 100 people 0.0697
Number of websites per 100 enterprises 0.0314
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The results of the digital economy index calculation show

that there are significant spatial differences in the

development of the digital economy across provinces, with

significant local clustering characteristics, such as the Yangtze

River Delta region and the Pearl River Delta region. The

Yangtze River Delta and Pearl River Delta regions are

mostly in the red zone, which indicates a high level of

digital economy development in these regions. However,

the western (north-western) region is in the blue zone,

where the level of digital economy development is relatively

low, especially in Xinjiang and Qinghai provinces. In terms of

time, the overall differences in the development of the digital

economy in the provinces have narrowed, and in terms of the

speed of development, the central region is the fastest,

followed by the western region, with a gradual convergence

of characteristics between regions. It is worth noting that the

level of digital economy development in each region has

grown in tandem with economic development. By 2019, the

blue areas decreased while the orange areas continued to

increase, which indicates a gradual increase in the level of

digital economy development in these regions. Some regions,

Beijing, Shanghai, and Guangdong, still maintain a high level

of digital economy development. Overall, China’s digital

economy is gradually showing relative spatial stability, and

there are some ups and downs in the development of the

digital economy in some regions. However, overall, the

development of the digital economy is gradually improving

in all provinces.

3.2 Ecological performance index

There are a number of approaches to measuring ecological

performance, and we have compared these approaches, as shown

in Table 2:

In the current study, the calculation of the eco-

performance index can be broadly divided into two

categories, the ratio method and the input‒output model

method (Dyckhoff and Allen, 2001; Dahlström and Ekins,

2005). In contrast, scholars prefer input‒output modeling

approaches, such as DEA, to evaluate ecological

performance (Ge et al., 2022). There are two traditional

forms of DEA models, CCR and BCC, which are unable to

measure the full range of undesirable output. Compared to

traditional DEA models, the SBM model has the advantage of

successfully addressing the neglect of slack variables in the

process of efficiency evaluation by radial models. The SBM

model is a model that allows both desirable output and

undesirable output to be considered. However, the result of

the SBMmodel cannot be greater than 1. As a result, Anderson

and Petersen (1993) integrated a new model, the super

efficiency model (DEA-SEM), based on a modification of

the traditional DEA model. In this method, the efficiency

value can be greater than one to better distinguish its

efficiency. The Super-SBM model is a combination of the

super efficiency and SBM models. Among these submodels,

the Super-SBM method considers both undesirable output

and super efficiency and is considered a more appropriate

method. Therefore, a set of measurement systems of ecological

performance was built based on the Super-SBM method,

FIGURE 5
Digital economy index of each province for 2013 (A), 2016 (B),
and 2019 (C).
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according to researchers (Dong et al., 2020; Ge et al., 2022).

The inputs, desirable and undesirable outputs used here are

given in Table 3. The specific calculation for the DEA-SBM

model is as follows:

Suppose there is a set, D (DMU), composed of n decision

units, with three sets of vectors defined as x ∈ Rm, yd ∈ Ra, and

yu ∈ Rb, where m is m input elements, a is the number of

desirable output types and b is the number of undesirable

output types.

Then, there are matrices X � [x1,/, xn] ∈ Rm×n, Yd �
[yd

1 ,/, yd
n] ∈ Ra×n , Yu � [yu

1 ,/, yu
n] ∈ Rb×n

ρ � min
1 −m−1∑m

i�1
Di
xi0

1 + 1
a+b(∑a

r�1
Dd

r

ydr0
+ ∑b

h�1
Du
h

yu
h0

(5)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x0 � xλ +D−

yd
0 � Ydλ +Dd

yu
0 � Yuλ +Du

D− ≥ 0, Dd ≥ 0, Du ≥ 0, λ≥ 0

(6)

where λ is the weight variable, D− is the slack variable of input,

Dd is the slack variable of desirable outputs, and Du is the slack

variable of undesirable outputs.

Then the super efficiency SBM model with undesirable

outputs is constructed as follows:

φ � min
1 +m−1∑m

i�1
�x
xik

1 − 1
a+b(∑a

r�1
�yd

yd
rk

+ ∑b
h�1

�yu

yu
hk

(7)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x≥xijλj

�yd ≤ ∑n
j�1,≠ k

yd
rj

�yu ≥ ∑n
j�1,≠ k

yu
sjλj

i � 1,/, m; r � 1,/, a; s � 1,/, b

(8)

If the result is less than 1, it means efficiency regression. If the

result is greater than 1, efficiency is progressive.

Among the input indicators, the consumption of three major

resources ismainly energy consumption, land resource consumption,

andwater resource consumption. In terms of expected output, we use

the three indicators of forest resources, water resources and wetland

resources to measure them. However, to better describe the

synergistic relationship between these resources and the economy,

we have included per capita GDP on the original basis to reflect the

effect of resource consumption on the economy (Sun and Loh, 2019;

Sun et al., 2020). In addition, in the unexpected output, we use the

three indicators of industrial wastewater, industrial waste gas, and

industrial waste (Wang et al., 2020; Wu and Zhang, 2021). Similarly,

we select three representative years: 2013, 2016, and 2019 (Figure 6).

TABLE 2 Relevant measurement methods of ecological performance.

Model Interpretation Reference

Ratio method Numerator is economic benefits and the denominator is resource consumption Remer and Nieto (1995)

Dahlström and Ekins (2005)

56DEA (CCR/BBC) Base model for DEA, a special linear programming model Li et al. (2021)

DEA-SEM On the basis of DEA, the model can be calculated with results greater than 1. Andersen and Petersen (1993)

Tone (2001)

DEA-SBM On the basis of the DEA, undesirable outputs are considered. Lee (2021)

Super-SBM Combines features of both the SBM model and the DEA-SEM. Ge et al. (2022)

TABLE 3 Ecological performance index calculation system.

Category Primary index Secondary index Index interpretation

Investment Resource consumption Energy consumption Fossil fuel consumption
Land resource consumption Residential land and industrial land
Water consumption Industrial water consumption

Desirable output Ecological environment Forest resources Forest area per capita
Wetland resources Wetland area per capita
Water resources Water resources per capita
Economic level Per capita GDP

Undesirable output Environmental pollution Wastewater emissions Industrial wastewater emissions
Exhaust emissions Industrial waste gas emissions
Solid waste emissions Emission of industrial solid waste
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4 Data and methodology

4.1 Basic econometric model specification

To investigate the effect of the digital economy on ecological

performance, a benchmark regression model was constructed,

with the following equation:

epit � β0 + β1 lndeit + β2Cit + μi + εit (9)

where i is the individual, t is the time, ep represents the ecological

performance, and lnde stands for the natural logarithm of the

digital economy index. Cit is a series of control variables that may

affect ecological performance except for the digital economy. β is

the coefficient of each variable, and εit is the stochastic

disturbance term. μi and vt represent the individual effect and

time effect, respectively.

4.2 Spatial econometric model
specification

According to Hypothesis 2 (H2 in Section 2.4), the digital

economy may have spatial spillover effects on the ecological

performance of surrounding areas due to its strong spatial

externalities. However, traditional econometric models mainly

consider analyzing the effects of independent variables on

themselves and do not consider spatial interaction effects,

which may lead to estimation errors (Moshiri and Cameron,

2000). It is therefore necessary to develop a spatial model. In

spatial econometrics, common models are the spatial error model

(SEM), the spatial lagged model (SLM), and the spatial Durbin

model (SDM) (Wu et al., 2021; Liu et al., 2022). In these models,

SEM is unable to account for spatial spillover effects (Yildirim and

Mert Kantar, 2020). Whereas the direct effect of SLM is equal to

the spillover effect, and the coefficient estimates may be biased.

The SDM, on the other hand, not only provides a more

comprehensive measure but also takes into account the bias of

the model estimates at the same time. More importantly, it

considers both the spillover effects of the independent variables

on the dependent variables in the surrounding area and reveals

the impact that the independent variables in the surrounding area

have on their own dependent variables (Tang et al., 2022).

However, spatial econometric models are not without their

limitations. For example, there is a high degree of subjectivity,

and the choice of spatial matrix depends entirely on the author. In

particular, the economic matrix, with regard to the choice of

economic variables within it, determines the distances of each

geographical unit (unlike the neighborhood matrix and the

geographical distance matrix). The distances of the economic

matrix are variable, which makes it difficult to derive a general

pattern of results and makes it necessary to take more factors into

account in the interpretation of the results. Nevertheless, SDM is

still the most widely used model. Hence, Eq. 2 could be given

based on SDM to investigate the spatial spillover effect of the

digital economy on ecological performance.

epit � β0 ln deit + ρ∑n
i�1
wijepit + φ0 + β1Cit + η∑n

i�1
wij lndeit

+ λ∑n
i�1
wijCit + μi + ϵit (10)

FIGURE 6
Ecological performance index of each province for 2013 (A),
2016 (B), and 2019 (C).
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In addition to the variables mentioned in Section 4.1, ρ, η,

and λ denote the spatial regression coefficients of the sample

observations. ϕ0 is the constant term, and wij is the spatial weight

matrix.

To ensure the accuracy of the results, it is necessary to select the

appropriate spatial weight matrix before spatial regression analysis.

In this study, three common matrices, the geographical adjacency

matrix, inverse-distance weight matrix, and economic distance

weight matrix, were chosen. The geographic adjacency matrix

was used for regression estimation, and the inverse-distance

weight matrix was introduced because resource consumption and

environmental pollution might form diffusion or agglomeration

effects in space. Ultimately, since there might be a large correlation

between the development level of the digital economy and the level

of the regional economy, the economic distance weight matrix was

taken into consideration as well.

In different matrices, wi,j in Eq. 2 has different assignments:

(1) In the ground adjacency matrix (W1), spatial correlation is

related to the existence of a common edge. If space adjacent

regions i and j have a common border, then wi,j is 1;

otherwise, it is 0:

wij �
⎧⎪⎨⎪⎩

1
0
0

,
,
,

if i ≠ j and neighboring
if i ≠ j and not − neighboring
if i � j

(11)

(2) In the inverse-distance weight matrix (W2), the spatial

correlation decreases with increasing distance.

wij � { (dij)−1
0

,
,
if i ≠ j
otherwise

(12)

where dij is the geographic distance between region i and region j.

(3) In the economic distance weight matrix (W3), the closer

the economic level of the two regions is, the greater the

spatial correlation is, and vice versa. Its equation is as

follows:

wij � { ∣∣∣∣Ei − Ej

∣∣∣∣−1
0

,
,
ifi ≠ j
otherwise

(13)

where Ei and Ej are the per capita GDP of region i and region j,

respectively.

Other factors that might affect ecological performance were

also considered here:

TABLE 4 Descriptive statistics of each variable.

Variable type Symbol Mean Std. dev Minimum Maximum

Explained variable Ep 0.427 0.255 0.027 1.104

Explanatory variable lnde 1.270 0.372 0.711 2.451

Control variable Ur 0.587 0.116 0.378 0.896

lndo 6.710 1.343 3.401 9.880

Is 0.424 0.082 0.162 0.573

lnid 10.17 1.363 6.219 13.176

lnpcg 10.885 0.410 10.04 12.009

TABLE 5 Global Moran index of digital economy and ecological performance (2013–2019).

Matrix W1 W2 W3

Variable Lnde ep lnde Ep Lnde ep

Year 2013 0.121*** (2.956) 0.226** (2.218) 0.296** (2.472) 0.230*** (2.657) 0.152*** (2.717) 0.118** (2.220)

2014 0.126*** (3.033) 0.222** (2.071) 0.234*** (3.336) 0.267** (2.101) 0.138*** (2.937) 0.119*** (2.727)

2015 0.118** (2.057) 0.223*** (3.224) 0.240** (2.232) 0.228*** (2.884) 0.143*** (3.210) 0.108** (2.111)

2016 0.126*** (2.681) 0.217*** (3.023) 0.327*** (2.612) 0.266*** (2.995) 0.128*** (3.210) 0.106** (2.015)

2017 0.146*** (3.329) 0.212*** (2.998) 0.335*** (2.793) 0.287*** (3.231) 0.139*** (3.349) 0.121** (2.188)

2018 0.136** (2.015) 0.209*** (3.017) 0.252*** (3.087) 0.270*** (3.146) 0.131** (1.999) 0.137** (2.136)

2019 0.123* (1.928) 0.188* (1.957) 0.325*** (2.791) 0.245** (2.099) 0.125*** (2.166) 0.131* (1.835)

Note:* denotes significance at 10%, ** denotes significance at 5%, and *** denotes significance at 1%. Z statistics in parentheses.
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a) Urbanization rate (UR): the urbanization process itself may

lead to a large amount of resource consumption demand.

However, it can also promote the development of

industrialization and realize cleaner industrial production

(Sadorsky, 2013) to improve environmental quality. The

proportion of the urban population in the total population

was introduced to measure UR.

b) Degree of openness (DO): opening to the outside world can

attract some advanced energy-saving and emission reduction

technologies for more “green production” (He (2006)) (Jie,

2007), which may have a positive effect on ecological

performance. DO was measured by the logarithm of

local FDI.

c) Industrial structure (IS): the industrial sector is the most

important source of pollution emissions. Consequently, the

greater the ratio of the secondary industry in the structure is,

the greater the pollution emission is (Shao et al., 2011), and

ecological performance will decrease. IS was measured by the

ratio of industrial added value to GDP.

d) Innovation degree (ID): invention patents can reflect the level

of production technology and then reflect the efficiency of

resource utilization (Zhou et al., 2021), which would have a

positive effect on ecological performance. The logarithm of

the number of patent licenses was selected to measure the

level of ID.

e) Per capita GDP (PCG): digital technology innovation would

enhance the progress of ecological performance and be

related to the level of economic development. As a result,

the logarithm of per capita GDPwas taken into account (Shao

et al., 2011) to evaluate the degree of PCG.

FIGURE 7
Moran scatter of ep and lnde in 2013, 2016, and 2019. Note: the variable on the left is the digital economy, and the variable on the right is
ecological performance. From top to bottom, the years of each picture are 2013, 2016, and 2019.
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Under the constraints of data availability, to ensure the

reliability, accuracy, and results, this study was based on a

balanced panel dataset of 30 provinces in mainland China

observed over 2013–2019. The statistical data were derived

from China’s authoritative database, including CSMAR and

ESTDA. The missing data were supplied through the China

Environmental Yearbook and China Statistical Yearbook. The

descriptive statistics of each variable are shown in Table 4.

5 Empirical results and discussions

5.1 Regression model results and
discussions

Before spatial regression, the test of the spatial correlation is

necessary. Spatial statistical analysis of the Moran index was

mainly adopted in this article. The global Moran index

(Moran’s I) can describe the overall spatial correlation of

variables, which is between −1 and 1. When the result is

greater than 0, it means a positive correlation, and vice

versa. Table 5 shows the results of the global Moran index of

lnde and ep, which were all positive. Except for 2019’s ep in W3

(passing the significance test at the 10% level), the lnde and ep in

the three spatial weight adjacency matrices all passed the

significance test at the 5% level. This indicated that there

was a positive correlation between the digital economy and

ecological performance in space. To more intuitively show the

spatial relationship between the samples, we drew Moran

scatter plots in 2013, 2016, and 2019 under the W2 matrix,

as shown in Figure 7.

As a comprehensive spatial econometric model, SDM can

obtain a more refined spatial spillover relationship between

variables through total effect decomposition, which is

conducive to the accurate analysis of the actual situation. The

LM test was adopted to judge whether the panel data are

applicable to SDM, and the results rejected the original

hypothesis at the 1% level. Furthermore, the results of the

Wald test showed that SDM could not be simplified to SEM

and SLM. Column (1) in Table 6 displays the regression results of

the basic econometric model, and its measurement results were

used to analyze H1. Columns (2)–(4) show the regression results

of the SDM combined with three spatial weight matrices.

Similarly, its measurement results were used to discuss H2.

Based on the aforementioned results, first, regardless of

whether spatial effects were considered, the influence

coefficient of the digital economy on ecological performance

was positive and significant at the 1% level. Among them, the

regression coefficient considering the spatial effect was higher.

This showed that some real effects would be ignored without

considering the spatial correlation of the digital economy, and

the positive effect of the digital economy on ecological

performance would consequently be underestimated. From the

regression results of the three different matrices, the regression

coefficient is approximately 0.4, which indicates that the

estimation result is relatively robust. This suggests that the

development of the digital economy can improve the level of

ecological performance. This also means that the digital economy

can offer higher environmental benefits in exchange for lower

energy costs.

Second, from the perspective of the spatial spillover effect, the

development of the digital economy could promote the

development of local ecological performance in both

geographically and economically adjacent areas. This showed

that the digital economy had very strong and positive

externalities. According to the regression coefficient, one of

the geographic distance matrices was highest, showing that

the spatial transmission of this effect depended more on

geographical distance. This indicated that the digital economy

and ecological performance were more relevant in the

geographical matrix, which was in line with the results in

Table 4. Therefore, the spillover effects of the digital economy

continue to diminish as distance decays. This could well explain

the apparent disparity between the eastern and central-western

regions. This shows that the digital economy still has one of the

characteristics of economic activity, the agglomeration effect.

Finally, in terms of the results of the control variables, UR

had a significant negative effect on ecological performance in

models (1)–(4). This showed that the growth of the urban

population stimulated regional resource consumption and

intensified pollution emissions. It also had a significant

spillover effect in space. In contrast, almost all ISs, IDs,

and PCGs had significant positive effects with a forward

overflow in space as well. In addition, the degree of DO did

not pass the significance test, so we would not discuss it

further.

Since the spatial Durbin model takes into account the

explained variables and explanatory variables in different

geographical units, it will produce a spatial lag and cause

some errors in the estimation results. We need to decompose

the regression coefficient into direct effects, indirect effects, and

total effects (Li et al., 2016) (Shahnazi and Dehghan Shabani,

2019). Table 7 shows the effect decomposition results of core

variables under three matrices.

The results from Table 7 demonstrated that the digital

economy actually had a significant direct effect on ecological

performance. In the three matrices, both the total effect and the

direct effect showed positive and significant results, while the

significance of the indirect effect was relatively poor. The

coefficient of the direct effect was significantly higher than

that of the indirect effect, which indicated that the digital

economy had a greater effect on itself. Meanwhile, it could be

found that the direct effects of results obtained by decomposition

and its coefficients were not equivalent. This might be caused by

the existence of feedback between regions due to the correlation

of the digital economy.
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5.2 Lag effect analysis

The previous section verified that the digital economy had a

positive impact on ecological performance. As an informal

economy, the digital economy has a continuous impact on

ecological performance. Considering the lag in the

construction of digital economy infrastructure and the

upgrading of communication technology services, it was

necessary to further analyze whether the influence of the

digital economy on ecological performance lagged behind.

Referring to the work of Li et al. (2016), a dynamic Durbin

model was built for the lag of the digital economy in 1 phase,

followed by regression (Li and Wu, 2016). Table 8 shows the

regression results.

epit � β0 lndei,t−1 + ρ∑n
i�1
wijepit + φ0 + β1Cit + η∑n

i�1
wij lndeit−1

+ λ∑n
i�1
wijCit + μi + ϵit

(14)
According to Table 8, the positive effect of the digital

economy on ecological performance was significant and

lagged behind. This conclusion was applicable to all three

spatial matrices, indicating that the estimation results were

robust. Similarly, it was also true in the spatial spillover effect,

that is, the positive effect of the digital economy on the

ecological performance of surrounding areas also lagged

behind. The development of the digital economy is closely

related to the progress of Internet technology and the

development of the information and communication

industry. However, the research and development of

Internet technology requires a certain process. Similarly,

the growth of the scale of the information and

communication industry is relatively slow. Therefore, the

digital economy itself has strong development inertia. At

least, from the samples from 2013 to 2019, the positive

effect of the rapid development of the digital economy on

the development of an environmentally friendly society was

obvious.

TABLE 6 Regression results.

Non-spatial SDM

Variable (1) (2) W1 (3) W2 (4) W3

Lnde 0.338*** (0.104) 0.438*** (0.102) 0.391*** (0.102) 0.405*** (0.106)

Ur −0.222* (0.130) −0.517* (0.273) −0.532*** (0.168) −0.633*** (0.242)

lndo −0.005 (0.035) −0.015 (0.027) −0.012 (0.033) −0.009 (0.034)

is 0.831*** (0.211) 0.288* (0.155) 0.256* (0.154) 0.416 (0.293)

lnid 0.058** (0.028) 0.070** (0.027) 0.059** (0.027) 0.062** (0.029)

lnpcg 0.353*** (0.093) 0.196* (0.102) 0.172* (0.102) 0.252** (0.118)

W × lnde 0.395** (0.168) 0.759*** (0.206) 0.397*** (0.125)

W × ur −1.108* (0.645) −3.385** (1.369) −1.493** (0.702)

W × lndo 0.045 (0.074) −0.100 (0.156) 0.060 (0.086)

W × is 0.908*** (0.319) 1.672** (0.793) 1.431*** (0.484)

W × lnid 0.191 (0.139) 0.220* (0.120) 0.181* (0.105)

W × lnpcg 0.294** (0.144) 0.639** (0.271) 0.524** (0.230)

rho 0.275*** (0.085) 0.292*** (0.072) 0.173*** (0.064)

C 2.807*** (0.834)

Year YES YES YES YES

Province YES YES YES YES

N 210 210 210 210

R2 0.4520 0.4233 0.4497 0.4480

Note: Standard error in parentheses. * denotes significance at 10%, ** denotes significance at 5%, and *** denotes significance at 1%, similarly, hereinafter.

TABLE 7 Estimated results of total, direct, and indirect effects.

Type (1) W1 (2) W2 (3) W3

Total effect 0.540*** (0.173) 0.885** (0.381) 0.597*** (0.199)

Direct effect 0.437*** (0.107) 0.582*** (0.104) 0.405*** (0.108)

Indirect effect 0.103 (0.084) 0.303* (0.171) 0.192* (0.098)

Note: Standard error in parentheses. * denotes significance at 10%, ** denotes

significance at 5%, and *** denotes significance at 1%, similarly, hereinafter.
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5.3 Regional heterogeneity analysis

Like most developing countries in the world, China’s

development also had very obvious regional characteristics. In

China, the development of coastal areas was better than that of

inland areas. Correspondingly, the development of the digital

economy was highly correlated with the regional economic level,

which could be proven by the results in Figure 5 that some

regions with a high index were distributed in eastern China.

Thus, it was important to discuss the heterogeneity of the digital

economy on ecological performance in different regions. In this

section, the heterogeneity between developed and developing

regions in the same region is further examined, with a

comparison between more developed eastern regions and less

developed central and western regions. The eastern region

included ten provinces, including Hebei, Beijing, and Tianjin,

while the central and western regions included 20 provinces

other than Tibet. The statistical caliber of Taiwan, Hong Kong,

and Macao was different from that of other provinces, and there

was a large lack of data in Tibet, so they were not discussed in the

heterogeneity analysis.

As shown in Table 9, the regression coefficient of the digital

economy was significantly positive in both the eastern region and

the central and western regions. However, the coefficients of the

eastern region were slightly higher than those of the central and

western regions, which indicated that the digital economy had a

higher marginal contribution to ecological performance in

regions with a higher level of economic development. This

illustrated that the positive role of the digital economy in

promoting ecological performance was more obvious in

developed regions. From the perspective of the spatial

spillover effect, the coefficient and significance of the eastern

region were also better than those of the central and western

regions. This suggests that in areas where the digital economy is

less developed, their impact on ecological performance is limited.

The digital economy is unable to create agglomeration effects to

reduce resource consumption or curb pollution emissions. This

also reflects the heterogeneity of the digital economy on the

regional ecological environment. Only when the development of

the digital economy reaches a certain threshold it will be able to

exert a positive effect on ecological performance.

5.4 Robustness test

To solve the possible endogenous problems in the model,

appropriate instrumental variables were required for the core

explanatory variable, namely, the digital economy. The

instrumental variables needed to meet the exogenous and

correlation requirements at the same time. Based on the

practice of Zhou et al. (2021), the logarithm of post and

telecommunications business volume (lnpt) were selected as

the explanatory variable and instrumental variable of the

digital economy (Andersen and Petersen, 1993). On the one

hand, the post and telecommunications business could reflect the

local information and communication infrastructure level. On

the other hand, the influence of the use of traditional

telecommunications tools, such as fixed-line telephones, on

economic development should meet the exclusivity. With the

continuous development of the digital economy, the frequency of

traditional communication showed a downward trend, which

could be regarded as a suitable tool variable. Considering that the

robustness test is to examine the rationality of the core

explanatory variables, the spatial effect was excluded from the

consideration. The results are given in Table 10.

For the test of the null hypothesis of insufficient identification

of instrumental variables, the LM statistic p value was 0, which

rejected the null hypothesis. Meanwhile, in the Wald test, the F

statistic was 194.935, indicating that there was no problem with

weak instrumental variables. The coefficient and significance did

not change significantly after considering endogeneity, showing

that the effect of the digital economy on ecological performance

was still robust.

6 Discussion

Obviously, the results we obtained are very similar to many

related studies, again all proving that the digital economy (or

ICT, Internet, etc.) is an environmentally friendly economy (Ren

et al. (2021); Wang et al., 2022) (Gollop and Roberts, 1983; Zhou

et al., 2020; Wang et al., 2022a). However, our results also differ

in some interesting ways from some related studies, most notably

from the EKC curve, which suggests that economic development

and environmental pollution should follow an “inverted

U-shape.” Therefore, further discussion of this study is

needed. In this study, ecological performance is not the same

as environmental pollution or resource consumption. It

combines considerations of both. As the calculation process of

the Super-SBM model is a black box, it is not possible to specify

the reasons for the changes in the ecological performance index.

It is clear from the SBM data that all expected outputs gradually

TABLE 8 Regression results of the lag effect.

Variable (1) W1 (2) W2 (3) W3

lndet-1 0.385*** (0.116) 0.346*** (0.111) 0.362*** (0.118)

W × lndet-1 0.282*** (0.092) 0.149*** (0.042) 0.190* (0.101)

Year YES YES YES

Province YES YES YES

N 180 180 180

R2 0.4999 0.5304 0.5112

Note: Standard error in parentheses. * denotes significance at 10%, ** denotes

significance at 5%, and *** denotes significance at 1%, similarly, hereinafter.
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increase. In this case, if resource consumption decreases while

environmental pollution increases, it is clear that ecological

performance decreases. However, if resource consumption and

environmental pollution are reduced at the same time, changes in

ecological performance will be determined by production

technology factors, and the digital economy is a new type of

factor in this category. The different relationships between

ecological performance and economic development derived

from this study are therefore justified because ecological

performance and environmental pollution are measured in

different ways.

Indeed, the measurement of the digital economy is likewise a

possible limitation in the study. As it is a novel concept, much of

the data were missing until 2013. We are unable to judge the

impact of the digital economy on ecological performance prior to

2013. In addition, although we divided the different samples in

our heterogeneity test, we came to different conclusions.

However, it is important to note that these regions are in

reality fully bordered, meaning that the spillover benefits of

the digital economy in the east also affect the central region.

Therefore, we may be overestimating the positive effect of the

digital economy on ecological performance in developing

regions.

7 Conclusion and policy
recommendations

7.1 Conclusion

In this study, we measured the level of the digital economy

and the level of ecological performance in 30 Chinese provinces.

We found that, overall, China’s eastern regions have higher levels

of digital economy development, which is in line with the true

picture of China’s economic development. Unlike the digital

economy, the level of ecological performance increased more in

the southern regions of China over the period from 2013 to 2019.

In 2019, ecological performance was high in the southern regions

and low in the northern regions. Furthermore, we analyzed the

impact of the digital economy on ecological performance. We

found that the digital economy has a positive effect on ecological

performance overall and has a strong spatial externality. This

finding holds for changing the geographical weight matrix, which

indicates that the results are generalizable. Dynamically, the

positive effect of the digital economy on ecological

performance has a lag, suggesting that the digital economy

has certain inertia of influence on ecological performance. By

region, this result is better in the eastern region (higher regression

coefficient). In contrast, it is relatively weaker in the central and

western regions.

The aforementioned results suggest that the digital economy

played an important role in improving energy efficiency and

reducing pollution during the period 2013–2019. With the rapid

flow of data elements, a strong network effect can be created, thus

contributing to the improvement of the ecological performance

of the surrounding areas. The higher level of development of the

digital economy in the eastern region has a more significant

TABLE 9 Regression results of the lag effect.

Variable Eastern region Central and western region

(1) W1 (2) W2 (3) W3 (1) W1 (2) W2 (3) W3

lnde 0.423*** (0.101) 0.405** (0.178) 0.329*** (0.089) 0.271* (0.153) 0.289* (0.161) 0.339** (0.137)

W × lnde 0.312*** (0.070) 0.903*** (0.272) 0.296** (0.123) 0.189* (0.101) 0.216 (0.150) 0.406* (0.213)

Control YES YES YES YES YES YES

Year YES YES YES YES YES YES

Province YES YES YES YES YES YES

N 70 70 70 140 140 140

R2 0.5407 0.5173 0.4998 0.4261 0.4017 0.4322

Note: Standard error in parentheses. * denotes significance at 10%, ** denotes significance at 5%, and *** denotes significance at 1%, similarly, hereinafter.

TABLE 10 2SLS test results.

Variable Phase 1 Phase 2

lnde 0.310*** (0.076)

lnpt 0.360*** (0.047)

Control YES YES

Year YES YES

Province YES YES

LM statistic 50.773 (0.000)

Wald F statistic 194.935 [16.38]

N 210 210

R2 0.5109 0.4261

Note: Standard error in parentheses. * denotes significance at 10%, ** denotes

significance at 5%, and *** denotes significance at 1%, similarly, hereinafter.
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impact on ecological performance. This provides strong

empirical evidence for the potential of the digital economy in

the central and western regions. In other words, when the digital

economy in the western region rises to a certain level, the

improvement in ecological performance will also be more

pronounced.

7.2 Policy recommendations

From the aforementioned results and analysis, we offer the

following policy recommendations: 1) for regions with a more

developed digital economy, the digitization process needs to be

realized as soon as possible to transform the traditional economic

model into a new digital economic model. Specifically, the

government should focus on the role that e-commerce,

especially cross-border e-commerce, plays in trade. Subsidies

should be provided to relevant enterprises according to existing

policies to reduce the pressure on their development. At the same

time, the government needs to breakdown some rigid policies to

provide a better trade environment for enterprises. In addition, the

government can facilitate the digital transformation of enterprises

through different standards of environmental regulation. For

companies involved in the data and information industry, the

standards are relaxed. For some traditional enterprises, the

standards are maintained intact or can even be raised. This can

be a good way to exploit the positive effects of the digital economy

on the ecological environment and thus improve the

environmental quality of the region (Abbass et al., 2022). 2)

However, for some regions where the development of the

digital economy is relatively weak, it is necessary to balance the

relationship between digital transformation and economic

production. Until a certain level of economic production is

reached, the marginal benefits of digitalization on ecological

performance are not high; therefore, a large number of factors

of production should not be invested in the digital transformation

process. Local governments need to make judgments in this

decision-making process in the context of the actual situation.

This is because the energy consumption resulting from the digital

economy can easily cause ecological pressure overload. Therefore,

prior to a full digital transformation, pilot developments can be

carried out in regions with a relatively good economic base. For

these regions, the most direct way is to directly import mature

enterprises and technologies from developed eastern regions

(Shakib et al., 2022). 3) The last point is that the digital

economy has strong spatial externalities, which suggests that

the development of the digital economy in developed regions

can have a driving effect on neighboring regions. Considering the

extremely low cost of data factors, some economic collaboration

between different regions can be achieved through the digital

economy, thus effectively reducing the cost of building a digital

economy in less developed regions. In addition, governments in all

regions should be aware of the spillover effects of pollution. When

faced with some pollution that may cause spillover, joint efforts

should be made to combat it as much as possible. In the process of

gradually narrowing the regional digital economy gap, it is also

important to prevent harm to the ecological environment of the

surrounding areas (Murshed et al., 2022).
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