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There is increasing evidence that European Union allowance (EUA) futures

return distributions exhibit features of time-varying higher moments (skewness

and kurtosis), which plays an important role in modeling and forecasting EUA

futures volatility. Moreover, a number of studies have shown that time-varying

risk aversion (RA) contains useful information for forecasting EUA futures

volatility. In light of this, this paper proposes the GARCH-MIDAS with

skewness and kurtosis (hereafter GARCH-MIDAS-SK) to empirically

investigate the impact and predictive role of RA on EUA futures volatility.

Our empirical results show that RA has a significantly negative impact on the

long-term volatility of EUA futures. The EUA futures return distributions exhibit

obvious features of time-varying higher moments. Incorporating RA and time-

varying higher moments improves the in-sample fitting of the model.

Furthermore, out-of-sample results suggest that incorporating RA and time-

varying higher moments leads to significantly more accurate volatility forecasts.

This finding is robust to alternative out-of-sample forecasting windows.
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1 Introduction

Carbon derivatives have been traded since European Union Emissions Trading

Scheme (EU ETS) was launched in 2005. European Union allowance (EUA) futures

trading is the main component of EU ETS among the carbon derivatives. EUA futures not

only provide more effective risk management tools for enterprises to control emissions,

but also provide investors with opportunities to participate in specific arbitrage activities.

What’s more, EUA futures transaction is a kind of activity or trading process (Table 1),

and the EUA futures trading has the functions of hedging, preventing excessive market

fluctuations, saving circulation costs and promoting fair competition. Moreover, the EUA

futures contract specs are as follow, including contract unit, exchange, settlement method,
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etc. In fact, EUA futures trading can not only provide investors

with investment opportunities, but also provide effective tools for

enterprise risk management.

However, due to the short implementation time of carbon

trading system, the risk aversion mechanism is relatively scarce.

In order to effectively capture the futures market risk, this paper

plans to model and predict the volatility of EUA futures, so as to

optimize the market risk management mechanism. In addition,

when carbon emissions continue to increase, the climate often

changes, leading to the continuous adjustment of subsequent

policies. At this time, investors will pay more attention to the

price fluctuation of carbon futures. Therefore, the price

fluctuation of EUA futures in global climate is of great

significance to market participants and political decision makers.

Byun and Cho (2013) find that the EUA futures price volatility

will be affected by climate change and the adjustment of policy

uncertainty. In fact, climate change and policy adjustments will

exacerbate the volatility of carbon futures prices. First, from the

perspective of demand, when the climate changes, residents’

demand for carbon products will increase. The increased

consumption demand of carbon products will promote the

production increase of enterprises, and the sales volume of

carbon emission products will increase until the carbon emission

reaches the upper limit, so as to speed up the development of the

carbon market (Bertini et al., 2020). Secondly, from the perspective

of supply, when the climate changes extremely, rawmaterials cannot

be supplied in time, which leads to the rise of carbon emission costs.

In order to reduce the cost of purchasing raw materials, enterprises

will reduce carbon emissions. Finally, from the perspective of society,

when climate change, supply and demand will be unbalanced, and

the government will maintain the balance of carbon prices for

society (van et al., 2019).

Moreover, in recent years, due to the uncertain changes of

economic policies and the continuous emergence of the black swan

event, various uncertain factors have been brought to the enterprises

and decision makers among the actual traders. In this case,

enterprises and decision makers tend to hold a conservative

attitude and show risk aversion, which affects the price

fluctuation of EUA futures (Chevallier, 2009, 2011; Zhu and

Chevallier, 2017). In order to further explore the fluctuation of

EUA futures, it is vital to accurately model and forecast the volatility

of EUA futures.

In the past decades, many volatility methods have been

proposed to model and forecast carbon price. Ren et al. (2022a)

find the following conclusions after many studies. First, the yield of

carbon futures will be affected by the Brent spot price, the closing

price of United Kingdom crude oil and the growth of

United Kingdom natural gas production under extreme

conditions. Then, both Bitcoin and gold perform as weak hedges

for oil portfolios. Final, the effects of the carbon futures in the

medium to long term is positive and in the short term is instable.

Wen et al. (2022) study the impulse response of gold, Bitcoin, oil and

stock markets before and after the COVID-19, the results show that

gold is a safe haven for oil and stock markets during the COVID-19

pandemic. What’s more, due to the simple structure and easy

implementation, the generalized autoregressive conditional

heteroscedasticity (GARCH) model proposed by Bollerslev (1986)

becomes themost popular volatility model. As a consequence, many

authors apply the GARCH model to predict EUA futures volatility,

see, e.g., Byun and Cho (2013), Zeitlberger and Brauneis (2016),

Wang et al. (2019), Naik et al. (2020), Huang et al. (2021). Later,

some scholars expand GARCH model and construct TGARCH,

GJR-GARCH, ARMAX-GARCH, STR-GARCH models to predict

the volatility of carbon futures price (Arouri et al., 2012; Byun and

Cho, 2013; Rannou and Barneto, 2016; Sheng et al., 2021). Despite

the empirical success of GARCH-type models, they still only use the

daily return information for forecasting EUA futures volatility,

which ignores other information such as investor sentiment.

Actually, investor sentiment has broadly researched in financial

markets like stock markets (Wen et al., 2019), FX markets (Han

et al., 2018), commodity markets (Kou et al., 2018) and exchange

rate markets (Perez-Liston et al., 2018) and has proved to be an

influential pricing factor in these markets. Later, some authors study

the impact of investor sentiment on the volatility of EUA futures.

Benz et al. (2021) show that different types of investors have different

preference for carbon intensive investments. Zhang et al. (2021)

show that investor sentiment contains excellent explanatory

information for forecasting carbon price. In general, the existing

research shows that companies and investors will largely affect price

fluctuations. On the one hand, investors are negatively correlated

with carbon emissions (Riedl and Smeets, 2017; Benz et al., 2020;

Bolton and Kacperczyk, 2021). On the other hand, investors are

closely related to the company’s carbon risk management (Dyck

et al., 2019). Since investor sentiment is closely related to risk

appetite (Bams et al., 2017), it is reasonable to conjecture that

risk aversion will have an important impact on the volatility of

EUA futures. However, as far as we know, few studies have

investigated the impact of risk aversion on the volatility of EUA

futures. The main reason may be the lack of effective measurement

of risk aversion.

Recently, Bekaert et al. (2022), under the dynamic non arbitrage

asset pricingmodel, propose a time-varying risk aversion (RA) index

based on six financial instruments, including the term spread, credit

spread, a detrended earnings yields, realized and risk-neutral equity

return variances, and the realized corporate bond return variances.

Several studies have shown that the RA index contains information

useful for predicting financial volatility. For example, Demirer et al.

(2019) adopt the heterogeneous autoregressive realized volatility

(HAR-RV) model to study the impact of RA index on the gold

market volatility, and find that incorporating RA index can

significantly improve forecasting accuracy for gold volatility. Dai

andChang (2021) use the linear regressionmethod to investigate the

predictive value of RA index over the volatility of the United States

stock market. They find that RA index has a significant impact on

the volatility of the United States stock market and can improve

the prediction of out-of-sample volatility. However, there are
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few studies on studying the relation between time-varying risk

aversion and EUA futures volatility. At the same time,

whether time-varying risk aversion can predict EUA

futures volatility has not been explored. In light of this,

this paper studies the relation between time-varying risk

aversion and EUA futures volatility, and explores the

predictive value of time-varying risk aversion for the EUA

futures volatility.

The standard GARCH model can not incorporate exogenous

explanatory variables to describe the dynamics of energy volatility,

and thus it can not adequately capture and predict the EUA futures

volatility. Moreover, the frequency of exogenous explanatory

variables are usually inconsistent with that of financial market

data. To address the issue of mixed-frequency data, Ghysels et al.

(2007) first introduce the mixed data sampling (MIDAS) model.

Further, Engle et al. (2013) incorporate the MIDASmethod into the

GARCH model and propose the GARCH-MIDAS model. The

most prominent feature of the GARCH-MIDAS model is that

it decomposes the volatility into a short-term and a long-

term components, where the short-term component follows

the standard GARCH(1,1) process, while the long-term

component is modeled by the MIDAS method with low-

frequency variables.

Zhao et al. (2018) propose combination-MIDAS models to

predict the weekly EUA futures price, the empirical results show

that the combination-MIDAS models provide accurate forecasting

performance and the coal contains more accurate information for

EUA futures forecasting. Liu et al. (2021) use the GARCH-MIDAS

model with economic policy uncertainty (EPU) to forecast the EUA

futures volatility, and find that the GARCH-MIDAS model exhibit

superior out-of-sample predictive ability. Dai et al. (2022) construct

the GARCH-MIDAS-EUEPU and GARCH-MIDAS-GEPU models

for investigating the impact of European and global economic policy

uncertainty on the EUA futures volatility, they find that both

European and global economic policy uncertainty will

exacerbate the EUA futures return. Wu et al. (2022)

forecast the EUA futures volatility using EGARCH-MIDAS

model, and show that the EUA futures volatility exhibits a

leverage effect and the proposed EGARCH-MIDAS model

outperforms the traditional competing models. Guo et al.

(2022) propose the GARCH-MIDAS-JUMP and GARCH-

MIDAS-JUMP-LJ models for forecasting volatility of EUA

futures, they find that both long-term and short-term

asymmetries, extreme observations, and jump information

have substantially effect on the EUA volatility.

Although GARCH-MIDAS model has achieved success in

experience, it still has some shortcomings. For example, it still

unable to capture the characteristics of time-varying higher

moments (skewness and kurtosis) in the conditional distribution

of financial returns. A large number of studies have shown that the

return of EUA futures presents a skewed and heavy tailed

distribution. Moreover, the skewness and kurtosis of EUA futures

return change over time. That is, the distribution of EUA futures

return presents the characteristics of time-varying higher moments

(see, e.g., Amaya et al., 2015; De Luca and Loperfido, 2015; Fry-

McKibbin and Hsiao, 2018; Yun et al., 2020). Recently, studies on

EUA futures volatility modelling and forecasting emphasizes the

importance of skewness and kurtosis. For example, Da Fonseca and

Xu (2017) analyze the predictability of crude oil market excess

returns by decomposed variance and skew risk premiums, and they

find that the decomposed high moment risk premiums contain

muchmore predictive information. Ioannidis et al. (2021) propose a

periodic GARCH-M model with conditional skewness and kurtosis

components, and apply it for electricity price data, the empirical

results show that seasonality affects the time varyingmoments of the

distribution. Zhang et al. (2022) investigate the asymmetric relations

between returns and changes in implied moments (i.e., volatility,

skewness, and kurtosis) in the crude oil market, the results show that

preference higher moments theory and prospect theory provide

relevant explanations of the contemporaneous return higher

moments relation, and the return higher moments relation is

asymmetric. Bouri et al. (2021) find that considering the spillover

effect of higher moments and jumps has an impact on portfolio and

risk management in many markets (such as United States stock,

crude oil and gold markets). In addition, Mensi et al. (2022)

represent to understand the asymmetric connectedness, spillovers

in realized volatility as well as higher moments (realized skewness,

kurtosis, etc. of the asset prices) between six popular currencies and

crude oil markets, they find that these markets are strongly

interconnected and the vast majority of the spillover of realized

skewness in the seven currencies assets originate within their own

markets. In fact, most of the current studies on EUA futures

volatility do not consider the time-varying higher moments

characteristics of EUA futures return distribution.

Motivated by the above insights, this paper extends the

GARCH-MIDAS model to the GARCH-MIDAS with

skewness and kurtosis (hereafter GARCH-MIDAS-SK model).

The GARCH-MIDAS-SK model has the capacity to

accommodate time-varying higher moments of financial

return distribution. We apply the GARCH-MIDAS-SK model

to monthly RA index and daily EUA futures data. The empirical

results show that the GARCH-MIDAS-SK-RA model

outperforms a variety of competing models, including the

GARCH, GARCH-MIDAS, GARCH-MIDAS-RA and

GARCH-MIDAS-SK models, in terms of out-of-sample EUA

futures volatility forecasting for forecasting horizons of 1 day up

to 22 days (1 month). Moreover, robustness analysis based on

alternative out-of-sample forecasting windows confirms the

superior predictive power of the GARCH-MIDAS-SK-RA

model. The findings highlight the value of incorporating time-

varying higher moments and RA for forecasting EUA futures

volatility.

To sum up, this paper has the following innovation and

contribution: First, the GARCH-MIDAS-SK framework that

incorporates time-varying higher moments is proposed.

Second, the relation between RA and the EUA futures
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volatility is investigated. Third, RA has a significantly negative

impact on EUA futures volatility. Fourth, the EUA futures return

distributions exhibit obvious features of time-varying higher

moments. Fifth, both RA and time-varying higher moments

capture predictive information over EUA futures volatility.

The remainder of the paper is organized as follows. In

Section 2, we introduce the GARCH-MIDAS-SK model. In

Section 3, we describe the method for evaluating volatility

forecast accuracy. Section 4 presents the empirical results,

while Section 5 concludes.

2 The model

2.1 GARCH mdoel

Bollerslev (1986) proposes the popular GARCH model to

describe the dynamics of financial asset returns. The standard

GARCH model is given by

rt � μ + at (1)

at � σtεt (2)
σ2t � m + αa2t−1 + βσ2

t−1 (3)
εt|Φt−1 ~ i.i.d.N 0, 1( ) (4)

where rt is the log return, μ is the conditional mean of the return,

σ2t is the conditional variance of the return, and Φt is the

information set up to day t. In order to ensure the positivity

and stationarity of the volatility process σ2t , we impose the

assumption that α > 0, β > 0 and α + β < 1.

2.2 GARCH-MIDAS model

The GARCH model only uses historical return information

to model and forecast volatility, and ignores macroeconomic

information. Generally, the sampling frequency of

macroeconomic variables are different from the daily return

(lower). The GARCH model cannot combine data sampled at

different frequencies. To overcome this problem, Engle et al.

(2013) propose the GARCH-MIDAS model, which can easily

introduce macroeconomic variables (data sampled at a frequency

different from the daily rate of return). The GARCH-MIDAS

model is as follows

ri,t � μ + σ i,tεi,t (5)
σ2i,t� τt × gi,t (6)
εi,t|Φi−1,t~ i.i.d.N 0, 1( ) (7)

where ri,t is the log return on day i in period t (month).

It can be seen from Eq. 6 that conditional variance σ2i,t is

decomposed into two components, namely the short-term

component gi,t and the long-term component τt. The short-

term component gi,t is assumed to follow a daily GARCH(1,1)

process

gi,t � 1 − α − β( ) + α
ri−1,t − μ( )2

τt
+ βgi−1,t (8)

where α + β < 1, which ensures the stationarity of short-term

component gi,t.

The long-term component τt is specified by smoothing

realized volatility (RV) using the MIDAS regression approach

log τt( ) � m + θ1 ∑K
k�1

φk ω( )log RVt−k( ) (9)

where K is the number of MIDAS lags, φk (·) is a non-negative

weighting function and RVt is the monthly RV, which is

defined as

RVt � ∑Nt

i�1
r2i,t (10)

where Nt is the number of trading days in month t. Following

Engle et al. (2013), Asgharian et al. (2016), Yu et al. (2018) and Li

FIGURE 1
Time series plots of daily EUA futures returns and monthly RA
index.

TABLE 1 EUA futures contract

Contract elements Contents

contract unit EUR/ton

exchange Intercontinental Exchange (ICE)

settlement method hedging closing, physical delivery and cash settlement

trading mechanism European Emission Trading Scheme (EU ETS)

trading system cap-and-trade

contract specifications 1 unit of EUA is equal to one ton of CO2 equivalent
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et al. (2020), we choose single-parameter Beta polynomial for the

weighting function φk (·), which is given by

φk ω( ) � 1 − k/K( )ω−1
∑K
j�1

1 − j/K( )ω−1 (11)

2.3 GARCH-MIDAS-SK model

It has been well documented in the literature that the

distribution of financial returns usually shows the

characteristics of time-varying higher moments (skewness and

kurtosis) (see, e.g., Johnson, 2002; Carr and Wu, 2007; Bakshi

et al., 2008). In order to capture this empirical feature of the

financial returns data, we extend the GARCH-MIDAS model to

incorporate time-varying skewness and kurtosis and propose the

GARCH-MIDAS-SK model. To be specific, we assume that the

return innovation εi,t follows the Gram-Charlier distribution

with zero mean, unit variance, time-varying skewness si,t and

kurtosis ki,t, that is, εi,t ~ GC(0, 1, si,t, ki,t). The probability

density function for the return innovation εi,t is given by

f εi,t( ) � ϕ εi,t( )ψ2 εi,t( )
Γi,t

(12)

where ϕ(εi,t) denotes the standard normal density function,

ψ(εi,t) and Γi,t are defined as

ψ εi,t( ) � 1 + si,t
3!

ε3i,t − 3εi,t( ) + ki,t − 3
4!

ε4i,t − 6ε2i,t + 3( ) (13)

Γi,t � 1 + s2i,t
3!

+ ki,t − 3( )2
4!

(14)

We assume that the skewness si,t and kurtosis ki,t follow a

GARCH (1,1) process, which conditionally depend on the

historical return innovation εi−1,t. Therefore, the GARCH-

MIDAS-SK model is given as follows

ri,t � μ + σ i,tεi,t (15)

σ2i,t � τt × gi,t (16)

εi,t Φi−1,t
∣∣∣∣ ~ i.i.d.GC 0, 1, si,t, ki,t( ) (17)

gi,t � 1 − α − β( ) + α
ri−1,t − μ( )2

τt
+ βgi−1,t (18)

log τt( ) � m + θ1 ∑K
k�1

φk ω( )log RVt−k( ) (19)

si,t � γ0 + γ1si,t−1 + γ2εi,t−1 (20)
ki,t � δ0 + δ1ki,t−1 + δ2 εi,t−1

∣∣∣∣ ∣∣∣∣ (21)

φk ω( ) � 1 − k/K( )ω−1
∑K
j�1

1 − j/K( )ω−1 (22)

It is clear that the GARCH-MIDAS-SK model is a general

and flexible model. In fact, it includes the GARCH-MIDAS

model with the Gaussian innovation as a special case when

si,t = 0 (γ0 = γ1 = γ2 = 0) and ki,t = 3 (δ0 = 3, δ1 = δ2 = 0).

2.4 Incorporating RA

The GARCH-MIDAS-SK model is flexible and can be

easily extended to incorporate RA. This can be done by

incorporating RA into the long-term component process

log τt( ) � m + θ1 ∑K
k�1

φk ω1( )log RVt−k( ) + θ2 ∑K
k�1

φk ω2( )log RAt−k( )

(23)
Equation 23 emphasizes the importance of RA in modelling

the long-term volatility. We refer to the extended model as the

GARCH-MIDAS-SK-RA model.

2.5 The maximum likelihood estimation

The parameters of the GARCH-MIDAS-SK model can be

easily estimated by employing the classical maximum likelihood

method. Specifically, the log likelihood function of the model can

be written as

ℓ (r;Θ) � −1
2
∑T
t�1

∑Nt

i�1
log 2π( ) + log σ2i,t( ) + ε2i,t[

−2 log ψ2 εi,t( ) + 2 log Γi,t]
(24)

where εi,t � (ri,t − μ)/σ i,t, and Θ is the model parameter vector.

Then, the maximum likelihood estimates of the model parameters

can be obtained by maximizing the log likelihood in Eq. 24

Θ̂ � argmax
Θ

ℓ r;Θ( ) (25)

TABLE 2 Descriptive statistics.

Obs Mean Min Max Std Skewness Kurtosis Jarque-bera

ri,t 3,605 0.0003 −0.4347 0.2405 0.0314 −0.7908 17.9608 33996.0436

RAt 168 3.1603 2.4954 8.0302 0.9086 3.2366 14.6302 1240.1478

Frontiers in Environmental Science frontiersin.org05

Wu et al. 10.3389/fenvs.2022.973438

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.973438


3 Evaluation of volatility forecasts

3.1 k-day-ahead forecast

On day i in month t, the k-day-ahead forecast λi+k,t|i based on

the GARCH-MIDAS-SK model can be obtained as

σ2i+k,t|i ≡ E σ2i+k,t F i,t

∣∣∣∣[ ] � τtgi+k,t i| (26)
where

gi+k,t i| ≡ E gi+k,t F i,t

∣∣∣∣[ ] � 1 + α + β( )k−1 gi+1,t − 1( ) (27)

It is worth pointing out here that the prediction of long-term

component τt based on information set F i,t is consistent with

Conrad and Kleen (2020) and Dominicy and Elst (2015), who

treat the long-term component τt as a constant for all

horizons.

3.2 Loss functions

Since the true volatility is unobservable, a proxy for the true

volatility needs to be choosed when evaluating and comparing

the volatility forecasting models. In the paper, the squared return

(r2i,t) is used as the proxy of the true volatility, which is given as

follows

r2i,t � log pi,t − log pi,t−1( )2 (28)

where pi,t is the EUA futures price on day i in month t.

TABLE 3 Parameter estimation results.

Parameter GARCH GARCH- GARCH- GARCH- GARCH-

MIDAS MIDAS-RA MIDAS-SK MIDAS-SK-RA

Μ 0.0010 0.0010 0.0010 0.0010 0.0010

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

M 0.0000 −4.4090 −3.6292 −4.4620 −4.0440

(0.0000) (0.1040) (0.0836) (0.1076) (0.1178)

θ1 0.5939 0.5512 0.6227 0.6191

(0.0199) (0.0232) (0.0207) (0.0222)

θ2 −0.8522 −0.3613

(0.0215) (0.0266)

ω1 12.3867 13.0271 18.1479 17.6095

(0.2809) (0.3804) (0.4543) (0.4456)

ω2 1.3297 6.9732

(0.0485) (0.2698)

A 0.1287 0.1505 0.1513 0.1374 0.1419

(0.0065) (0.0087) (0.0085) (0.0103) (0.0103)

B 0.8643 0.7917 0.7909 0.7911 0.7903

(0.0067) (0.0128) (0.0116) (0.0165) (0.0164)

γ0 −0.0091 −0.0157

(0.0098) (0.0156)

γ1 0.5696 0.2455

(0.0616) (0.0777)

γ2 0.0711 0.0755

(0.0158) (0.0174)

δ0 1.8353 3.3370

(0.0581) (0.1033)

δ1 0.4632 0.0552

(0.0181) (0.0254)

δ2 0.0442 −0.0641

(0.0282) (0.0221)

Log-lik 7920.2084 7928.7227 7931.1384 8041.7156 8059.1806

AIC −15832.4167 −15845.4453 −15846.2767 −16059.4312 −16070.3611

Note: Log-lik denotes log-likelihood value, AIC, denotes Akaike information criterion. The number in parenthesis is the standard error of maximum likelihood estimate.

The bold numbers denote the minimum values in each row in the table.
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In the paper, five loss functions, including themean square error

(MSE), mean absolute error (MAE), heteroscedasticity adjusted

MSE (HMSE), heteroscedasticity adjusted MAE (HMAE) and

quasi-likelihood (QLIKE), are employed to evaluate the accuracy

of volatility forecasts. Among them, the MSE and QLIKE are robust

loss functions (Patton, 2011). The five evaluation criteria are

defined as

MSE � 1
L
∑L
i�1

σ2i+k,t − σ̂2i+k,t m( )( )2 (29)

MAE � 1
L
∑L
i�1

σ2i+k,t − σ̂2i+k,t m( )∣∣∣∣ ∣∣∣∣ (30)

HMSE � 1
L
∑L
i�1

1 − σ̂2i+k,t m( )
σ2i+k,t

( )2

(31)

HMAE � 1
L
∑L
i�1

1 − σ̂2i+k,t m( )
σ2i+k,t

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (32)

QLIKE � 1
L
∑L
i�1

σ2i+k,t
σ̂2i+k,t m( ) − log

σ2i+k,t
σ̂2i+k,t m( )( ) − 1( ) (33)

where L is the number of out-of-sample volatility forecasts, σ2i+k,t
is the true volatility, and σ̂2i+k,t(m) is the forecasted volatility

based on model m, and m stands for model GARCH, GARCH-

MIDAS, GARCH-MIDAS-RA, GARCH-MIDAS-SK or

GARCH-MIDAS-SK-RA.

3.3 MCS test

Further, themodel confidence set (MCS) test proposed byHansen

et al. (2011) is employed to examinewhether the differences in forecast

accuracy among competing models are significant. To be specific, the

MCS procedure relies on an equivalence test δM and an elimination

rule eM. Let M0 be the initial set of all competing models, and set

M � M0. The equivalence test δM aims to test the null hypothesis

that the competing models have the equal forecasting ability:

H0,M : E duv,i,t[ ] � 0,∀u, v ∈ M (34)

where duv,i,t is the loss difference between model u and v. Hansen

et al. (2011) propose the followingMCS t-statistics to test the null

hypothesis H0,M:

TM � max
u,v∈M

tuv| |, tuv �
�duv�������

var �duv( )√ (35)

where �duv is the average loss difference, and var(�duv) is the

bootstrapped estimate of the variance of �duv. For a given

significance level α, if the null hypothesis H0,M is accepted,

then define Mp
1−α � M. Otherwise, the elimination rule eM �

arg maxu∈Msupv∈Mtuv is employed to eliminate from the set M
a model with poor forecast performance. This procedure is

repeated until no model can be eliminated. The final set of

surviving (best-performing) models is referred to as the MCS

Mp
1−α � M. Since the asymptotic distribution of the test

FIGURE 2
Long-term component of EUA futures volatility.

FIGURE 3
Time-varying skewness and kurtosis of EUA futures return.
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statistic TM is non-standard, this paper uses a block bootstrap

of 100,000 replications for approximate calculation. In the

MCS test, the significance level is set as α = 10%.

3.4 DM test

The size of the loss function can be used as a standard to

measure the prediction ability of the model, but it is impossible to

determine whether the result is statistically significant. To solve this

problem, Diebold and Mariano (1995) proposed DM statistics,

which is suitable for the comparison between the two models.

Specifically, first assume that the true value is {yt}, the predicted

values of the two models are ŷit, i = 1, 2, and the prediction error of

the two models is.

The loss function is a function of the prediction error,

expressed as g(εit), i � 1, 2{ }
Lossi,t � g yt, ŷit( ) � g εit( ), i � 1, 2 (36)

where, Lossi,t represents the loss function of Volatility Prediction

of the ith model.

If the original assumption is that the two models have the same

prediction ability, then the unconditional expectation of the loss

function of the predicted values of the two models is 0, that is

E dt( ) � E Loss1t − Loss2t( ) � 0 (37)

TABLE 4 Out-of-sample forecasting results.

GARCH GARCH- GARCH- GARCH- GARCH-

MIDAS MIDAS-RA MIDAS-SK MIDAS-SK-RA

Forecasting horizon 1-day-ahead

MSE 8.5767e-04 8.4399e-04 8.4131e-04 8.1990e-04 8.1904e-04

MAE 2.7744e-02 2.7670e-02 2.7630e-02 2.7208e-02 2.7204e-02

HMSE 9.4740e-01 9.4731e-01 9.4720e-01 9.4649e-01 9.4635e-01

HMAE 9.7186e-01 9.7182e-01 9.7173e-01 9.7133e-01 9.7123e-01

QLIKE −3.5691 −3.5712 −3.5702 −3.5866 −3.5873

Forecasting horizon 5-days-ahead

MSE 9.0150e-04 8.7980e-04 8.7706e-04 8.3978e-04 8.3926e-04

MAE 2.8608e-02 2.8588e-02 2.8530e-02 2.7770e-02 2.7754e-02

HMSE 9.4938e-01 9.4901e-01 9.4923e-01 9.4792e-01 9.4783e-01

HMAE 9.7287e-01 9.7268e-01 9.7278e-01 9.7207e-01 9.7199e-01

QLIKE −3.5278 −3.5363 −3.5299 −3.5596 −3.5608

Forecasting horizon 10-days-ahead

MSE 9.4182e-04 9.0728e-04 9.0494e-04 8.5248e-04 8.4984e-04

MAE 2.9479e-02 2.9371e-02 2.9313e-02 2.8235e-02 2.8221e-02

HMSE 9.4968e-01 9.4915e-01 9.4947e-01 9.4765e-01 9.4747e-01

HMAE 9.7280e-01 9.7253e-01 9.7270e-01 9.7167e-01 9.7156e-01

QLIKE −3.4917 −3.4995 −3.4938 −3.5341 −3.5358

Forecasting horizon 22-days-ahead

MSE 1.0660e-03 9.7962e-04 9.8063e-04 9.0402e-04 8.9434e-04

MAE 3.1683e-02 3.0893e-02 3.0889e-02 2.9398e-02 2.9330e-02

HMSE 9.5194e-01 9.5173e-01 9.5161e-01 9.4917e-01 9.4901e-01

HMAE 9.7372e-01 9.7359e-01 9.7348e-01 9.7215e-01 9.7201e-01

QLIKE −3.4216 −3.4336 −3.4340 −3.4871 −3.4873

Note: MSE, MAE, HMSE, HMAE, and QLIKE, denote mean square error, mean absolute error, heteroscedasticity-adjusted mean square error, heteroscedasticity-adjusted mean absolute

error and quasi-likelihood, respectively.

The bold numbers denote the minimum values in each row in the table.
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where, dt = Loss1t − Loss2t represents the loss difference between

models 1 and 2. Then, the corresponding alternative assumption: the

prediction ability of model 1 is worse than that of model 2, that is

E(dt)> 0. Or the prediction ability of model 1 is better than that of

model 2, that is E(dt)< 0. DM statistics are constructed in the

following ways ��
T

√
�d − u( )→d N 0, 2πfd 0( )( ) (38)

�d � 1
T
∑T
t�1

dt, fd 0( ) � 1
2π

∑+∞
t�−∞

rd τ( ) (39)

rd τ( ) � E dt − u( ) dt−τ − u( )[ ], u � E dt[ ] (40)

where, �d is the average value of loss difference, fd(0) is the

spectral density when the frequency of loss difference is 0, and u

is the average value of loss difference, rd(τ) is the autocorrelation
of the τth order samples of dt. Construct test statistics

DM �
�d�����

2πf̂ d 0( )
T

√ ~ N 0, 1( ) (41)

where, f̂d(0) is a consistent estimate of fd(0). When the original

assumption is true, DM statistics approximately obey the

standard normal distribution. In this paper, the five most

TABLE 5 MCS test results.

GARCH GARCH- GARCH- GARCH- GARCH-

MIDAS MIDAS-RA MIDAS-SK MIDAS-SK-RA

Forecasting horizon 1-day-ahead

MSE 0.0000 0.0000 0.0000 0.6977 1.0000

MAE 0.0000 0.0000 0.0000 0.9046 1.0000

HMSE 0.0000 0.0000 0.0000 0.1009 1.0000

HMAE 0.0000 0.0000 0.0000 0.0783 1.0000

QLIKE 0.0000 0.0000 0.0000 0.4748 1.0000

Forecasting horizon 5-days-ahead

MSE 0.0000 0.0000 0.0000 0.8241 1.0000

MAE 0.0000 0.0000 0.0000 0.6406 1.0000

HMSE 0.0000 0.0000 0.0000 0.5426 1.0000

HMAE 0.0000 0.0000 0.0000 0.5668 1.0000

QLIKE 0.0000 0.0000 0.0000 0.3316 1.0000

Forecasting horizon 10-days-ahead

MSE 0.0000 0.0000 0.0000 0.3428 1.0000

MAE 0.0000 0.0000 0.0000 0.7518 1.0000

HMSE 0.0000 0.0000 0.0000 0.3785 1.0000

HMAE 0.0000 0.0000 0.0000 0.5415 1.0000

QLIKE 0.0000 0.0000 0.0000 0.2448 1.0000

Forecasting horizon 22-days-ahead

MSE 0.0000 0.0000 0.0000 0.0260 1.0000

MAE 0.0000 0.0000 0.0000 0.2923 1.0000

HMSE 0.0000 0.0000 0.0000 0.3564 1.0000

HMAE 0.0000 0.0000 0.0000 0.3256 1.0000

QLIKE 0.0000 0.0000 0.0000 0.9241 1.0000

Note: The number in the table is the MCS p, value. If the p value is greater than 0.1 (bold number), it suggests that the model is included in the MCS, that is, the model with good predictive

ability; MSE, MAE, HMSE, HMAE, and QLIKE, denote mean square error, mean absolute error, heteroscedasticity-adjusted mean square error, heteroscedasticity-adjusted mean absolute

error and quasi-likelihood, respectively.

The bold numbers denote the minimum values in each row in the table.
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commonly used loss functions: MSE, MAE, HMSE, HMAE and

QLIKE are used as the basic functions of DM statistical test.

4 Empirical analysis

4.1 Data

For our empirical analysis, we use the data on the daily EUA

futures returns and monthly RA index. Since EU ETS was

established, EU ETS has been divided into four phases (phase I:

from 3 January 2005 to 31 December 2007; phase II: from 2 January

2008 to 31 December 2012; phase III: from 2 January 2013 to

31 December 2020; phase IV, from 4 January 2021 to 31 December

2030). Due to the phase I is a trial stage, EU ETS was restricted in

bank loan and resulted in the EUA futures price tends to be zero at

the end of phase I (Tian et al., 2016). In view of this, the sample

period for the EUA futures return data is from 2 January 2008 to

31 December 2021 (phase II to phase IV), resulting in 3,605 daily

observations. The data are obtained from Wind database of China.

For the time-varying risk aversion, we use the time-varying risk

aversion (RA) index proposed by Bekaert et al. (2022). The RA index

TABLE 6 MCS test results (in crisis period).

GARCH GARCH- GARCH- GARCH- GARCH-

MIDAS MIDAS-RA MIDAS-SK MIDAS-SK-RA

Forecasting horizon 1-day-ahead

MSE 0.0000 0.0000 0.0000 0.5280 1.0000

MAE 0.0000 0.0000 0.0000 0.2323 1.0000

HMSE 0.0000 0.0000 0.0245 0.8829 1.0000

HMAE 0.0000 0.0000 0.0000 0.8373 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0967 1.0000

Forecasting horizon 5-days-ahead

MSE 0.0000 0.0000 0.0000 0.0815 1.0000

MAE 0.0000 0.0000 0.0000 0.3777 1.0000

HMSE 0.0000 0.0034 0.0819 0.4536 1.0000

HMAE 0.0000 0.0000 0.0001 0.5433 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0004 1.0000

Forecasting horizon 10-days-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.2920 1.0000

HMSE 0.0000 0.0006 0.0266 0.1165 1.0000

HMAE 0.0000 0.0000 0.0000 0.1238 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Forecasting horizon 22-days-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.0186 1.0000

HMSE 0.0000 0.0072 0.0079 0.2046 1.0000

HMAE 0.0000 0.0001 0.0003 0.1686 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Note: The number in the table is the MCS p value. If the p value is greater than 0.1 (bold number), it suggests that the model is included in the MCS, that is, the model with good predictive

ability. MSE, MAE, HMSE, HMAE and QLIKE denote mean square error, mean absolute error, heteroscedasticity-adjusted mean square error, heteroscedasticity-adjusted mean absolute

error and quasi-likelihood, respectively.

The bold numbers denote the minimum values in each row in the table.
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can be obtained from the website https://www.nancyxu.net/risk-

aversion-index. In order to be consistent with the sample period of

the EUA futures returns, we choose the RA sample period from

January 2008 to December 2021, resulting in a total of 168 monthly

observations.

Figure 1 presents the time series plots of the daily EUA futures

returns and the monthly RA index. It can be seen from the figure

that the well-known behaviors of volatility clustering in the EUA

futures are apparent. It is also worth noting that the EUA futures

experienced significant fluctuations, particularly in recent years. As

can be seen from the time series plot of RA, during the period of

global financial crisis in 2008, the RA index increased significantly.

Moreover, during the periods of 2011 U.S. debt crisis and the

COVID-19 in 2020, the RA index also increases significantly. On

the whole, the change of RA index is closely related to the overall

international economic operation.

Table 2 reports the descriptive statistics of daily EUA futures

returns (ri,t) and monthly RA index (RAt). As can be seen from the

table, the daily EUA futures return series show the distribution of

negative skewness (skewness smaller than 0) while the monthly RA

TABLE 7 MCS test results (in non-crisis period).

GARCH GARCH- GARCH- GARCH- GARCH-

MIDAS MIDAS-RA MIDAS-SK MIDAS-SK-RA

Forecasting horizon 1-day-ahead

MSE 0.0000 0.0000 0.0000 0.5169 1.0000

MAE 0.0000 0.0000 0.0000 0.2441 1.0000

HMSE 0.0000 0.0000 0.0251 0.8822 1.0000

HMAE 0.0000 0.0000 0.0000 0.8241 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0886 1.0000

Forecasting horizon 5-days-ahead

MSE 0.0000 0.0000 0.0000 0.0834 1.0000

MAE 0.0000 0.0000 0.0000 0.3820 1.0000

HMSE 0.0000 0.0023 0.0851 0.4528 1.0000

HMAE 0.0000 0.0000 0.0000 0.5468 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0007 1.0000

Forecasting horizon 10-days-ahead

MSE 0.0000 0.0000 0.0000 0.0001 1.0000

MAE 0.0000 0.0000 0.0000 0.2916 1.0000

HMSE 0.0000 0.0006 0.0249 0.1198 1.0000

HMAE 0.0000 0.0000 0.0005 0.1290 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Forecasting horizon 22-days-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.0218 1.0000

HMSE 0.0000 0.0063 0.0069 0.1963 1.0000

HMAE 0.0000 0.0001 0.0001 0.1800 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Note: The number in the table is the MCS p, value. If the p value is greater than 0.1 (bold number), it suggests that the model is included in the MCS, that is, the model with good predictive

ability; MSE, MAE, HMSE, HMAE, and QLIKE, denote mean square error, mean absolute error, heteroscedasticity-adjusted mean square error, heteroscedasticity-adjusted mean absolute

error and quasi-likelihood, respectively.

The bold numbers denote the minimum values in each row in the table.

Frontiers in Environmental Science frontiersin.org11

Wu et al. 10.3389/fenvs.2022.973438

https://www.nancyxu.net/risk-aversion-index
https://www.nancyxu.net/risk-aversion-index
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.973438


index series show the distribution of positive skewness (skewness

greater than 0) and both series show excess kurtosis (kurtosis greater

than 3). Jarque-Bera statistics suggest that the series deviate from the

normal distribution.

4.2 Parameter estimation results

In order to implement the MIDAS models, we need to

determine the lag length of MIDAS component, K. According

to Conrad and Kleen (2020), as long as K is chosen large enough,

the estimation results are robust to the choice of MIDAS lags K,

since the Beta weighting function used in the paper is flexible and

the data will identify the optimal weights. In view of this, we

choose K = 36, i.e., three MIDAS lag years for the monthly

explanatory variables. It is a common choice in the literature,

which allows us to capture reasonable dynamics of long-term

component (see, e.g., Engle et al., 2013; Asgharian et al., 2016;

Conrad and Kleen, 2020). Using the maximum likelihood

estimation method, the parameters of the GARCH, GARCH-

MIDAS, GARCH-MIDAS-RA, GARCH-MIDAS-SK and

GARCH-MIDAS-SK-RA models are estimated. The estimation

TABLE 8 MCS test results (alternative forecasting window of 500).

GARCH GARCH- GARCH- GARCH- GARCH-

MIDAS MIDAS-RA MIDAS-SK MIDAS-SK-RA

Forecasting horizon 1-day-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.0000 1.0000

HMSE 0.0000 0.0000 0.0000 0.0018 1.0000

HMAE 0.0000 0.0000 0.0003 0.0103 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Forecasting horizon 5-days-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.0000 1.0000

HMSE 0.0000 0.0000 0.0000 0.0079 1.0000

HMAE 0.0000 0.0000 0.0051 0.1986 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Forecasting horizon 10-days-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.0000 1.0000

HMSE 0.0000 0.0000 0.0000 0.0192 1.0000

HMAE 0.0000 0.0000 0.0095 0.2038 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Forecasting horizon 22-days-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.0000 1.0000

HMSE 0.0000 0.0000 0.0000 0.0009 1.0000

HMAE 0.0000 0.0000 0.0004 0.0634 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Note: The number in the table is the MCS p, value. If the p value is greater than 0.1 (bold number), it suggests that the model is included in the MCS, that is, the model with good predictive

ability; MSE, MAE, HMSE, HMAE, and QLIKE, denote mean square error, mean absolute error, heteroscedasticity-adjusted mean square error, heteroscedasticity-adjusted mean absolute

error and quasi-likelihood, respectively.

The bold numbers denote the minimum values in each row in the table.
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results along with the standard errors, log-likelihood and Akaike

information criterion (AIC) are presented in Table 3.

As can be seen from Table 3, the persistence coefficient of

GARCH model, α + β, is estimated to be very close to 1,

indicating that the EUA futures return has high

volatility persistence. In contrast, in the GARCH-MIDAS,

GARCH-MIDAS-RA, GARCH-MIDAS-SK and GARCH-

MIDAS-SK-RA models, the estimates of the persistence

coefficient of short-term component, α + β, which are

significantly lower than that in the GARCH model,

indicating that the MIDAS structure is capable of capturing

the long-term trend (long memory property) of the EUA

futures volatility.

It is interesting to note that the estimates of the coefficient θ1 are

all significantly positive, indicating that the monthly realized

volatility (RV) has a significantly positive impact on the long-

term volatility of EUA futures, that is, the monthly RV increases,

the long-term volatility of EUA futures is expected to increase.While

in the two MIDAS models incorporated RA (GARCH-MIDAS-RA

model and GARCH-MIDAS-SK-RA model), the estimates of the

coefficient θ2 are significantly negative, indicating that RA has a

significantly negative impact on the long-term volatility of EUA

TABLE 9 MCS test results (alternative forecasting window of 1,000).

GARCH GARCH- GARCH- GARCH- GARCH-

MIDAS MIDAS-RA MIDAS-SK MIDAS-SK-RA

Forecasting horizon 1-day-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.0000 1.0000

HMSE 0.0000 0.0000 0.0000 0.0000 1.0000

HMAE 0.0000 0.0000 0.0000 0.0009 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Forecasting horizon 5-days-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.0000 1.0000

HMSE 0.0000 0.0000 0.0000 0.0133 1.0000

HMAE 0.0000 0.0000 0.0000 0.0489 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Forecasting horizon 10-days-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.0000 1.0000

HMSE 0.0000 0.0000 0.0000 0.0159 1.0000

HMAE 0.0000 0.0000 0.0000 0.0316 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Forecasting horizon 22-days-ahead

MSE 0.0000 0.0000 0.0000 0.0000 1.0000

MAE 0.0000 0.0000 0.0000 0.0000 1.0000

HMSE 0.0000 0.0000 0.0000 0.0000 1.0000

HMAE 0.0000 0.0000 0.0000 0.0000 1.0000

QLIKE 0.0000 0.0000 0.0000 0.0000 1.0000

Note: The number in the table is the MCS p, value. If the p value is greater than 0.1 (bold number), it suggests that the model is included in the MCS, that is, the model with good predictive

ability; MSE, MAE, HMSE, HMAE, and QLIKE, denote mean square error, mean absolute error, heteroscedasticity-adjusted mean square error, heteroscedasticity-adjusted mean absolute

error and quasi-likelihood, respectively.

The bold numbers denote the minimum values in each row in the table.
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futures, that is, an increase in RA level predicts higher level of long-

term volatility of EUA futures. A possible explanation is that the

dynamic determination of EUA futures can be expressed as the

subjective belief of market participants in the future trend of EUA

futures. When the carbon emission market is affected by

emergencies, the risk aversion level of investors and regulatory

TABLE 10 DM test results.

Model GARCH GARCH- GARCH-MIDAS GARCH GARCH-MIDAS

MIDAS -RA -MIDAS-SK -SK-RA

MSE

GARCH 1.5338 1.7465* 4.7154*** 3.9132***

GARCH-MIDAS −1.5338 2.4198** 2.0958** 1.7764*

GARCH-MIDAS-RA −1.7465* −0.4198 2.1568** 1.8386*

GARCH-MIDAS-SK −4.7154*** −2.0958** −2.1568** 1.7368*

GARCH-MIDAS-SK-RA −3.9132*** −1.7764* −1.8386* −1.7368*

MAE

GARCH 3.5472*** 3.2347*** 12.6464*** 10.4066***

GARCH-MIDAS −3.5472** −2.1891** 8.9141*** 5.8323***

GARCH-MIDAS-RA −3.2347*** 0.1891 7.6413*** 6.6013***

GARCH-MIDAS-SK −12.6464*** −8.9141*** −7.6413*** −1.9933**

GARCH-MIDAS-SK-RA −10.4066*** −5.8323*** −6.6013*** 2.2933**

HMSE

GARCH 1.0081 0.5578 −4.4567*** −3.3807***

GARCH-MIDAS −1.0081 −2.5235** −4.0705*** −3.3528***

GARCH-MIDAS-RA −0.5578 0.5235 −3.5639*** −3.5991***

GARCH-MIDAS-SK 4.4567*** 4.0705*** 3.5639*** −2.2173**

GARCH-MIDAS-SK-RA 3.3807*** 3.3528*** 3.5991*** 2.2173**

HMAE

GARCH 1.5763 0.4902 −8.6128*** −6.5138***

GARCH-MIDAS −1.5763 −1.9145* −8.3134*** −6.4672***

GARCH-MIDAS-RA −0.4902 1.5145 −6.3748*** −6.8354***

GARCH-MIDAS-SK 8.6128*** 8.3134*** 6.3748*** −2.3546**

GARCH-MIDAS-SK-RA 6.5138*** 6.4672*** 6.8354*** 2.3546**

QLIKE

GARCH 0.9259 0.9090 −15.8489*** −10.6356***

GARCH-MIDAS −0.9259 2.2139** −13.7375*** −8.9916***

GARCH-MIDAS-RA −0.9090 −0.2139 −11.5416*** −10.7237***

GARCH-MIDAS-SK 15.8489*** 13.7375*** 11.5416*** 2.0384**

GARCH-MIDAS-SK-RA 10.6356*** 8.9916*** 10.7237*** −2.0384**

Note: MSE, MAE, HMSE, HMAE, and QLIKE, denote mean square error, mean absolute error, heteroscedasticity-adjusted mean square error, heteroscedasticity-adjusted mean absolute

error and quasi-likelihood, respectively. *, ** and *** are significant within 10, 5 and 1%, respectively.
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authorities will be improved. In order to avoid the impact of special

events and unexpected changes in the external environment,

investors prefer sustainable mutual funds to stabilize the volatility

of EUA futures despite low returns and high management fees.

Therefore, a high level of risk aversionwill reduce the long-term level

of EUA futures volatility (Riedl and Smeets, 2017). Figure 2 shows

the long-term component of the EUA futures volatility derived from

the GARCH-MIDAS-SK-RAmodel. As can be seen from the figure,

the long-term component is smooth and captures the long-term

trend of the EUA futures volatility.

The GARCH-MIDAS-SK and GARCH-MIDAS-SK-RA models

are able to capture the time-varying higher moments of return

distribution. Turning to the skewness equation in the models, we

find the evidence of the presence of time-varying skewness for the

EUA futures returns, with the persistence coefficient (γ1) and shock

coefficient (γ2) of skewness being significant. Regarding to the

kurtosis equation, significant presence of time-varying kurtosis is

also found for the EUA futures returns, with at least one of the

persistence coefficient (δ1) and shock coefficient (δ2) being significant.

Figure 3 plots the time-varying skewness and kurtosis of the EUA

futures return estimated from the GARCH-MIDAS-SK-RAmodel. It

can be seen intuitively from the figure that the conditional skewness

and kurtosis series of EUA futures return have time-varying

characteristics. Hence, it is necessary to prevent and avoid EUA

futures risk from a dynamic perspective.

Moreover, we can observe from Table 3 that the GARCH-

MIDAS model outperforms the GARCHmodel in terms of the log-

likelihood and AIC values. In particular, the GARCH-MIDAS-SK

(GARCH-MIDAS-SK-RA) model outperforms the original

GARCH-MIDAS (GARCH-MIDAS-RA) model, indicating that

incorporating time-varying higher moments improves the

empirical fit of the model. Overall, the GARCH-MIDAS-SK-RA

model outperforms all other models.

4.3 Out-of-sample forecasting results

In order to investigate the predictive value of time-varying

higher moments and RA for EUA futures volatility, we conduct

an out-of-sample analysis by using the GARCH-MIDAS-SK-RA

model. We compare the out-of-sample performance of the

GARCH-MIDAS-SK-RA model with that of the GARCH,

GARCH-MIDAS, GARCH-MIDAS-RA and GARCH-MIDAS-SK

models. The rolling-window approach is employed to perform the

out-of-sample forecast. To be specific, the full sample is splitted into

two sub-samples: an in-sample period (2008.1.2–2018.12.28) and an

out-of-sample period (2019.1.2–2021.12.31), in which the in-sample

data (2,829 observations) are used to estimate the model parameters

and the out-of-sample data (776 observations) are used to evaluate

the out-of-sample forecasting performance. We first estimate the

models using the first 2,829 observations to make k-day-ahead

forecast. Then we roll the estimation sample forward daily (with

a fixed window size of 2,829), and re-estimate the models and make

new k-day-ahead forecast. The procedure is conducted repeatedly

until the end of the sample. We compare the out-of-sample

performance of different volatility models for forecasting

horizons k = 1, 5, 10 and 22, i.e., 1-day, 5-days, 10-days and 22-

days ahead forecasts.

Table 4 presents the out-of-sample forecasting results of the five

models for forecasting the EUA futures volatility. It can be seen from

Table 4 that the models with MIDAS structure (GARCH-MIDAS,

GARCH-MIDAS-RA, GARCH-MIDAS-SK and GARCH-MIDAS-

SK-RAmodels) producemore accurate volatility forecasts compared

to the GARCH model in terms of the MSE, MAE, HMSE, HMAE

and QLIKE criteria, indicating that incorporating long-term

component (MIDAS structure) plays an important role in EUA

futures volatility forecasting. In addition, both theGARCH-MIDAS-

RA and GARCH-MIDAS-SK models generally outperform the

original GARCH-MIDAS model. This result suggests that the

incorporation of RA and time-varying higher moments can

improve the forecasting accuracy of EUA futures volatility. In

particular, we observe that the loss function values for the

GARCH-MIDAS-SK model are lower than that of the GARCH-

MIDAS-RA model, which suggests that incorporating time-varying

higher moments is more important than incorporating RA for

forecasting EUA futures volatility. Last but not least, the

GARCH-MIDAS-SK-RA model that incorporates time-varying

higher moments and RA offers the lowest loss values in all cases.

This result highlights the value of introducing time-varying higher

moments and RA in modeling and forecasting EUA futures

volatility.

Table 5 presents the MCS test results for the five models. As can

be seen from Table 5, the GARCH, GARCH-MIDAS, GARCH-

MIDAS-RA models are kicked out of the MCS in all cases (MCS p

value is less than 0.1), while the GARCH-MIDAS-SK and the

GARCH-MIDAS-SK-RA model is always included in the MCS.

In particular, the GARCH-MIDAS-SK-RA model offers the highest

MCS p value (p = 1) in all cases, suggesting that the GARCH-

MIDAS-SK-RA model significantly outperforms all other models

for forecasting the EUA futures volatility.

For the sake of further investigate whether the prediction ability

of GARCH-MIDAS-SK-RA model changes in different periods, we

first simply divide the sample into crisis period and non crisis period.

We define the systemic crisis period as 2008–2009, and the data of all

remaining years are classified as non-crisis. For the divided samples,

we conduct MCS test again for crisis period and non-crisis period

respectively, the results are shown on Tables 6 and 7. From the

tables, we can also find that the GARCH-MIDAS-SK-RA model

significantly outperforms all other models for forecasting the EUA

futures volatility whether in crisis period or non-crisis period.

4.4 Robustness checks

In order to test the robustness of the out-of-sample results, we

further consider alternative forecasting windows (out-of-sample
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periods) of 500 and 1,000. The out-of-sample results are presented in

Tables 8 and 9.

It can be seen from Tables 8 and 9 that the GARCH-

MIDAS-SK-RA model that incorporates time-varying higher

moments and RA significantly outperforms all other models in

forecasting the volatility of EUA futures, which is consistent with

the results reported in Table 5. The results suggest that the superior

predictive power of the GARCH-MIDAS-SK-RA model is robust to

alternative forecasting windows.

For the sake of enhancing the robustness of the test, DM test is

carried out in this paper, and the test results are shown in Table 10.

Compared with other models, the DM test results of GARCH-

MIDAS-SK-RA model are significant, indicating that GARCH-

MIDAS-SK-RA model is significantly better than the other four

models in terms of prediction, this is consistent with the conclusions

in Tables 5–10.

5 Conclusion

In this paper, we investigate the predictive value of the time-

varying higher moments and RA for the EUA futures volatility. We

extend the GARCH-MIDAS model to incorporate time-varying

skewness and kurtosis and propose the GARCH-MIDAS-SK model

to model and forecast the EUA futures volatility. An empirical

application to monthly RA index and daily EUA futures returns

shows that the EUA futures volatility exhibits the characteristics of

time-varying higher moments and RA has a significantly negative

impact on the long-term volatility of EUA futures. Moreover, the

GARCH-MIDAS-SK-RA model outperforms many competing

models, including the GARCH, GARCH-MIDAS, GARCH-

MIDAS-RA and GARCH-MIDAS-SK models in terms of out-of-

sample forecast performance for forecast horizons of 1 day up to

1 month (22 days). In addition, the superior predictive power of the

GARCH-MIDAS-SK-RA model is robust to alternative out-of-

sample forecasting windows. The findings highlight the value of

incorporating time-varying higher moments and RA for forecasting

EUA futures volatility.

According to the research conclusion, we put forward the

following suggestions: First, the state should formulate a

reasonable trading mechanism and carbon quota agreement,

improve the fluctuation of EUA futures trading price by

changing the supply of carbon emission trading market, and

improve the activity of carbon market while safeguarding the

rights and interests of investors. Second, the government should

strengthen the supervision of the market, carry out risk control and

price adjustment intervention on the market by financial means,

constantly adjust the market structure, standardize the trading

system, and provide a way for investors to avoid risks, so as to

prevent excessive fluctuations in EUA futures trading prices and

affect the stability of the EUA futures tradingmarket. Third, relevant

departments should do a good job in the connection and transition

between various regions and the national carbon emission market,

expand the market scale and industry access scope, and promote the

steady construction of the national EUA futures trading market.

The study provides a promising approach for modeling and

forecasting EUA futures volatility, which is of great importance for

both academic researchers and practical practitioners. It is

worth pointing out that the research work can be extended.

For example, the leverage effect could be incorporated

into the GARCH-MIDAS-SK framework, which has been

proved to be useful for improving the accuracy of volatility

forecasts.
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