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Arsenic (As) contamination in the soil adversely affects crop productivity, grain

quality, and human health. A pot experiment was performed to assess the sole

and combined effects of Si and biochar on growth, physiological and

antioxidant defense mechanisms, yield, and grain quality of maize. Soil

treatments comprised of control (no treatment), As, Si, biochar, Si + biochar,

As + Si, As + biochar, and As + Si + biochar placed in a completely randomized

design with three replications. As toxicity significantly reduced chlorophyll a

(5.18%), chlorophyll b (33.87%), chlorophyll a + b (11.67%), and primary

metabolites [soluble protein (54.93%), amino acids (24.85%), total soluble

sugars (39.77%), and phenolic contents (25.88%)], while increasing the

activities of enzymatic antioxidants such as superoxide dismutase (SOD) by

43.51%, peroxidase (POD) by 47.93%, catalase (CAT) by 47.98%, and ascorbate

peroxidase (APX) by 59.02%, as well as that of lipid peroxidation in the leaves of

maize. In addition, As contamination reduced the grain yield and yield-related

attributes relative to the respective controls. Among the soil applications, the

interactive effect of Si and biochar improved maize grain yield (12.12%) by

triggering activities of enzymatic antioxidants and proline contents and

reducing the H2O2 and MDA contents. The combined application of Si and

biochar enhanced the Si contents in shoots of the control and As-contaminated

plants, while significantly reducing As concentration in shoots (69%) and grains

(142%). In conclusion, the combined application of Si and biochar was found to
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be a fruitful soil amendment strategy to improve the yield of maize and reduce

the toxic limit of As under As-contaminated soil. The results of this studymay be

useful for the cultivation of food crops under AS-contaminated soils, but before

commercial recommendation, more trails are required under field conditions.
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arsenic contamination, maize, yield, physiology, biochemical attributes

Introduction

Globally, maize (Zea mays L.) is an important cereal crop

after wheat and rice. Hence, the hazard of heavy metal impurities

in cereal grains, especially of As, is a major threat to human well-

being concerning health issues (Suriyagoda et al., 2018; Bianucci

et al., 2020; Shah et al., 2021). Plant cells accumulate As due to the

uptake and translocation of As via aquaporins and phosphate

transporters (Kertulis -Tartar et al., 2009; Farooq et al., 2019;

Hammad et al., 2022). Therefore, various functions of plants such

as energy production, nutrient uptake, plant metabolism

imbalance, and physiology are disrupted (Bakhat et al., 2017;

Muhammad et al., 2020).

Heavy metals are a major concern for plant and human

nutrition as these not only affect plant growth (Mehmood et al.,

2018; Haseeb et al., 2022; Javad et al., 2022) and development but

also cause health issues in humans and livestock when they consume

food grown in the soils contaminated with heavy metals (Abdul

et al., 2015). Arsenic (As) is a nonessential poisonous element for

plants and animals and has no proven biological role in living tissues

(Abdul et al., 2015; Farooq et al., 2019). As enters the food chain

primarily from cereals grown in soils having As contamination

(Awasthi et al., 2017). The maximum permissible concentration of

As in corn grain in certain countries has been reported to be up to

0.2–0.3 mg kg−1 dry weight (Rosas-Castor et al., 2014). High

concentrations of As in food can cause various health issues,

such as malfunctioning of the renal system, cardiovascular

system, and immune system (Abdul et al., 2015). The

concentration of As in cereal grains could be influenced by

improving our understanding of the As bioavailability in soils

and studying its interactions among plants, soils, and the

environment (Zhao and Wang, 2020). The adverse effects of As

accumulation on functioning and chemical processes has been

impairment of the development and maturity of crops (Du et al.,

2017), resulting in lower grain yields and poor crop quality (Abdul,

2020). As accumulation in plants triggers the production of reactive

oxygen species (ROS), which restrains antioxidant processes,

impairs DNA development, hinders metabolic activities in roots,

and lowers photosynthetic activity in leaves (Hu et al., 2020).

Plants can tolerate abiotic stresses with the application of

silicon (Kabir et al., 2016; Malhotra and Kapoor., 2019;

Bukhari et al., 2020). In the literature, different scientists

(Bogdan and Schenk, 2009; Ning et al., 2016) have

observed the antagonistic behavior of Si and As in various

plant species (Ma et al., 2008; Bogdan and Schenk, 2009; Ning

et al., 2016). Due to variations in the processes of elemental

uptake and translocation, the stress response in plants also

varies among species (Ma et al., 2008; Kabir et al., 2016;

Suriyagoda et al., 2018). Ma et al. (2008) reported that As

accumulation and movement in rice roots follow a similar

route (OsNIP2;1) to that of Si. Moreover, Si can change the

interchangeable and soluble forms of As into stable structures

(Ning et al., 2016). Arsenic accumulation was reduced in rice

with an increase in soil Si concentration (Bogdan and Schenk,

2009; Bakhat et al., 2017), which is ascribed to lower the

expression of Si transporter genes (i.e., Lsi1 and Lsi2). The Si

transporter genes also facilitate As uptake (Bienert et al.,

2008). The toxicity of metals in various plants can be

ameliorated with the application of Si because Si alters the

accumulation and translocation routes of various toxic heavy

metals in plants (Ning et al., 2016; Farooq et al., 2019).

Immobilization is considered another way of remediating

heavy metals–contaminated soils. Biochar application is an

environment-friendly and economical immobilizer for heavy

metal contamination (Srivatsav et al., 2019). Soil-applied

biochar facilitates the stability of heavy metals via various

activities such as adsorption, elemental exchanges, and

complexation surfaces (Gao et al., 2019; Kumar and

Bhattacharya, 2020; Kim et al., 2021). Biochar application

in rice diminishes the interchangeable and bioavailable parts

of As through its immobilization into a more steady structure,

which reduces the toxic metal in plants (Irshad et al., 2020;

Kabir et al., 2016). Soil amendment with biochar improves Si

uptake by increasing the pH of the soil (Kim et al., 2021).

Although the uptake of As also increases with an increase in

pH (Marin et al., 1993; Dai et al., 2019). At the molecular level,

it was found that the combination of Si and biochar (Si-rich

biochar) downregulates the expression of Si-As transporter

genes (Wang et al., 2019, 2020), which in return reduces the

uptake of As, as both share the same transport channel.

Therefore, it may be beneficial to use Si with biochar in

As-contaminated soils to minimize the root transport of As

and its translocation to above-ground plant parts.

Several studies have reported the amelioration effects of Si

(Kashif et al., 2021) and/or biochar (Ibrahim et al., 2016) in

different crops grown in heavy metals–contaminated soils.

However, only a few considerable works have explored the

combined impact of Si and biochar application in
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ameliorating heavy metal toxicity, especially in maize. As

reviewed earlier, Si and biochar both have antagonistic

effects on the uptake of AS; therefore, in this study, we

hypothesized that a combined application of Si and biochar

will reduce the uptake of As and ultimately the toxic effects of

As. Therefore, the current study was designed to explore the

impacts of Si and biochar applications as the sole amendments

or their combined application on the morphological growth,

physiological and biochemical processes, and yield attributes

of maize grown in As-contaminated soils.

Materials and methods

Experimental conditions

A pot study was performed in a greenhouse under normal

conditions (temperature 29/19°C day/night with 72%

humidity) during the spring season of 2018. Seeds of

maize hybrid NK-6654 were used for this research trial.

Two plants were maintained in earthen pots (18 cm in

diameter, 75 cm in height) filled with 15 kg of well-ground

sandy loam soil. The soil contained 298 mg kg−1 total

nitrogen (N), 16 mg kg−1 available phosphorus (P2O5),

78.84 mg kg−1 available potassium (K2O), and 0.61%

organic matter, with pH 8.50 and 2.48 dS m−1 electrical

conductivity. The recommended doses of N, P2O5, and

K2O (100, 75, and 60 mg kg−1 of soil) as urea,

diammonium phosphate, and sulfate of potash,

respectively, were added to the soil.

Experimental treatments

The experiment comprised eight soil treatments: control

(without any soil amendment), As (12 mg kg−1), Si

(100 mg kg−1), biochar (50 g kg−1), Si + biochar (100 mg kg−1 +

50 g kg−1), As + Si (12 mg kg−1 + 100 mg kg−1), As + biochar

(12 mg kg−1 + 50 g kg−1), and As + Si + biochar (12 mg kg−1 +

100 mg kg−1 + 50 g kg−1 soil) applied at the time of sowing.

Already optimized concentrations of Si and biochar (Sattar

et al., 2020; Kashif et al., 2021) were used in this experiment.

The experiment was arranged in a completely randomized design

(CRD) with three replications per treatment. Each replication

had three pots with two plants per pot. Arsenic stress (12 mg kg−1

soil) was imposed by spiking the soil using sodium arsenite

(NaAsO2) as the source. Silicon was added in the form of

analytical-grade sodium silicate. Wheat straw was used for the

preparation of biochar according to the method elaborated by

Qayyum et al. (2015). After air drying, the wheat straw was put in

a biochar machine for pyrolysis at 500°C for 30 min in an oxygen-

limited environment. Before passing through a sieve (2 mm), the

subsequent material was crushed to ensure uniformmixing in the

soil. The chemical properties of wheat straw biochar are given in

Table 1. Si, As, and biochar were thoroughly mixed in the soil as

per treatments, and afterward, the pots were kept for 60 days in

the open air for the stabilization of the treatments.

Observations and measurements

For physiological and biochemical analyses, plant samples

were collected by clipping the top-second leaf at the grain filling

stage (BBCH 80) of the crop in the late morning, 11:00 a.m., and

stored at −20°C before further analyses.

Photosynthetic pigments

For the determination of photosynthetic pigments

(chlorophyll a and b), 0.5 g of leaf samples was homogenized

in 5 ml acetone (80%) (Lichtenthaler, 1987). The supernatant was

separated after centrifugation (10,000g for 5 min). The

absorbance of the supernatant was measured at 645 nm and

663 nm for chlorophyll a and b, respectively, using a UV-Vis

spectrophotometer (Hitachi U-1800; Tokyo, Japan).

Determination of primary metabolites

Total soluble proteins in the leaf samples were determined

through the Bradford’s (1976) assay using Coomassie blue dye. In

total, 100 µL of the leaf sample and 2 ml of Bradford reagent were

mixed in a test tube. The mixture was incubated in dark for

20 min and then absorbance measured at 595 nm.

TABLE 1 Chemical properties of biochar used in the experimental trial.

Properties Value (%)

pH 9.23

Total carbon (C) 43.09

Oxygen (O) 31.26

Hydrogen (H) 2.94

Total nitrogen 0.25

Phosphorus 0.27

Potassium 0.32

Calcium 0.34

Magnesium 0.21

Sodium 0.19

Sulphur 0.29

Zinc 0.05

Boron 0.07

Iron 0.04

Copper 0.02

H:C 0.06

O:C 0.72
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In 50 mM chilled potassium phosphate buffer (5 ml; pH 7.5),

fresh leaf tissues (0.2 g) were homogenized and centrifuged for

20 min at 10,000g. In a test tube, equal volumes of 10% pyridine

and acid ninhydrin were homogenized with 1 mL of the

supernatant. Afterward, the mixture was warmed at 95°C for

30 min using a water bath. Then, by using distilled water, the

volume of the reaction mixture was made up to 7.5 ml. Then at

570 nm, the absorbance of the reaction mixture was observed

(Hamilton and Van Slyke, 1943).

To measure the total soluble sugars, 5 ml of aqueous ethanol

(80%) and 0.2 g of fresh leaf tissue were homogenized and

centrifuged for 10 min at 3,500g. The sample extract (100 μL)

obtained was then reacted with anthrone reagent (3 ml). Then,

using a water bath, the mixture was heated for 10 min at 95°C.

The mixture was cooled, and using a spectrophotometer,

absorbance was observed at 625 nm (Yemm and Willis, 1954).

By using the method of Julkenen-Titto (1985), the total

phenolic contents of fresh leaf samples was determined. For

this purpose, 1 ml of acetone (80%) and 0.2 g fresh leaf tissues

were homogenized and then centrifuged at 12,000 rpm for

15 min. Then, 20% Na2CO3 (2.5 ml), 0.5 -ml Folin–Ciocalteu’s

phenol reagent, and supernatant (100 μL) were added to a test

tube and shaken and then to make 5 ml final volume, distilled

water was added. Finally, absorbance was recorded at 750 nm

after 20 min.

Lipid peroxidation and free proline
determination

To determine H2O2 content, 1.5 ml of trichloroacetic acid

(0.1%) and fresh leaf tissue (0.15 g) were homogenized. Then,

centrifugation of the homogenate was done at 12,000g for

15 min. Then, 0.5 ml of potassium sulfate buffer (10 mM,

pH 7.0) and 1 ml of potassium iodide were added to the

supernatant. At 390 nm, using a spectrophotometer, the

absorbance of the reaction mixture and trichloroacetic acid

(0.1%) was observed. By comparing the absorbance with a

standard curve, the amount of H2O2 content was measured

(Velikova et al., 2000). Hodges et al. (1999) described a

method called the TBA method, which was used to measure

MDA contents. Fresh leaves (0.15 g) were ground in 5.0 ml of 5%

(w/v) TCA, and the extract was centrifuged. The MDA contents

were measured at 600 nm and 532 nm. To measure proline

contents, 5 ml sulphosalicylic acid (3%) and fresh leaf tissue

(0.1 g) were homogenized, and the extract was centrifuged. Then,

ninhydrin and glacial acetic acid reagent were added to the

supernatant. The reaction mixture was boiled for 1 h in a

water bath. After boiling, the reaction mixture was cooled for

10 min in an ice bath. Proline was extracted from a mixture with

toluene, and absorbance was recorded at 520 nm (Bates et al.,

1973). Using the method of Dionisio-Sese and Tobita (1998),

electrolyte leakage was measured. In a test tube, 10 ml of distilled

water and small and equal sized pieces of fresh leaf tissue (0.5 g)

were added and stirred for 10 s. The test tubes were left to rest

overnight, and electrical conductivity (EC1) was calculated. To

measure EC2, the test tubes were autoclaved at 100°C for 1 h.

Determination of enzymatic antioxidants
activities

Fresh leaf samples were homogenized with 5 ml of phosphate

buffer (50 mM with 7.8 pH) and centrifuged (15,000g for

20 min). The inhibition of nitroblue tetrazolium (NBT)

reduction provides the basis for superoxide dismutase (SOD)

activity estimation, recorded at 560 nm (Giannopolitis and Ries,

1977). The reactants of the reaction mixture were 1 ml NBT

(50 µM), 1 ml riboflavin (1.3 µM), 50 µL enzyme extract, 950 µL

phosphate buffer (50 mM), 500 µL methionine (13 mM), and

500 µL EDTA (75 mM). The exposure of the reaction mixture to

30 W fluorescent lamp illuminance initiated the reaction, which

was then stopped after 5 min by turning off the lamp. The blue

formazan was formed due to NBT reduction and was observed at

560 nm. Using the same reactants but having no enzyme extract,

blank reading was taken. Catalase activity (CAT) was recorded at

240 nm due to the production of H2O2. To initiate the reaction,

100 µL of the enzyme extract was added to the reaction mixture

[900 µL H2O2 (5.9 mM) and 2 ml phosphate buffer (50 mM)].

Micromoles of H2O2 per minute per milligram of protein was

used to define catalase activity (Chance and Maehly, 1955). The

peroxidase (POD) activity was estimated using the protocol given

by Kar and Mishra (1976). The reactants used comprised 5 ml of

Tris-HCL buffer (0.1 M), 5 ml of pyrogallol (10 mM), 5 mM of

H2O2 (5 mM), and 100 µL of enzyme extract. By noting the

decline in absorbance at 425 nm, which was due to H2O2-

dependent oxidation of pyrogallol, the POD activity was

measured as POD IU per minute per milligram of the protein.

Morphological and yield-related attributes

At physiological maturity (BBCH 87), five plants were

selected randomly, and their heights were measured from the

soil surface to the tip of the plant by using a meter rod. From the

same plants, leaves were removed manually, and the leaf area was

measured with the help of a leaf area meter (Model CI-202; CID

Bio Science Inc., WA). Cobs from the selected plants were

separated with the help of scissors, and the cob length was

measured with a measuring tape. The number of grains per

cob was counted from five randomly selected cobs from each

treatment. After the manual threshing of cobs, grain yield and

100-grain weight were calculated. Hundred seeds from each

replication were counted using a digital seed counter, and

then these were weighed on an electric balance to calculate

the 100-grain weight.
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Data analysis

Statistical analysis of data was done with the help of the

Statistix 8.1 software (Analytical Software, Statistix; Tallahassee,

FL, United States, 1985–2003) by using analysis of variance

(ANOVA) techniques. For mean separation at a 5%

probability level, Tukey’s test was used. The graphical

presentation of data was done by using Sigma Plot.

Results

Morphological and yield attributes

It was observed that As stress significantly (p < 0.05)

reduced the morphological attributes of maize (Table 2).

When As stress was imposed on maize, it reduced the plant

height by 19.88%, leaf area by 53.95%, and cob length by

18.18%. When Si was applied to As-contaminated plants, it

increased the plant height by 4.17%, leaf area by 21.79%, and

cob length by 7.14%. Likewise, biochar application on As-

contaminated plants enhanced the plant height by 2.91%, cob

length by 5.29%, and leaf area by 24.41%. While the

application of combined Si + biochar enhanced the plant

height by 5.08%, leaf area by 31.66%, and cob length by

10.62% when compared to As-contaminated maize plants.

Under control conditions, Si application enhanced the

morphological attributes of leaf area by 10.06% and cob

length by 10.58%, while biochar application enhanced the

leaf area by 6.59% and cob length by 10.58%. Similarly, the

combined application of Si + biochar enhanced the leaf area by

13.78% and cob length by 14.64% (Table 2).

Arsenic stress also affected negatively the yield attributes

of maize plants. It reduced the number of grains per cob by

19.66%, 100-grain weight by 17.19%, and grain yield per plant

by 19.69%, whereas Si application on As-contaminated plants

enhanced the number of grains per cob by 4.54%, 100-grain

weight by 7.53%, and grain yield per plant by 5.33%. Similarly,

biochar application enhanced the number of grains per cob by

9.73%, 100-grain weight by 11.24%, and grain yield per plant

by 9.91% when compared to As-treated plants. The combined

application of Si + biochar on As treated plants enhanced the

number of grains per cob by 12.07%, 100-grain weight by

13.67%, and grain yield per plant by 12.12%. Under normal

conditions, the sole application of Si enhanced the number of

grains per cob by 6.90%, 100-grain weight by 8.15%, and grain

yield per plant by 6.91%, while biochar application enhanced

the yield attributes such as the number of grains per cob by

8.93%, 100-grain weight by 25.08%, and grain yield per plant

by 8.93%. Moreover, the combination of Si + biochar

increased the number of grains per cob by 13.85%, 100-

grain weight by 14.23%, and grain yield per plant by

13.84% when compared with the control treatment (Table 2).

Photosynthetic pigments

Analyses of variance depicted significant differences (p <
0.05) among the treatments for Chl a, Chl b, and Chl a + b

(Figure 1). Chl a, Chl b, and Chl a + b contents in maize were

significantly reduced by As toxicity. It was observed that As

contamination reduced Chl a by 5.18%, Chl b by 33.87%, and Chl

a + b by 11.67%, whereas the application of Si in As-

contaminated plants improved Chl a by 9.86%, Chl b by

22.64%, and Chl a + b by 12.31% (Figure 1). Similarly,

biochar application in As-treated plants improved Chl a by

9.45%, Chl b by 19.60%, and Chl a + b by 11.35%. However,

the combined application of Si + biochar improved Chl a by

14.46%, Chl. b by 25.45%, and Chl a + b by 16.26%. The sole

application of Si in non–As-contaminated plants (control)

improved Chl a by 14.51%, Chl b by 19.48%, and Chl a + b

by 15.69%. While biochar improved Chl a by 13.11%, Chl b by

TABLE 2 Effect of sole and combined applications of Si and biochar (Bc) on leaf area, plant height, cob length, number of grains, 100-grainweight, and
grain yield of maize under As toxicity (values are the average of three replication ± standard error).

Treatments Leaf area
(cm2)

Plant height
(cm)

Cob length
(cm)

Number of
grains per
cob

100-grain weight
(g)

Grain yield
per plant
(g)

Ck 208.3 ± 4.05 cd 239.3 ± 2.33 a 16.9 ± 0.26 bc 377.3 ± 10.68 cd 25.9 ± 1.50 a-d 180.5 ± 2.85 c

As 135.3 ± 3.48 f 199.6 ± 4.80 d 14.3 ± 0.58 d 315.3 ± 4.91 f 22.1 ± 1.09 d 150.8 ± 0.92 f

Si 231.6 ± 4.05 ab 226.3 ± 2.96 ab 18.9 ± 0.30 ab 405.3 ± 3.52 bc 28.2 ± 0.78 a-c 193.9 ± 1.68 b

Bc 223.0 ± 3.21 bc 222.0 ± 2.30 bc 18.9 ± 0.18 ab 414.3 ± 3.75 ab 29.5 ± 1.02 ab 198.2 ± 1.79 b

Si + Bc 241.6 ± 3.48 a 235.3 ± 2.33 ab 19.8 ± 0.23 a 438.0 ± 9.29 a 30.2 ± 1.54 a 209.5 ± 4.44 a

As + Si 173.0 ± 4.35 e 208.3 ± 2.33 d 15.4 ± 0.45 cd 330.3 ± 13.71 ef 23.9 ± 0.81 cd 159.3 ± 4.35 ef

As + Bc 179.0 ± 3.60 e 205.6 ± 4.97 d 15.1 ± 0.26 c 349.3 ± 4.40 de 24.9 ± 0.31 cd 167.4 ± 0.66 de

As + Si + Bc 198.0 ± 2.64 d 210.3 ± 2.33 cd 16.0 ± 1.29 cd 358.6 ± 2.66 de 25.6 ± 0.99 b-d 171.6 ± 1.72 cd

LSD ≤ 0.01 15.06 13.3 2.3 31.5 4.44 11.0
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7.46%, and Chl a + b by 11.89% in non-stressed plants. While the

combination of Si + biochar improved the contents of Chl a by

20.30%, Chl b by 26.19%, and Chl a + b by 21.71% in maize leaves

(Figure 1).

Primary metabolites accumulation

Arsenic stress significantly reduced the metabolites in

maize leaves. The results revealed a significant difference

(p < 0.05) among the treatments for organic osmolytes

production (Figure 2). As toxicity reduced total soluble

proteins by 54.93%, free amino acids by 38.59%, and total

phenolic contents by 20.22% when compared with the control

treatment. The application of Si enhanced total soluble

proteins by 24.79%, free amino acids by 24.85%, total

soluble sugars by 39.77%, and total phenolic contents by

25.88% under As toxicity. While biochar application on As-

contaminated plants improved total soluble proteins by

26.76%, free amino acids by 26.50%, total soluble sugars

by 46.95%, and total phenolic contents by 27.93%.

Moreover, the combination of Si + biochar improved total

soluble proteins by 38.21%, free amino acids by 38.13%, total

soluble sugars by 50.90%, and total phenolic contents by

32.36%. However, in the non–As-contaminated treatment,

the sole application of Si improved total soluble proteins by

2.5%, free amino acids by 2.6%, total soluble sugars by 7.79%,

and total phenolic contents by 16.29%, while sole biochar

application enhanced total soluble proteins by 10.62%, free

amino acids by 10.60%, total soluble sugars by 28.57%, and

total phenolic contents by 30.50% in non-contaminated

plants. The combined application of Si and biochar

improved total soluble proteins by 10.17%, free amino

acids by 10.19%, total soluble sugars by 33.01%, and total

phenolic contents by 29.38% when compared with control

conditions (Figure 2).

Enzymatic antioxidants activities

The results revealed a significant difference (p < 0.05)

among the treatments for all the antioxidant enzymatic

activities (Figure 3). It was observed that As stress

significantly enhanced the antioxidants activities,

i.e., 43.51% SOD, 47.93% POD, 47.98% CAT, and 59.02%

APX in leaves of maize plants when compared with the

control treatment (no As, no Si, and no biochar). When Si

was applied in As-stressed plants, it increased SOD by

FIGURE 1
Effect of sole and combined applications of silicon and biochar on chlorophyll a (A), chlorophyll b (B), and chlorophyll a + b (C) of maize under
As toxicity. Bars sharing the same letter do not have a significant (p < 0.05) difference. Error bars show the standard error of mean.
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28.56%, POD by 20.14%, CAT by 19.14%, and APX by 31.25%

when compared to sole As treatment. While the sole

application of biochar on As-contaminated plants

increased the antioxidant activities (SOD, POD, CAT, and

APX) by 20.44, 16.91, 12.78, and 20%, respectively, and the

combined application of Si and biochar significantly

enhanced the antioxidant activities (SOD, POD, CAT, and

APX) by 34.72, 23.12, 24.49, and 35.29%, respectively, when

compared to As stress treatment. On non–As-contaminated

plants, the application of Si enhanced the activities of SOD by

18.36%, POD by 28.39%, and APX by 14.5%, while biochar

enhanced the activities of SOD by 22.58%, POD by 27.21%,

CAT by 9.76%, and APX by 15.29% when compared with the

control treatment. However, the combination of As with Si

enhanced the antioxidant activities (SOD, POD, CAT, and

APX) by 28.56, 20.14, 19.14, and 31.25%, respectively

(Figure 3).

Lipid peroxidation and free proline

The results reveal that application of Si and biochar and

their combination significantly (p < 0.05) improved the As

tolerance in maize plants due to their lower malondialdehyde

(MDA), hydrogen peroxide (H2O2), and electrolytes leakage

(Figure 4). In As-contaminated plants, the sole application of

Si reduced MDA contents by 49.24%, H2O2 by 53.13%, and

electrolyte leakage by 40.86%. While biochar application in

As-treated plants reduced MDA by 38.99%, H2O2 by 28.05%,

and electrolyte leakage by 29.94%. The combined application

of Si + biochar reduced MDA by 82.54%, H2O2 by 74.41%, and

electrolyte leakage by 69.57% in As-treated plants. However,

in controlled conditions, Si application reduced H2O2 by

1.48%, MDA by 13.80%, and electrolyte leakage by 32.97%.

Likewise, biochar reduced H2O2 by 4.88%, MDA by 31.73%,

and electrolyte leakage by 24.22%, while the combination of Si

FIGURE 2
Effect of sole and combined applications of silicon and biochar on total soluble proteins (A), free amino acids (B), total soluble sugars (C), and
total phenolic contents (D) of maize under As toxicity. Bars sharing the same letter do not have a significant (p < 0.05) difference. Error bars show the
standard error of mean.
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+ biochar reduced H2O2 by 4.57%, MDA by 10.32%, and

electrolyte leakage by 42.00% when compared with the control

environment (Figure 4).

Silicon and arsenic accumulation in shoots
and grains

It was observed that when As stress was imposed on

maize plants, it significantly (p < 0.05) reduced Si contents in

shoots of maize by 33.67%. However, when Si was applied to

As-treated plants, the Si contents increased up to 52.54%,

while biochar application to As-treated plants enhanced the

Si activity by 33.42%. The combined application of Si +

biochar enhanced the Si contents by 53.70% in shoots of

maize contaminated with As. Under control conditions, Si

application enhanced the Si contents in shoots by 37.77%,

while biochar application enhanced the Si contents in shoots

by 5.15%. Moreover, the combination of Si and biochar

increased the Si contents by 31.84% in shoots of maize.

Arsenic stress enhanced the As concentration by 68.42%

in shoots and by 68.96% in grains of maize. When Si was

applied to As-contaminated plants, it reduced the As

concentration by 40.74% in shoots and by 93.33% in

grains of maize. While biochar application to As-

contaminated plants reduced the As concentration by

31.03% in shoots and by 70.58% in grains of maize. The

combination of Si + biochar reduced the As concentration by

68.88% in shoots and by 141.66% in grains of maize

(Figure 5).

FIGURE 3
Effect of sole and combined application of silicon and biochar on superoxidase dismutase (A), peroxidase (B), catalase (C), and ascorbate
peroxidase (D) of maize under As toxicity. Bars sharing the same letter do not have a significant (p < 0.05) difference. Error bars show the standard
error of mean.
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Discussion

Silicon is the second most abundant element on Earth, and

it is important for the alleviation of As toxicity as it shares the

same uptake pathway with As (Vaculík et al., 2020; Koleva

et al., 2022). Moreover, the interaction of biochar with Si is

also important as biochar increases the pH of the soil (Kim

et al., 2018), and higher pH facilitates the uptake of Si

(Sirisuntornlak et al., 2021). Therefore, the current study

aimed to investigate the interactive effect of Si and biochar

on the growth, physiology, and productivity of maize grown

under As-contaminated conditions. Arsenic accumulation in

leaves deteriorates the green pigments and reduces iron

uptake (Anjum et al., 2017; Mehmood et al., 2017; Zhou

et al., 2020), which in return reduces the photosynthetic

efficiency and ultimately hinders plant growth and

development.

Effect of silicon and biochar on
morphological and yield attributes under
arsenic toxicity

Reduction in the growth and yield of maize due to As

toxicity can be attributed to an increase in the production of

ROS and higher electrolyte leakage (Figure 3). The combination

of biochar and Si improved the chlorophyll pigments, organic

osmolytes, and the antioxidant defense mechanism (Figures

1–3; Kashif et al., 2021; Alam et al., 2019; Abbas et al., 2018),

which could have also contributed toward better yield

attributes. For some attributes (plant height, leaf area, and

cob length), differences were statistically on par for sole

applications of Si and biochar and their combinations under

As toxicity; nevertheless, for 100-grain weight and grain yield,

the combination of Si and biochar performed better than their

sole applications.

FIGURE 4
Effect of sole and combined application of silicon and biochar on hydrogen peroxide (A), malondialdehyde content (B), electrolytes leakage (C),
and free proline (D) of maize under As toxicity. Bars sharing the same letter do not have a significant (p < 0.05) difference. Error bars show the
standard error of mean.
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Effect of silicon and biochar on
physiological and biochemical attributes
under arsenic toxicity

In the current study, Si and biochar improved chlorophyll

contents under both control and As toxicity conditions,

indicating a lower As accumulation in leaves. Moreover, As

toxicity promotes the production of ROS and reduces

osmolyte production, which has detrimental effects on the

physiology and enzymatic activities of plants (Abbas et al.,

2018; Alam et al., 2019). In the current study, As toxicity

reduced the production of osmolytes such as free amino acids,

proline, total soluble sugars, and total soluble proteins

(Figure 2) and enhanced the production of ROS and

electrolyte leakage (Figure 4). Plants have an inbuilt

defense mechanism for the production of antioxidant

enzymes, which neutralizes the toxic effects of external

elements. It has been reported in separate studies that

biochar and Si improve the antioxidant defense mechanism

and production of osmolytes under abiotic stress conditions

(Ahmad et al., 2021; Kashif et al., 2021). Kashif et al. (2021)

reported that Si application of 100 mg kg−1 soil alleviated As

toxicity in maize seedlings by improving the antioxidant

defense mechanism and production of osmolytes. These

findings strengthen our results where biochar and Si

improved the production of antioxidants and osmolytes

(Figures 2 and 3) which might have reduced the production

of ROS and electrolyte leakage (Figure 4) and improved plant

growth and development. Pandey et al. (2016) have reported

that the application of Si improved root traits and reduced the

production of H2O2 and MDA in mustard (Brassica juncea L.)

grown under As-contaminated conditions.

Silicon is an important nutrient that alleviates abiotic stress

in plants by improving the physiochemical processes of the plant.

In the current study, the interactive effect of Si and biochar

improved crop productivity relative to the sole application of

FIGURE 5
Effect of sole and combined application of silicon and biochar on shoot Si concentration (A), shoot As concentration (B), and grain As
concentration (C) of maize under As toxicity. Bars sharing the same letter do not have a significant (p < 0.05) difference. Error bars show the standard
error of mean.
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either Si or biochar. This interactive effect is attributed to heavy

metal detoxification by biochar (Zhou et al., 2022) on the one

hand and improvement in bioavailability of Si (Li et al., 2019) on

the other hand, both of which are beneficial for crop productivity,

thus increasing productivity and reducing the detrimental effects

of As.

Effect of silicon and biochar on uptake of
arsenic

The presence of Si in the soil reduces the uptake of heavy

metals, and its presence in plants alleviates toxicity. Various

methods have been implied to reduce As uptake by plants,

out of which the use of inorganic nutrients which can

compete with As uptake/contents is the most viable

(Bakhat et al., 2017; Kim et al., 2021). Our results

depicted that Si application decreases As uptake, which

could be attributed to competition for similar transport

channels (Lsi1 and Lsi2) between Si and As (Ma and

Yamaji, 2006; Bogdan and Schenk, 2009; Fleck et al.,

2013). Bogdan and Schenk (2009) found a significant

inverse relationship between As and Si uptake in rice.

Fleck et al. (2013) reported that Si reduces the uptake of

As (III) in rice plants, which results in a lower concentration

of As (III) in rice grains.

Biochar is an organic amendment that improves the

nutrient status of the soil. Liu et al. (2014) conducted a

comprehensive experiment across multiple locations and

demonstrated that soil amendment with biochar improves

Si uptake by increasing the pH of the soil. Although uptake of

As increases with increase in pH (Marin et al., 1993; Dai et al.,

2019), some researchers have also reported an increase in As

uptake with the application of biochar (Brennan et al., 2014).

On the contrary, this study has shown that biochar application

increases Si uptake and reduces As contents (Figure 5). At the

molecular level, it has been found that the combination of Si

and biochar (Si-rich biochar) downregulates the expression of

Si-As transporter genes (Wang et al., 2019, 2020), which in

return reduces the uptake of As, as both share the same

transport channel. Therefore, it may be beneficial to use Si

with biochar in As-contaminated soils to minimize the root

transport of As and its translocation to above-ground plant

parts. Zama et al. (2018) reported that Si-rich biochar had

decreased As accumulation in spinach leaves by 37% and

improved dry matter yield by 67% when compared with

control, and an increase in dry matter yield was correlated

with Si uptake. Similar findings have also been reported in

peas and turnips (Khan et al., 2015; Alam et al., 2020). Thus,

for sustainable yield and to reduce As uptake in As-

contaminated soils, the combined application of Si and

biochar has proved to be more useful.

Conclusion

The interactive effect of Si and biochar alleviated the toxic effects

of As by improving the chlorophyll pigments and production ofmore

organic osmolytes, while enhancing the antioxidant enzymatic

defense mechanism. The interactive effect of Si and biochar

attributed to the competition of Si uptake with As, enhancement

of Si availability by biochar, and reduction in uptake of As by biochar,

all of which are evident from shoot As and Si contents. As there are

only limited studies those depict alleviation of As toxicity along with

improved grain yield of maize with combined application of Si and

biochar, commercial recommendations may only be made after

extensive field studies across different agroecological regions.
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