
Water quality monitoring and
assessment based on cruise
monitoring, remote sensing, and
deep learning: A case study of
Qingcaosha Reservoir

Jing Qian1*, Hongbo Liu2, Li Qian3, Jonas Bauer1, Xiaobai Xue4,
Gongliang Yu5, Qiang He6, Qi Zhou7, Yonghong Bi5 and
Stefan Norra1

1Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2School of
Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China,
3Institute of Informatics, Ludwig Maximilian University of Munich, Munich, Germany, 4MioTech
Research, Yingtou Information Technology (Shanghai) Limited, Shanghai, China, 5State Key Laboratory
of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences,
Wuhan, China, 6Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of
Education, College of Environmental and Ecology, Chongqing University, Chongqing, China, 7College
of Environmental Science and Engineering, Tongji University, Shanghai, China

Accurate monitoring and assessment of the environmental state, as a prerequisite

for improved action, is valuable and necessary because of the growing number of

environmental problems that have harmful effects on natural systems and human

society. This study developed an integrated novel framework containing three

modules remote sensing technology (RST), cruise monitoring technology (CMT),

and deep learning to achieve a robust performance for environmental monitoring

and the subsequent assessment. The deep neural network (DNN), a type of deep

learning, can adapt and take advantage of the big data platformeffectively provided

by RST and CMT to obtain more accurate and improved monitoring results. It was

proved by our case study in the Qingcaosha Reservoir (QCSR) that DNN showed a

more robust performance (R2 = 0.89 for pH, R2 = 0.77 for DO, R2 = 0.86 for

conductivity, and R2 = 0.95 for backscattered particles) compared to the traditional

machine learning, including multiple linear regression, support vector regression,

and random forest regression. Based on the monitoring results, the water quality

assessment of QCSR was achieved by applying a deep learning algorithm called

improved deep embedding clustering. Deep clustering analysis enables the

scientific delineation of joint control regions and determines the characteristic

factors of each area. This study presents the high value of the framework with a

core of big datamining for environmentalmonitoring and follow-up assessment in

a manner of high frequency, multidimensionality, and deep hierarchy.
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1 Introduction

A growing population and climate change along with land

use changes are increasing pollutant loads into freshwater

ecosystems, making clean water an increasingly critical issue

worldwide Sagan et al. (2020). As one of the indispensable

foundations of clean water management, developing an

economical, accurate, and practical water quality monitoring

and assessing system has become unavoidable to scientists,

policymakers, and environmental resource managers.

The traditional and widely applied water quality monitoring

is point-based, placing a fixed site of varying density and

dispersion in the area to measure the water quality within a

given time series. However, limited research resources such as

staff, time, equipment, money, and accessibility become a

challenge. Thus, the spatial interpolation method was

conducted to estimate water quality by limited monitoring

points Li and Heap (2014). This method required a massive

decentralized monitoring point across the study area, which is

also subjected to limited research resources Lee et al. (2012).

With the significant development of sensors, cruise

monitoring technology (CMT) has proven to be more

effective for extracting environment-related parameters

compared to point-based monitoring Holbach et al. (2014). It

relies on a multisensor probe to record the water quality data as

well as consecutive geographic information along the cruise

route. Although CMT makes progress in monitoring

compared to the point-based method because it can collect a

large amount of in situ measurement data in a certain period of

time, a route design is still necessary since the geographic

information is a key parameter to spatial interpolation modeling.

In recent years, remote sensing technology (RST) has

developed rapidly and played a significant role in the data

collection and analysis of different Earth resources Feyisa

et al. (2014). The data collected by RST are area-based since

RST can scan the objective area directly. The status of water

quality in a broader space is obtained according to an inversion

model established using the in situ monitoring data (i.e., water

quality parameters) and corresponding RST image data Yuan

et al. (2020). According to the interaction with light, water-

quality parameters can be categorized into optical parameters

(i.e., chlorophyll-a and turbidity) and nonoptical parameters

(i.e., dissolved oxygen); it should be noted that most of the

studies have focused on optical parameters, and the detection

accuracy for nonoptical parameters is not high Hassan et al.

(2021). Specific internal correlations between spectral

information and nonoptical parameters are very complex and

challenging to find due to the absence of direct optical properties

Niu et al. (2021). Therefore, data-driven machine learning has

become an indispensable tool for finding this complex

correlation Zhong et al. (2021) Sagan et al. (2020). In earlier

studies, linear approaches such as multiple linear regression

(MLR), partial least squares (PLSs), and genetic algorithms

(GAs) were popular Ortiz-Casas and Peña-Martinez (1989);

Stork and Autrey (2005); Zhan et al. (2003). Although linear

models showed some degree of accuracy and feasibility, the

nonlinear relationship between the in situ measured data and

RST data makes the linear models less reliable in interpreting

information from RST Chang et al. (2015). With the

development of machine learning, several nonlinear

approaches such as support vector regression (SVR), random

forest regression (RFR), and gradient boosting decision tree

(GBDT) have been developed and applied by many scientists

to capture complex statistical relationships between RST and

measured water quality parameters in recent years Kim et al.

(2014); Forkuor et al. (2017); Abdel-Rahman et al. (2013). With

the advances in algorithm development and computing power,

the drawbacks of traditional machine learning become apparent,

while deep learning, with its powerful big data processing

capabilities, is receiving more attention. In our framework,

deep neural networks (DNNs), one type of deep learning,

were selected as a tool to approximate the complex nonlinear

relationship between measured water quality parameters and

RST observations through multilayer perception Marçais and de

Dreuzy (2017).

It is important to note that the performance of deep learning

methods is particularly dependent on a large number of training

samples, which is difficult to obtain in real-world scenarios Sagan

et al. (2020). The CMT mentioned earlier can significantly

increase the speed of acquiring training samples, thus

providing a sufficient database for deep learning RST

inversion model building. On the other hand, RST, to a

certain degree, liberates CMT from dependence on route

design since geographic information is not involved in the

inversion modeling.

As an important part of the water monitoring project, a

representative and reliable assessment of water quality is

necessary because of the spatial and temporal variability of

water parameters Simeonov et al. (2003). The conventional

methods for assessing the quality of water bodies are the

single-factor assessment method, water quality grading

method, and comprehensive pollution index method. These

methods play an active role in the assessment process of

water quality. However, the single-factor assessment method

does not fully describe the overall water quality when there

are multiple impairments. The water quality grading method

ignores the influence of extreme contributing factors (maximum

and minimum pollutant parameter values), making it difficult to

assess the overall water quality conditions between sites when

extreme conditions occur. The calculation result of the

comprehensive pollution index method is a relative value and

cannot indicate the specific water quality classification Ji et al.

(2016). In particular, when faced with the huge and complex

matrix of water quality attributes formed by the establishment of

a big data platform like this study, making a meaningful water

quality assessment is often difficult Singh et al. (2005). A cluster

Frontiers in Environmental Science frontiersin.org02

Qian et al. 10.3389/fenvs.2022.979133

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.979133


analysis can be applied to interpret these complex data matrices

to help understand the water quality and ecological status of the

studied systems, identifying the possible resources and finding

rapid solutions to pollution problems by grouping the data so

that similar elements are assigned to the same group and different

elements are assigned to different ones Vo-Van et al. (2020);

Simeonov et al. (2003). Additionally, considering that deep

clustering is more effective at analyzing big data than

traditional clustering methods Guo et al. (2017), such as

K-means and C-means, an advanced deep learning clustering

algorithm, improved deep embedded clustering (IDEC), was

used for the water quality assessment in this study.

The aim of this study is to develop a novel framework with a

core of big data mining, integrating (1) CMT data from

multisensor monitoring systems, 2) RST information from the

satellites, and 3) deep learning for rapid and effective overall

water quality evaluation and the follow-up assessment of the

environmental situation. This novel framework was applied in

the Qingcaosha Reservoir (QCSR), located in Shanghai, to prove

its reasonability and reliability.

FIGURE 1
Schematic illustration of (A) the novel framework and (B) the architecture of DNN.
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2 Materials and methods

To achieve a robust performance in water quality monitoring

and assessment, the framework integrates the following three

modularized parts: RST, CMT, and deep learning. The DNN

model is responsible for efficient water quality monitoring on a

big data platform created by CMT and RST, while the IDEC

model is used for further assessment based on the previous

monitoring results (Figure 1A). A sampling activity in QCSR

(Supplementary Figure S1) was implemented to validate the

performance of the framework. QCSR is one of the largest

tidal reservoirs around the world. It is located in the

middle of the Yangtze River Estuary (31.42–31.49N,

121.55–121.71E), and is the new largest drinking water supply

for about 12 million Shanghai residents Liu et al. (2016a) since

2010 (Figure 2). The reservoir is long and narrow with a surface

area of approximately 70 km2 and an average depth of 2.7 m Liu

et al. (2016b).

2.1 Remote sensing module

Sentinel-2 is an Earth observation satellite designed to

systematically deliver optical imagery at high spatial resolution

(10, 20, and 60m) over land and waters Drusch et al. (2012)

(Supplementary Table S2). Due to its relatively high resolution

and free accessibility, Sentinel-2 is widely used in environmental

research. Its multi-spectral instrument (MSI) acquires 13 spectral

bands from 440 nm to 2,200 nm. The image of Sentinel-2 on

19 January 2020 (the same day as the CMT in situmeasurement)

was downloaded from the official website of the U.S. Geological

Survey (https://earthexplorer.usgs.gov/). The level-1C data

product was selected in this study and this series of data has

been radiometrically and geometrically corrected (including

orthorectification).

RST image is processed in order of radiometric calibration,

atmospheric correction, RST image fusion, and research area

clipping to finish the conversion from images to spectral values

(Figure 1A). One conventional atmospheric correction

algorithm, Fast Line-of-Sight Atmospheric Analysis of

Hypercubes (FLAASH) was set as an atmospheric correction

algorithm in this study Buma and Lee (2020). The specific RST

parameters set, including ground elevation, atmospheric model,

aerosol retrieval, and water retrieval, were found in the files

alongside their respective multispectral images. The RST images

(not including bands 1, 9, and 10) were resampled to 10 m by the

Gram-Schmidt pan sharpening method (Supplementary

Material), one of the most widely used high-quality methods

for RST image fusion Zhang et al. (2019). All of the RST data

processing could be conducted using the packaged functions in

ENVIⓇ. The RST data were processed by Z-score normalization

(Supplementary Material) before being input to the models. It

should be noted that when new data are collected, the

normalization part performs a new normalization of the

FIGURE 2
Study area and cruise route.
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overall data set (containing the previous data set and the new data

set) for the training model.

2.2 Cruise monitoring module

Cruise monitoring with multiple sensors is conducted by

BioFish in this study. It is an aquatic cruise monitoring system

that is equipped with multisensors (Supplementary Table S1) and

connected to a ship by a data transmission cable Udy et al. (2005).

The data of water quality parameters were recorded in real-time

with GPS longitudinal and latitudinal positions. In this study, the

BioFish swam 10 cm below the water surface. One optical

parameter, backscattered particles (BPs, similar to turbidity,

measured by a beam attenuation probe to estimate water

clarity) (Supplementary Material), and three nonoptical

parameters, including electrical conductivity (El.cond),

pH value, and dissolved oxygen (DO), are selected to validate

the performance of the framework.

Due to the limitations of power supply, equipment, time, and

accessibility, the in situ measuring in QCSR was finished within

1 day and the running time was 5 hours. The cruise route is

shown in Figure 2, aiming to cover as much of the study area as

possible. S1 is the start and end point of the cruise route. Seven

stopping points were designed for (S1–S7, see Figure 2) the

BioFish calibration with the YSL ProDSS to ensure the accuracy

of the data. An overview of the data collected by BioFish in QCSR

is displayed in Table 1. The BioFish data were processed by

Z-score normalization (Supplementary Material) and

satellite–ground synchronization matching (Supplementary

Figure S2) before being input into the models (Figure 1A). It

should be noted that the normalization section renormalizes the

new overall dataset when new data are collected.

Since the high sampling density of BioFish means that

multiple BioFish sampling points can be found randomly in a

pixel block of size 10 m × 10 m, determining the BioFish

sampling points within the same pixel block and deriving

their representative values are required. The first step is to

specify the spatial information of all BioFish sampling points

and pixel grid centroids. The geodesic distance Shamai and

Kimmel (2017) between the pixel grid centroid and the

BioFish sampling point can be calculated by the Python

package geopy, with an ellipsoidal model, WGS-84. Then, the

pixel grid corresponding to the BioFish sampling point can be

extracted by finding the shortest geodesic distance between them.

The next step is calculating the representative values of BioFish

measurements within each pixel block by the arithmetic

mean (AM).

2.3 Water quality monitoring model

In this section, deep neural networks and three traditional

machine learning models are used to find the relationship

between RST and CMT and compare their performance,

respectively.

2.3.1 Deep neural network
The deep neural network (DNN) is the basic form of deep

learning and one of the most efficient and powerful tools to

model complex nonlinear relationships Rolnick and Tegmark

(2018). As the left side of Figure 1B shows, DNN is a

connectionist system with multiple hidden layers between the

input and output layers. Each hidden layer contains multiple

neurons, called nodes. Any node in the lth layer must be

connected to any node in the l + 1st layer, and the following

equation indicates the nonlinear relationship between the DNN

layers shown on the right side of Figure 1B:

al+1j � f ∑n
i�1

aliw
l
ij + blj⎛⎝ ⎞⎠,

where ali is the activation value of the ith node in the lth layer,

al+1j is the activation value of the jth node in the l + 1st layer,wl+1
ij is

the weight between ali and al+1j , bl+1j is the bias value of the jth

node in the l + 1st layer, and f (·) is the active function.

The training process is shown on the left side of Figure 1B.

Forward propagation refers to the calculation and storage of

intermediate variables (including outputs) from the input to the

output layer. Back propagation refers to the method of

calculating the gradient of neural network parameters and

updating the parameters depending on the error between the

output and true value. For tuning hyperparameters in this study,

relu Agarap (2018) was set as the active function and adam as the

TABLE 1 Summary statistics of the BioFish data.

Parameter In situ
measuring(n)

Unit Max Min Mean STD*

pH 50081 N/A 8.31 6.20 7.34 0.43

DO 50005 mg/L 13.99 9.39 10.21 0.48

El.cond 50264 mS/cm 0.37 0.20 0.34 0.02

BP 50179 % 8.92 1.27 2.36 1.58

*Standard deviation.
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optimizer of all models. The layer and neural units of models

were (256, 256, 256, 256, 256) except El.cond.-spectral value was

(256, 256, 256). Additionally, batch size and learning rate were

also tuned in a reasonable range.

2.3.2 Multiple linear regression
Linear regression, a typical traditional machine learning

model, is a linear approach for estimating the relationship

between a dependent variable and one or more independent

variables. The case of one independent variable is called simple

linear regression; for two or more, the process is called multiple

linear regression (MLR) Berger et al. (2017). In this study, the

MLR model was built by calling the function in the Python

package scikit-learn. The parameter to be tuned in this study was

the degree of the polynomial features.

2.3.3 Support vector regression
Support vector regression (SVR) is a traditional supervised

machine learning that is applied widely in RST inversion Wagle

et al. (2020). The SVR model was also conducted by calling the

function in the Python package scikit-learn. The radial basis

function was chosen as the kernel of SVR. The parameters that

need to be tuned in this study are the regularization parameter

and the kernel coefficient.

2.3.4 Random forest regression
Random forest regression (RFR) is a traditional machine

learning algorithm for nonlinear regression. It uses an ensemble

learning method that combines a large set of regression trees to

make a more accurate regression than a single regression tree

Kim et al. (2014). The RFRmodel was implemented by calling the

function in the Python package scikit-learn. The n-estimators

and random-state need to be tuned.

2.3.5 Evaluation metrics
Evaluating the performance of a model is an essential step

before practical application. We split each dataset into a training

set and a test set with a ratio of 4:1 and take one at every four

intervals as the test data. Several indicators, including the

coefficient of determination (R2), root mean square error

(RMSE), mean absolute percentage error (MAPE), and

median absolute deviation (MAD), were used to evaluate each

regression model’s accuracy, stability, and inversion ability

(Supplementary Material).

2.4 Water quality assessment model

Improved deep embedded clustering is an unsupervised deep

learning algorithm for clustering. The monitoring results

obtained from the framework were clustered using IDEC, and

points with similar environmental states were grouped based on

the combined effect of all measured water quality parameters

(pH, DO, BP, and El.cond in this study), thus dividing the entire

reservoir into different areas possessing different environmental

states. According to the clustering results, each group’s specific

water quality characteristics can be understood by analyzing the

distribution of each group’s characteristic water quality

parameters. This characteristic of each group is the main

reason why these measurement points are clustered into the

same group, and it can also be described as the characteristic

factor of this group.

The structure of IDEC includes an encoder and a decoder

network Guo et al. (2017) (Supplementary Figure S3). The encoder

network is set as a fully connected multilayer perceptron (MLP)

with dimensions 4-125-125-500-10. The decoder network is a

mirror of the encoder with dimensions 10-500-125-125-4. reluwas

set as the active function and adam as the optimizer of all models.

The coefficient of cluster loss γ is set to 0.1 and batch size to 256.

The convergence threshold δ is set to 0.1%. Also, the update

interval T is one iteration. IDCE and CH method was conducted

by PyTorch. The number of clusters was determined by the

Calinski–harabasz (CH) method Zhao and Fränti (2014).

3 Results

Considering the conceptual merits of the developed

framework, we applied the framework to a database of QCSR

sampling activity to evaluate its performance on inversion and

make the assessment of water quality through clustering results.

TABLE 2 Results of regression model evaluation.

Parameter Model R2 RMSE* MAPE** MAD*

pH MLR 0.55 0.64 0.86 0.41

SVR 0.74 0.55 0.69 0.21

RFR 0.73 0.50 0.57 0.17

DNN 0.89 0.33 0.52 0.10

DO MLR 0.22 0.85 2.83 0.30

SVR 0.24 0.83 1.30 0.12

RFR 0.57 0.65 1.59 0.14

DNN 0.77 0.49 1.61 0.06

El.cond MLR 0.23 0.88 9.62 0.20

SVR 0.33 0.81 1.54 0.08

RFR 0.52 0.67 1.78 0.10

DNN 0.86 0.38 1.74 0.06

BP MLR 0.78 0.44 3.07 0.14

SVR 0.87 0.38 3.34 0.07

RFR 0.87 0.38 2.72 0.06

DNN 0.95 0.26 3.10 0.03

*Units are the same as the respective water quality parameter units.

**Unit is percentage.

The bold-italic values represent the best regression results, respectively.
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FIGURE 3
Regression model performance evaluation by comparison of the predicted data and measured data on a test set, where (A), (B), (C), and (D)
represent the test results of the pH, DO, El.cond, and BP, respectively and (1), (2), (3), and (4) represent the test results of the MLR, SVR, RFR, and DNN,
respectively.
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3.1 Model performance evaluation

Based on the performance of the regression model for four

water quality parameters, several results are achieved.

1) DNN represented the best performance in accuracy and

stability compared to the other three algorithms. The results for the

model performance are summarized in Table 2. Concerning the

inversion of pH, SVR, RFR, and DNN delivered satisfactory results.

DNN achieved the highest R2 = 0.889 and the lowest RMSE = 0.33,

MAPE = 0.52, andMAD = 0.10 that stand for the stability of DNN.

As for the DO and El.cond inversion, DNN achieved the highest

accuracy with R2 = 0.77, 0.86 compared with MLR, SVR, and RFR.

In addition, the lowest RMSE (0.49 for DO and 0.38 for El.cond)

and MAD (0.06 for DO and 0.06 for El. Cond) demonstrated that

DNN has high stability even though the MAPE of DNN is slightly

less than that of SVR.

With respect to the inversion of BP, all models express relatively

satisfactory results. In particular, DNN reached a very high accuracy

with R2 = 0.95 and relatively low RMSE, MAPE, and MAD.

The comparison of predicted values and themeasured values on

the test set are shown in Figure 3. It is found that the slope of DNN

test results (0.90 for pH, 0.67 for DO, 0.82 for El.cond, and 0.92 for

BP) is much larger than those of MRL, SVR, and RFR. Therefore,

DNN significantly improved the inversion accuracy compared with

MLR, SVR, and RFR.

2) The performance of each model increases with increasing

training data size. We randomly select 0–100% of the data in the

original dataset at 10% intervals for training and testing. This

process is performed 50 times for each data size, and then the

average performance of themodel (denoted byR2) and its standard

deviation (Supplementary Material) are calculated at each data

size. As the training data size increases, the results of each water

quality parameter consistently showed an increasing trend of R2

(Figure 4). It can be also found that DNN is highly sensitive to

training data size. The performance of DNN was not the best

among the four models with a small training data size, especially

when less than 30% of the training data size was fed. (Figure 4D).

When 40% or more of the training data are fed, a critical point is

noted, where DNN performance surpasses the other models. In

particular, a significant advantage of DNN can be observed as the

training data size increases from 50% to 100%. Meanwhile, a more

advanced performance of DNN could be expected.

FIGURE 4
Performance of each regression model with increasing training data size, where (A–D) represent the results of the pH, DO, El.cond and BP,
respectively.
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3.2 Application of the developed
framework in QCSR

The concentration heat-maps of each parameter (pH, DO,

El.cond, and BP) are shown in Figures 5A–D, respectively. The

pH value obtained by the developed framework ranges from

6.2 to 8.9, with a mean value of 7.2. The results reveal spatial

difference in that pH value decreases from the head region of

QCSR to the tail region (see Figure 5A). The inverted DO ranges

from 6.90 mg/L to 14.00 mg/L, with a mean value of 10.30 mg/L.

The results show a similar spatial difference as that of pH since

the concentration of DO decreases from Figure 5Bthe head

region to the tail region, as shown in Figure 5B. Differing

from the pH value, a relatively low concentration of DO

occurs in the eastern portion of the reservoir, the tail region.

The result of El.cond ranges from 0.20 mS/cm to 0.44 mS/cm,

with a mean value of 0.34 mS/cm. El.cond observed in the head

region is lower than that of the rest area (see Figure 5C). The

inverted BP ranges from 0.10 to 10.00%, with a mean value of

2.13%. The results show a similar spatial difference as that of

pH since BP decreases from the head to the tail region, as shown

in Figure 5D.

FIGURE 5
Distribution of (A) pH, (B) DO, (C) El.cond, and (D) BP in QCSR based on the framework.

TABLE 3 Summary statistics of each group.

Group Parameter* Max Min STD** Median

Group I pH 9.00 6.20 0.25 7.04

DO 14.00 6.90 0.32 10.13

El.cond 0.44 0.20 0.01 0.34

BP 3.02 0.01 0.23 1.57

Group II pH 8.25 6.50 0.27 7.64

DO 13.94 6.90 0.64 9.94

El.cond 0.42 0.20 0.02 0.34

BP 10.08 4.58 1.26 6.11

Group III pH 8.30 6.20 0.223 6.95

DO 14.00 9.15 0.72 12.11

El.cond 0.35 0.20 0.02 0.34

BP 7.47 1.23 0.54 2.60

Group IV pH 9.00 6.20 0.51 7.86

DO 14.00 6.90 0.45 10.26

El.cond 0.44 0.20 0.02 0.34

BP 4.83 1.94 0.52 2.93

*Unit of DO is mg/L; unit of El.cond is mS/cm; unit of BP is percentage.

**Standard deviation.
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The entire QCSR can be divided into four groups of water

bodies by the CH method (Supplementary Material, Figure 4),

which are groups I, II, III, and IV. The summary statistics and

distributions of each group obtained by IDEC are shown in

Table3 and Figure 6. Group I occupied 73.79% of the entire

QCSR area. It exhibits characteristics that the values for each

parameter are in the middle position compared to others.

Group I is dominated from the northeast of the central island

to the tail region. The proportions of group II and III water

were 4.99 and 3.23%, respectively. Group II is characterized by

significantly higher BP values than the other groups and is

distributed at the head of the reservoir and on the southern

shore of the reservoir. Group III shows a higher DO value

compared to other groups and is distributed close to the

drinking water intake. Group IV has a higher pH value

compared to others, indicating a mildly alkaline water

body. Also, it is mainly found to the southwest of the

central island to a lesser extent in the tail region and near

the drinking water intake.

4 Discussion

4.1 Advantages of the novel framework

The design and application of the framework in our case

study demonstrated its high performance in the monitoring and

assessment of water quality. Compared to the previous studies,

the advantages of this framework are summarized as follows.

CMT and RST are mutually integrated into the framework.

CMT provides RST with sufficient in situ measurements, the

prerequisite of the data set. In this study, the training data size

provided by BioFish was nearly 500 times as many as the manual

method within the same time interval Sagan et al. (2020); in

addition, the geographic information of the data is not involved

directly in the training and test process as input, which solves the

problem of space-time limitation of the spatial interpolation

methods to a certain extent. In the case of QCSR, the water

quality parameters far from the cruise route, where no cruise

route can be used nearby, can still be effectively inverted.

The environmental big data platform established by CMT

and RST provides the basis for accurate environmental

information interpretation. RST and CMT have the attributes

of big data and good complementary so that the environmental

big data platform can be built with the cooperation of the two

parts. As shown in Figure 4, the results show an increasing trend

of R2 modelwise as the data size enlarges, indicating a significant

advantage of environmental data analysis in contrast with the

small or medium data platform.

On the big data platform, the adaptability and performance

of deep learning ensure accuracy in monitoring and assessment.

In Figure 4, break-even points can be observed at which the

performance of DNN exceeds those of other traditional machine

learning, especially when 40% or more data are fed. Through the

encoder network with dimensions 4-125-125-500-10 and

decoder network dimensions 10-500-125-125-4, original four-

dimensional features (pH, DO, El.cond, and BP) are transferred

into the new four-dimensional features, which contain much

FIGURE 6
Clustering result of QCSR.
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more information. Based on the updated four-dimensional

features, clustering results are better than those based on the

original four-dimensional features, meaning they are very close

to the real world.

The novel framework formed a closed loop of water quality

research, into which data collection, processing, monitoring, and

assessment are packaged. In the framework, monitoring results

can be mined for further assessment. Joint regional control

strategies are more efficient and effective than single-point

control strategies in environmental management and pollution

control Zhang and Yang (2022). Deep clustering analysis enables

the scientific delineation of joint control regions. Through the

character analysis of the divided joint control area, characteristic

factors of each area can be identified, which can contribute to

defining a joint regional control strategy for the objective area. In

this study, each group is managed as a joint control area, in a way

that depends on the characteristic factors. Elevated BP (low water

clarity) noted in the group II area may cause poor underwater

light climate and loss of submerged macrophytes to switch the

water body from a macrophyte-dominated state to an algae-

dominated one Huang et al. (2021). In addition, the alkaline

water body is one of the stimulatives for algae growth Lin et al.

(2021). This means that the two water quality parameters, BP and

pH, will be the focus of subsequent management and control of

the distribution areas of group II and group IV, respectively.

To further ensure the reliability and accuracy of data

collection, we have several particular strategies. 1) Seven

calibrating points keep BioFish in a well-calibrated condition

during the in situ measuring in order to assure the measuring

accuracy. 2) The day of the satellite transit with cloud cover of

less than 10 % was selected as the sampling day.

4.2 Potentiality of the developed
framework

The developed framework as well as its three modularized

parts show high potential in extensibility.

1) The environmental quality parameters were inverted by

the developed framework by a data-driven approach instead of a

physics- or chemistry-based one. Being data-drivenmakes results

from the developed framework easily and rapidly transform into

inversion of other environmental parameters collected by

different sensors or CMT systems. The implementation was in

the water scenario in this study. Alternately, this framework can

be applicable to the air scenario when using an air quality CMT

system.

2) The developed framework can realize the water quality

monitoring in a timely manner by shortening the revisit time.

The revisit time is defined as the time interval between two

successive a satellite or a system’s observations on the same

ground point on the surface of the Earth Luo et al. (2017). In this

study, we chose the Sentinel-2 satellite system with a 5-day revisit

time as the source of RST images. Accordingly, the need for 5-day

monitoring of the whole target water bodies can bemet with good

weather conditions for RST observation and the availability of all

parties (e.g., financing and labor). Selecting satellites with a

shorter revisit time can increase the monitoring frequency,

enabling the whole QCSR monitoring to keep pace with the

environmental change of frequency, for example, replacing

Sentinel-2 in this article with WorldView-3 (97 min revisit

time) Ye et al. (2017).

A satellite with a spatial and spectral resolution provides a

more precise inversion result and sharper clustering spatial

boundaries by reducing the size of the raster within the

objective area. As such, replacing Sentinel-2 in this article

with WorldView-3 Ye et al. (2017) would obtain an up-to-

date and more accurate result of inversion and clustering.

3) Our experiment in Section 3.1, 3.2 revealed that the

performance of DNN is susceptible to the data size and gains

a significant improvement as the data size increases. The reason

can be seen in Figure 1B that each training iteration results in a

model that is pretrained for the next training iteration after

forward and backward calculations, and this process continues

iteratively. Thus, we can expect a more robust and accurate

model when more data are fed, such as more applications of the

framework. More importantly, as the model was fed and trained

by massive data, the in situ measuring might not be necessary.

4) The deep clustering method dealing with water quality

assessment has advantages for big data sets with higher

dimensional water quality parameters and multiple time

periods. For processing high-dimensional water quality

parameters, IDEC can have more objectives to extract and

transform water quality features, which can make the

clustering results closer to the real situation. In addition, deep

clustering of the data for each time period separately allows for

delineating newly integrated control areas and their

characteristics. In this way, the overall state changes in the

target water bodies can be seen at a glance, such as changes in

the boundaries of each control area and changes in the

characteristics of each control area.

4.3 Future work

Notwithstanding the developed work had several advantages,

it is essential to note that improvements can be a part of

future work.

RST images are significantly affected by weather conditions,

especially cloud cover. An image with less than 35% cloud cover

was regarded as a good practice to satisfy environmental

monitoring requirements Marshall et al. (1994). To ensure

accuracy, the “clear sky” images with less than 10% cloud

cover were applied to the framework. Thus, there was a strict

weather restriction during the in situ measuring. Sometimes the

uncertainty of the weather can make in situ measurements
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fruitless, even though the plan is made according to the weather

forecast.

Furthermore, the cruise monitor’s running does not

synchronize with the satellite’s visit to the objective area. For

instance, it takes Sentinel-2 less than 2 s to cross the QCSR. This

lag prevents the satellite from being in real-time synchronization

with the CMT measurements. In order to hurdle the weather

limitations and eliminate the lag between RST and CMT

measurements, we plan to introduce unmanned aerial vehicles

(UAVs) associated with multispectral sensors into the

framework. Its lower-than-cloud flight altitude reduces the

interference of the cloud. In addition, the synchronized

working pace of UAVs allows for simultaneous data collection

along with the cruise monitor. As a supplementary element of the

framework, UAVs are particularly applicable to small surface

water areas like river bays and estuaries.

Last but not least, the performance of deep learning was

essentially dependent on the data size. Hence, collecting more

data from diverse types of water bodies should be a critical and

indispensable work.

5 Conclusion

An innovative framework was developed with three

modules: RST, CMT, and deep learning. Deep learning uses

the big data platform created by RST and CMT to achieve a

robust performance in water quality monitoring and

assessment. Our testing revealed that the DNN (a type of

deep learning) in the framework has a higher performance in

monitoring four water quality parameters (pH, DO, El.cond,

and BP) than MLR, SVR, and RFR. DNN is highly sensitive to

training data size compared to other models, and the

performance increases significantly with the elevated training

data size. The application of IDEC on the water quality

assessment showed that the entire QCSR was well-defined

and divided into four groups as joint control areas, which

are group I, group II, group III, and group IV. The

characteristic factors of each area were identified, which can

contribute to defining a joint regional control strategy for the

QCSR. Considering the big data platform is the foundation of

this framework, our future work in priority would be collecting

more measured data (RST and CMT) from different water

bodies to increase the capacity of the big data platform and

update the deep learning model in our framework.
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