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Surface PM2.5 concentrations and aerosol optical depth (AOD) are two air

pollution metrics tightly connected. Many studies have used AOD to derive

PM2.5 concentrations without investigating their inconsistencies. Here, we

explored the associations between surface PM2.5 and AOD using ground-

level data from 19 stations in China during 2017–2019. Unexpectedly, we

found low correlation coefficients of 0.03–0.60 between daily PM2.5 and

AOD for most sites. Such decoupling between PM2.5 and AOD is further

compared to simultaneous meteorological factors such as air temperature,

specific humidity, sea level pressure, and wind speed. We found that specific

humidity dominates the correlations with normalized PM2.5-AOD differences at

14 out of 19 sites. On average, specific humidity increases from 2.83 g kg−1 for

the cases with low AODbut high PM2.5–11.89 g kg−1 for thosewith high AODbut

low PM2.5, indicating that hygroscopic growth of aerosols may play an

important role in decoupling the associations between PM2.5 and AOD.

Random forest (RF) models using AOD as the only input yield a low R of

0.49 between the predicted and observed PM2.5 concentrations. The inclusion

of specific humidity in the RF model increases the R to 0.74, close to the R of

0.81 with three additional meteorological factors. Our study revealed a strong

decoupling between PM2.5 and AOD and suggested including specific humidity

as a key parameter in the retrieval of long-term PM2.5 using AOD data in China.
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1 Introduction

China is confronted with frequent haze pollution (Gao et al.,

2015; Li et al., 2021; Zhang et al., 2021), which is mainly caused by

the fine particulate matter smaller than 2.5 µm (PM2.5). Due to

the small size, PM2.5 can stay in the air for a long time and

transport to downwind regions, leading to decreased visibility

(Liu et al., 2017) and increased health risks (Ye et al., 2021) over a

vast area. To monitor the spatiotemporal variability of PM2.5,

thousands of ground sites have been built by the China National

Environmental Monitoring Center (CNEMC) since the year

2013 (Gao et al., 2020). These sites record hourly

concentrations of surface PM2.5 and auxiliary components

such as SO2, NOx, and ozone, providing valuable data for air

pollution prediction (Li et al., 2017a), emission source attribution

(Li et al., 2017b), health impact estimation (Li et al., 2019),

pollution data assimilation (Wang et al., 2020), and so on.

However, most of these explorations are confined to the years

after 2013 due to the data limitations in PM2.5 observations.

To retrieve large-scale characteristics of PM2.5 pollution

before the year 2013, several studies relied on proxy data such

as visibility, radiation, and aerosol optical depth (AOD). For

example, Liu et al. (2017) developed a spatiotemporal linear

mixed-effects model to simulate PM2.5 concentrations in China

during 1957–1964 and 1973–2014 using visibility data as the

predictor. However, the visibility stations are not distributed

evenly and the monitoring methods switched from manual to

automatic in 2013–2014 (Yin et al., 2017; Zhang et al., 2020),

leading to spatiotemporal discontinuity of visibility data in China

and biases in the derived PM2.5 concentrations. As an alternative,

some studies derived PM2.5 concentrations using neural network

models in combination with low-light radiation data in the

visible infrared diurnal band (Wang et al., 2016; Zhao et al.,

2016). The advantage of using nighttime radiation is that PM2.5

concentrations at night can be obtained. However, the presence

of background light, cloud, and fog can affect the inversion

accuracy. More and more studies used AOD as the main

predictor in deriving PM2.5 concentrations (Zhang et al.,

2019b; Unnithan and Gnanappazham, 2020; Zhang and

Kondragunta, 2021). Compared to visibility and radiation

data, the AOD data have better spatiotemporal coverages and

closer links to aerosol concentrations. Ma et al. (2014) developed

a geo-regression weighted model to estimate daily PM2.5

concentrations in China with an overall cross-validation (CV)

R2 of 0.64 using AOD as the dominant factor, demonstrating the

feasibility of deriving PM2.5 concentrations at a spatial resolution

compatible with satellite AOD. Xie et al. (2015b) developed a

mixed-effect model by considering the daily variation of the

PM2.5-AOD relationships and showed good performance in the

prediction of PM2.5 concentrations with R2 of 0.81–0.83.

However, the relationship between AOD and surface PM2.5 is

not simply linear. First, the PM2.5 concentrations usually refer to the

mass content of aerosols at the lowest layer, while the value of AOD

represents the light extinction of aerosols within a total column.

Second, the amount of PM2.5 is determined by the dry mass of

aerosols, while the AOD value is also dependent on air humidity

which changes the light extinction of some particle species due to

their hygroscopic growth (Yue and Liao, 2012). Third, for the same

PM2.5 mass, the varied components can result in different AOD due

to distinct light extinction and absorption of different species (Künzli

et al., 2006; Tao et al., 2012). As a result, the relationship between

AOD and surface PM2.5 is also dependent on meteorological

conditions, such as air temperature (Bai et al., 2016), wind speed

(Chen et al., 2020), boundary layer height (Xu and Zhang, 2020), and

air humidity (Zeng et al., 2018). These meteorological factors can

affect the formation, transportation, distribution, and light properties

of particulate matter. Previous studies combining AOD with

meteorological factors showed improved predictability of surface

PM2.5 (Goldberg et al., 2019; Unnithan and Gnanappazham, 2020).

However, it remains unclear which meteorological variable plays the

dominant role in regulating the PM2.5-AOD relationship and how

much it can improve the prediction of surface PM2.5.

Previous studies tried to explore the PM2.5-AOD

relationships in China using satellite-based AOD (e.g., Yang

et al., 2019). Although satellite data provide a wide spatial

coverage, validations showed the largest divergence of satellite

AOD over Asia compared to ground-based AOD (Chen et al.,

2022). Such biases are likely related to the complex aerosol

compositions and cloud conditions in Asia (Xiao et al., 2016;

Tao et al., 2017), which may hinder the exploration of PM2.5-

AOD relationships over this region. In addition, satellite-based

AOD is usually retrieved once per day (or several days) while

ground-based PM2.5 is measured at the hourly time steps. The

low sampling frequency of satellite data may not represent the

daily mean state of AOD, partly resulting in the mismatch

between satellite-based AOD and ground-based PM2.5. In this

study, we explored the relationships between daily AOD and

PM2.5 concentrations based on site-level observations at

19 stations in China from 2017 to 2019. The ground-based

AOD collect samples 3–20 times per day and can better

indicate the daily average level than satellite products. We

found the decoupled variations of AOD and PM2.5 over these

sites and examined the associated meteorological conditions. We

identified the dominant factors and weather patterns resulting in

the decoupling between AOD and PM2.5. Based on these

analyses, we built random forest models with the most

important meteorological factors to improve the predictivity

of surface PM2.5.

2 Material and methods

2.1 Ground-based AOD data

We used daily AOD data during 2017–2019 from 19 sites at

the Sun-sky radiometer Observation NETwork (SONET, http://
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www.sonet.ac.cn/), which is a ground-based CIMEL radiometer

network providing long-term atmospheric aerosol

characterization over China (Holben et al., 1998; Li et al.,

2014; Li et al., 2018). The main instrument used is the multi-

wavelength polarimetric solar radiometer CE318-DP, which

observes columnar aerosol properties approximately every

15 min (Wei et al., 2020). To ensure data accuracy, regular

staff services are carried out and the instruments are

calibrated once a year. SONET can perform aerosol and water

vapor measurements in multiple channels at different

wavelengths. More than 20 aerosol parameters including AOD

and single scattering albedo (SSA) are estimated. The SONET

data have been fully evaluated and widely used in the analyses of

particle size distribution and aerosol radiative effects (Xie et al.,

2015a; Zhang et al., 2019a; Huang et al., 2020).

As of 2019, SONET built a total of 20 permanent sites, in

which the data of 19 stations are used for this study. These sites

are distributed unevenly with more in central and eastern China

(Figure 1), especially over industrialized areas such as North

China Plain (Beijing, Jiaozuo, Songshan, Yanqihu), Yangtze

River Delta (Hefei, Nanjing, Shanghai, Zhoushan), Pearl River

Delta (Guangzhou), and Sichuan Basin (Chengdu). In addition,

nine sites are built in less populated areas with varied topography

or land types, including four in the Northwest (Xian, Minqin,

Zhangye, Kashi), one in the Southwest (Lhasa), one in the

Northeast (Harbin), and three in the South (Sanya, Guilin,

Nanning). Some sites are affected by large particles such as

dust (Kashi, Minqin, Zhangye) and sea salt (Sanya, Zhoushan)

aerosols. Since AOD of smaller wavelength is less sensitive to

larger particles, we selected daily AOD at 440 nm for non-rainfall

days to study the associations with PM2.5. We also used SSA data

on the same days at the 19 sites to explore the possible impacts of

aerosol compositions on the PM2.5-AOD relationship.

2.2 Ground-based PM2.5 data

We used daily PM2.5 mass concentration data from

1,580 sites at the China National Environmental Monitoring

Center (CNEMC) network (https://air.cnemc.cn:18007/) during

2017–2019. The monitoring stations are shown in Figure 1.

Continuous and automated monitoring of PM2.5 mass

concentrations is usually performed using the tapered element

oscillating microbalance method (TEOM) (Chen et al., 2018;

Kong et al., 2021). Data pre-processing is then performed in the

laboratory to eliminate deviations. We located the CNEMC sites

with the closest distance to SONET sites to represent the PM2.5

pollution level at SONET sites. The PM2.5 concentrations on the

same days as SONET observations are collected.

2.3 Meteorological data

We used meteorological reanalyses data of ERA5 from the

European Centre for Medium-Range Weather Forecasts

(ECMWF, https://cds.climate.copernicus.eu/). The

ERA5 provides near-surface meteorological variables at the

hourly time step from the year 1979. Compared to the

previous ECMWF products (e.g., ERA-Interim), the ERA5 has

improved model parameters, finer spatiotemporal resolution,

and higher data accuracy (Hoffmann et al., 2019; Hersbach

et al., 2020). For this study, we used air temperature (T, °C),

sea level pressure (P, Pa), wind speed (W, m s−1), and specific

humidity (Q, g kg−1) at the 0.25° × 0.25° surface grids in China

during 2017–2019. Previous studies have found that boundary

layer height (BLH) is an important metric influencing surface

PM2.5 (Miao et al., 2018, Miao et al.,2019; Feng et al., 2021).

However, we do not include this variable in the analyses because

the BLH data are in general assimilated without enough coverage

of observations and show large variations among different

products (Seibert, 2000; Zang et al., 2017). We also used

meteorological data from the Modern-Era Retrospective

analysis for Research and Applications, Version 2 (MERRA-2,

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/) as a

comparison. The hourly meteorology is averaged to the daily

scale and interpolated to the SONET sites for the corresponding

days. Furthermore, the gridded data are used to derive the

favorable weather patterns for the PM2.5-AOD associations.

2.4 Index for PM2.5-AOD associations

Analyses showed that changes of PM2.5 concentrations and

AOD may have both consistent and inconsistent tendencies. To

FIGURE 1
Locations of SONET sites (red pentagrams) and annual PM2.5

concentrations (µg m−3) at 1580 CNEMC sites (solid points).
Different colors indicate different ranges of PM2.5 concentrations.
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facilitate the comparisons between PM2.5 and AOD variations,

we normalized both variables using the Z-score method:

Z � x − μ

σ
(1)

where x is either PM2.5 or AOD time series, µ is the mean value

and σ is the standard deviation. We then define U index as their

differences:

U � Zpm2.5 − ZAOD (2)

Here, Zpm2.5 and ZAOD are the normalized daily PM2.5

concentrations and AOD, respectively. The positive U value

indicates that PM2.5 is higher than the level correspondent to

AOD values, and vice verse. By calculating the correlation

coefficients (R) between U index and individual

meteorological variables, we identified the dominant

meteorology regulating the PM2.5-AOD associations.

2.5 Random forest model

We built Random Forest (RF) models to predict PM2.5

concentrations based on daily AOD and meteorological

variables. The RF consists of a large number of regression

trees with random attribute selections in the training process

of bootstrap aggregation (Zhao et al., 2020; Chen et al., 2021).

The training subset is randomly sampled with put-back to get

multiple sample sets, which are then randomly selected as

alternative features for decision making under the current

node. During this training process, the features that best drive

the training samples are selected. After obtaining the desired

decision trees, the best prediction results are obtained by voting

method and majority outcome method. In summary, random

forest is to find the most stable and reliable results by a large

number of underlying tree models (Zamani Joharestani et al.,

2019; Kianian et al., 2021; Sun et al., 2021). In this study, we used

AOD as the basic input for RF models to predict PM2.5

concentrations. Different combinations of meteorological

variables (T, P, W, Q) are used as additional inputs for the

RF models to improve the prediction of PM2.5 concentrations.

For each RF model, 50% of the data are used as training samples

and the rest are used for validations.

3 Results

3.1 The associated variations between
PM2.5 and AOD

PM2.5 concentrations show high values of 60–80 µg m−3 over

the North China Plain (Figure 1), where large anthropogenic

emissions locate (Quan et al., 2011; Zhao et al., 2013). Outside

this center, PM2.5 decreases gradually to 0–40 µg m−3 in the

periphery area. Some exceptionally high PM2.5 sites are found

in the West, where dust emissions affect the local air quality and

PM2.5 concentrations (Zhao et al., 2010; Nobakht et al., 2021).

For 19 SONET sites, the highest PM2.5 of 104.4 µg m
−3 is found at

Kashi and the lowest value of 12.2 µg m−3 is at Lhasa (Figure 2).

For most sites, monthly PM2.5 shows higher values in winter

(December-February) season than that in summer (June-

August). On average, the mean PM2.5 level in the winter is

higher by 39.08 µg m−3 (148%) than that in summer for

SONET sites, with the highest ratio of 341% at Harbin and

the lowest of 59.7% at Beijing. For most sites, PM2.5

concentrations show decreasing trend, with the largest

reduction of 22.07 µg m−3 (28.4%) at the site Lhasa in

2019 relative to 2017.

The seasonal variation of AOD shows decoupling tendencies

with PM2.5. For 17 out of 19 SONET sites, small R of

0.03–0.60 are achieved between the daily AOD and PM2.5.

The site Kashi shows the highest R but with AOD data

available for only 7 months. About half of the sites show peak

AOD in summer, opposite to the winter maximum of PM2.5

concentrations. Such difference in the seasonality of AOD and

PM2.5 data in part contributes to the low PM2.5-AOD

associations. Some sites exhibit maximum AOD in spring

(e.g., Guangzhou, Guilin, and Nanning) while PM2.5 does not

show corresponding peaks. For these sites, local AOD is likely

enhanced by the cross-boundary transport of biomass burning

aerosols from Southeast Asia during spring seasons (Tie et al.,

2001; Martin et al., 2003; Deng et al., 2008). These transported

aerosols are tend to float at the high altitudes and cause limited

impacts on the surface PM2.5 concentrations. Only three sites

(Chengdu, Nanjing, and Xian) show peak AOD in winter,

consistent with the seasonal variations of surface PM2.5.

However, the correlation coefficients between the daily AOD

and PM2.5 are only 0.24–0.5 at these sites. In general, we found a

low association between the variations of AOD and PM2.5 at the

SONET sites.

3.2 Impact of meteorology on PM2.5-AOD
associations

We collected daily PM2.5, AOD, and corresponding

meteorological variables at SONET sites (Figure 3). For all

data samples, a low R of 0.43 is achieved between PM2.5 and

AOD. We found a general ratio of 100 between the values of

PM2.5 concentrations and AOD. Accordingly, we divided the

PM2.5-AOD pairs into three domains with an angle interval of 30°

against the x axis. Within domain I, the PM2.5-AOD ratio

of >500/3 is higher than the mean state of 100, suggesting

that PM2.5 is higher than the “normal” value associated with

AOD. For domain III, the PM2.5-AOD ratio of <300/5 is lower

than 100, indicating a high AOD with relatively low PM2.5. The

rest of samples are located in domain II, which represents
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consistent levels for AOD and PM2.5. Ideally, if the AOD and

PM2.5 are strongly connected, most of the samples should be

within domain II with nearly linear responses. Actually, 23.2% of

paired samples are located in domain I, 22.2% in domain III, and

54.6% in domain II, suggesting that changes of PM2.5 and AOD

are decoupled for half of the time.

We found strong impacts of meteorology on the association

between PM2.5 and AOD. Relatively lower air humidity

(Figure 3A) and temperature (Figure 3C), but higher wind

speed (Figure 3B) and air pressure (Figure 3D) are found for

the paired samples in domain I (high PM2.5 with low AOD) than

that in domain III (high AOD with low PM2.5). On average,

specific humidity is lower by 9.06 g kg−1 (76.2%, p < 0.05) and air

temperature is lower by 16.7°C (p < 0.05) at the domain I than

that at the domain III. In contrast, wind speed is higher by 0.06 m

s−1 (1.1%, p > 0.05) and sea level pressure is higher by 8.52 hPa

(0.8%, p < 0.05) at the domain I than that at the domain III. The

meteorological conditions for domain II are normally within the

range of that for domain I and III. We found the most significant

differences in air humidity and temperature for different

domains, suggesting that these two meteorological factors may

act as dominant roles in regulating the associations between

PM2.5 and AOD. For specific humidity (Figure 3A), the higher

water content (usually in summer) can result in the larger AOD

with strong hygroscopic growth, leading to faster increase of

AOD even with low PM2.5 (domain III). For temperature

(Figure 3C), the cold air (usually in winter) is normally

associated with low boundary layer height, increasing surface

PM2.5 by confining more particles in the low level (domain I).

We further identified the dominant weather patterns

resulting in the decoupled variations between PM2.5 and

AOD. For each of three domains (Figure 3A), we screened the

typical day on which the maximum occurrence of sites is present

for the same domain. As a result, a winter day (22 December

2017) with 12 sites is selected for domain I, a spring day

(10 March 2017) with 12 sites is selected for domain II, and a

summer day (17 July 2017) with 7 sites is selected for domain III.

We then calculated the deviation of those typical days from the

annual mean state (Figure 4). In Winter, the dry (Figure 4A) and

cold (Figure 4C) air associated with high pressure (Figure 4D)

systems (such as the Mongolian High) increases atmospheric

stability and promotes the accumulation of aerosol particles at

the low levels. Such weather pattern is more favorable for haze

pollution with high PM2.5 concentrations (Shi et al., 2020; Zhang

et al., 2022). In summer, the humid (Figure 4I) and warm

(Figure 4K) air associated with low pressure (Figure 4L)

systems promotes vertical convection and increases the

hygroscopic growth of aerosols, leading to relatively low PM2.5

FIGURE 2
Monthly mean PM2.5 (µg m−3) and AOD at 19 SONET sites from 2017 to 2019. The correlation coefficient (R) between daily PM2.5 and AOD is
shown at the top of each panel.
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concentrations near surface while high AOD of the whole

column (domain III). In spring or autumn, the weather

pattern provides medium levels of humidity (Figure 4E) and

temperature (Figure 4G) that favor the coupling between AOD

and PM2.5 concentrations (domain II). Compared to other

meteorological factors, surface wind shows limited differences

among the three domains over most of China except for

Northeastern region (Figures 4B,F,J).

3.3 Key meteorological factors improving
PM2.5 predictions

To identify the dominant meteorological variable influencing

the associations between PM2.5 and AOD, we calculated the R

between individual meteorological factors and the normalized

PM2.5-AOD differences (U index). For almost all SONET sites,

negative R is achieved for specific humidity and air temperature

when correlating with daily U index (Figure 5). In contrast, the R

is generally positive between sea level pressure and U index. The

impact of surface wind speed is limited, as the R values are usually

within −0.2 to 0.3. Among the four meteorological factors,

specific humidity acts as the dominant driver at 14 out of

19 sites with the largest R in magnitude. As a result, the

anomalous levels of air humidity are more likely resulting in

the decoupled variations for PM2.5 and AOD.

We then explored the effects of meteorological variables on

the prediction of surface PM2.5 concentrations. Figure 6A shows

that when only AOD is considered in the RF model, the

prediction yields a very low R of 0.49 against the observed

PM2.5. In contrast, if all the four meteorological variables are

fed into the model together with AOD, the R shows a significant

improvement to the value of 0.81 (Figure 6B), suggesting that

inclusion of more meteorological factors can better capture the

associated changes in PM2.5 and AOD. Sensitivity tests with

single meteorological variables showed that the combination of

AOD and specific humidity alone can improve the R from 0.49 to

0.74 (Figure 6C), very close to the effect with all four

meteorological variables. As a comparison, RF models with

other individual meteorological variables such as surface air

temperature (Figure 6D), sea level pressure (Figure 6E), and

wind speed (Figure 6F) result in lower R from 0.60 to 0.70. Our

FIGURE 3
Dependence of PM2.5-AOD relationships onmeteorological factors of (A) specific humidity (g kg−1), (B)wind speed (m s−1), (C) temperature (°C),
(D) sea level pressure (hPa) at 19 SONET sites in China from 2017 to 2019. Each point represents average AOD and PM2.5 on 1 day at a site, with colors
indicating daily averages of meteorological variables for the same day and site. The scatter plots are divided into three domains, with high (>500/3),
median (between 300/5 and 500/3), and low (<300/5) ratios between PM2.5 concentrations and AOD from domain I to III. The histograms on
the top right showing the average meteorology from ERA5 reanalyses in each domain. Results based on MERRA-2 reanalyses are shown in
Supplementary Figure S1.
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FIGURE 4
Typical weather conditions for three domains of PM2.5-AOD relationships. The anomalous (A,E,I) specific humidity (g kg−1) (B,F,J)wind speed (m
s−1) (C,G,K) temperature (°C), and (D,H,L) sea level pressure (hPa) relative to annual mean state on the typical days within each of three domains are
derived based on ERA5 reanalyses. The typical days are selected with the highest frequency of appearance in each of the three domains shown in
Figure 3.

FIGURE 5
Correlation coefficients betweenmeteorological variables from ERA5 reanalyses and the normalized differences of PM2.5 and AOD at 19 SONET
sites in China from 2017 to 2019. The four parts of the pie chart correspond to wind speed (W), specific humidity (Q), surface air temperature (T), and
sea level pressure (P), respectively. The dominant factor with the highest correlation coefficient is protruded.
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experiments suggest that meteorological conditions, especially

the specific humidity, should be considered in the retrieval of

surface PM2.5 using the AOD data in China.

4 Discussion and conclusion

Both PM2.5 concentrations and AOD are closely related to

the mass content of fine particles. Many studies have used AOD

data to derive surface PM2.5, assuming these two variables are

tightly correlated. However, by using the ground-based data in

19 SONET sites in China, we found low R between the changes in

PM2.5 and AOD. Such decoupling is related to the meteorological

conditions that cause inconsistent variations of PM2.5 and AOD.

To reduce the uncertainties associated with meteorological data,

we performed additional analyses using the MERRA-2 reanalyses

and found similar weather conditions associated with different

domains of PM2.5-AOD relationships (Supplementary Figure

S1). For all 19 SONET sites, we found the highest R between

specific humidity and the normalized PM2.5-AOD differences at

14 sites, suggesting that air humidity play a dominant role in

regulating the associations between PM2.5 and AOD.We built RF

models to predict surface PM2.5 combining AOD and

meteorological variables. The predictability is significantly

improved with the inclusion of specific humidity no matter

from ERA5 (Figure 6) or MERRA-2 (Supplementary Figure

S2) reanalyses, suggesting that air humidity is a key input

parameter for the retrieval of surface PM2.5 using the machine

learning approach.

There are some limitations in our explorations. First, we

considered the impacts of only four meteorological variables

on the associations between PM2.5 and AOD. Studies have

suggested that inclusion of more factors can improve the

PM2.5 prediction (Liu et al., 2019; Yeo et al., 2021). Due to the

data limitation, we did not include BLH as one of key

parameters while other studies found the important roles

of BLH in regulating the vertical distribution of aerosols

(Miao et al., 2018; Feng et al., 2021). We failed to consider

the impacts of rainfall, which can reduce both PM2.5 and

AOD and increase their consistencies. Furthermore, site-level

meteorological data are more accurate than climate

reanalyses and should be applied in the future explorations

if available. Second, we ignored the impacts of non-

meteorological factors. Different aerosol species may have

varied extinction and absorption capacities, resulting in

distinct relationships between mass concentrations and

AOD. As a check, we analyzed the impacts of site-level

SSA on the PM2.5-AOD associations (Supplementary

Figure S3). The average SSA shows limited differences

among three domains, suggesting that aerosol composition

FIGURE 6
Comparison of observed and estimated PM2.5 concentrations derived by the random forest with (A) AOD alone, (B) AOD plus four
meteorological factors including specific humidity, wind speed, surface air temperature, and sea level pressure, (C) AOD plus specific humidity, (D)
AOD plus surface air temperature, (E) AOD plus sea level pressure, and (F) AOD plus wind speed. Meteorological variables from ERA5 reanalyses are
used as input. The regression functions and R are shown on each panel. Results based on MERRA-2 reanalyses are shown in Supplementary
Figure S2.
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may not be the dominant cause of the decoupling between

PM2.5 and AOD. The variations of aerosol vertical profiles

and size distribution may also affect the PM2.5-AOD

relationship. For example, the inconsistent changes in

springtime PM2.5 and AOD in southern China

(Guangzhou, Guilin, Nanning) are likely related to the

cross-boundary transport of biomass burning aerosols at

high levels (Deng et al., 2008). In addition, the large

enhancements of wintertime PM2.5 in Kashi (Figure 2) are

likely associated with the increased dust emissions (Feng

et al., 2002; Huang et al., 2020). These coarse particles

show limited impacts on AOD but contribute to the

decoupling between PM2.5 and AOD. As a result,

perturbations in emissions and/or transport should be

considered to further improve the prediction of PM2.5

concentrations. Third, we ignored the possible changes in

the driving factors at different spatiotemporal scales. On the

national scale, although specific humidity is selected as the

dominant driver, other factors such as temperature, wind

speed, and surface pressure also regulate the coupling

between PM2.5 and AOD at some sites (Figure 5). For the

temporal variations, our statistics are mainly regulated by the

differences in the seasonal cycles of PM2.5 and AOD

(Figure 2). It is worthwhile to compare the key factors

driving the decoupling between PM2.5 and AOD for

different regions and years with more abundant

measurements in space and time.

Despite these limitations, we revealed that specific humidity

acts as a dominant factor regulating the relationships between

PM2.5 and AOD in China. Such impacts are validated for most of

ground-based sites covering a wide range of area. We suggest that

the AOD data should be used with cautions in deriving the long-

term and regional PM2.5 concentrations. Inclusion of key

meteorological factors especially specific humidity can

improve the predictability of surface PM2.5.
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