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Developing low-carbon agriculture can effectively avoid the waste of natural

resources, thus contributing to the long-term sustainability of agriculture. This

study uses the Super-SBM model to measure agricultural low-carbon

economic efficiency (ALEE) in China from 2000 to 2018, then analyzes the

spatial-temporal evolution characteristics. Simultaneously, the influencing

factors of ALEE are investigated using spatial econometric model. The

results show that: (1) In terms of temporal evolution, the ALEE in most

provinces is declined over time, with only a few provinces improving. The

ALEE in China and the three regions all show an obvious “L” trend of decline first

and then stability. (2) From the perspective of spatial differentiation, provinces in

eastern region have higher ALEE, while those in central and western regions

have lower ALEE. Hainan’s ALEE has an absolute advantage, while Shanxi is the

worst. (3) China’s ALEE shows obvious spatial agglomeration characteristics of

H-H and L-L agglomeration, which are further enhanced over time. The

number of L-L agglomeration provinces gradually increases, indicating that

China’s ALEE has not been improved significantly. (4) Economic growth level

and Agricultural scientific and Technological progress have effectively

improved the ALEE. However, Capital deepening, Government fiscal

expenditure, Agricultural planting structure, and Agricultural disaster all have

negative impacts. Rural electricity consumption also has a negative impact, but

the impact is not significant. To accelerate the development of low-carbon

agriculture, all regions must not only pursue a differentiated low-carbon

agriculture development path, but also accelerate agricultural

transformation, strengthen research and development, and popularize low-

carbon agricultural technologies, reduce the input of traditional agricultural

means of production, optimize the agricultural industrial structure, and adjust

agricultural subsidy policies.
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1 Introduction

All nations are paying more attention to low-carbon

development due to the rising greenhouse gas emissions,

and many countermeasures are being taken. China, as the

country with the highest total carbon emissions (Yang et al.,

2019), made it clear that it will strive to reach the peak of

carbon dioxide emissions by 2030 and carbon neutrality by

2060 at the 75th United Nations General Assembly in 2020.

This goal establishes a higher standard for China’s low-carbon

development. However, for a long time, the main battlefield of

energy conservation and carbon emission reduction have been

in industry, energy, transportation, and other similar fields.

Agriculture has not received enough attention (Xiong et al.,

2021). China relies heavily on the high-carbon agricultural

production mode, which means achieving major progress in

agriculture at the cost of large energy consumption and

serious environmental pollution. (Yang et al., 2018).

However, high-carbon agricultural production mode

depends heavily on the agricultural materials such as

chemical fertilizers, pesticides, and agricultural films. (Rural

Social Economic Investigation Division and National Bureau

of Statistics of China, 2018). Overuse of these agricultural

materials causes a large area of agricultural non-point source

pollution and an ongoing increase of China’s agricultural

carbon emissions. (Ren et al., 2021). From the available

data, agricultural carbon emissions account for 11% of the

total global carbon emissions. In China, it is 17%. And the

overall trend is increasing year by year, posing a serious

environmental threat (Huang et al., 2019). There is much

room for energy conservation and carbon emission reduction

in agriculture (Yang et al., 2022). However, how to promote

the development of low-carbon agriculture while maintaining

the stable and sustainable growth of agricultural economy is a

pressing issue that must be addressed. Undoubtedly, studying

the spatiotemporal evolution characteristics and influencing

factors of China’s ALEE and is critical.

Based on this, this paper makes breakthroughs in two

aspects. The first is to adopt the ALEE index. The low-carbon

economy is defined as “activities that generate products or

services with low carbon outputs.” (DBIS, 2015) ALEE refers

to obtaining as much expected output (gross agricultural

output value) and as little unexpected output (carbon

emissions) as possible while maintaining inputs such as

agricultural labor, land, irrigation, chemical materials and

agricultural power. The essence of ALEE is agricultural

productivity under low-carbon constraints, which refers to

the agricultural low-carbon development level based on

agricultural factor inputs. In fact, we constructs a more

comprehensive agricultural total factor productivity

measurement indicator system to obtain more scientific and

accurate results. Second, this paper measures China’s ALEE

and analyzes its temporal and spatial characteristics using the

Super-SBM model. The spatial panel data model with spatial

effect is established based on the principle of spatial

economics, and the influencing factors of ALEE can be

accurately identified by improving the accuracy of the

model estimation results.

2 Literature review

For a long time, high-carbon agriculture has caused

significant environmental damage, so it is critical to

research an environmentally friendly, ecological, and

efficient low-carbon agriculture model. Therefore,

academia is increasingly interested in low-carbon

agriculture. There are two ways to reduce the

accumulation of greenhouse gases in the atmosphere:

reducing carbon emissions sources and increasing carbon

sinks (Li, 2014). Therefore, the literature on low-carbon

agriculture mainly focuses on agricultural productivity

and agricultural carbon sinks.

Some research on low-carbon agriculture was primarily

reflected in the specific input uses of the agricultural sector,

such as water use efficiency (Geng et al., 2019; Cao et al., 2020)

and fertilizer use efficiency (Huang and Jiang, 2019; He et al.,

2020). Scholars found that these indexes are too single to

reflect the level of agricultural comprehensive development.

Therefore, they gradually studied agricultural total factor

productivity. However, the traditional method of

calculating agricultural total factor productivity only

considers economic output (Toma et al., 2017; Diao et al.,

2018; Skevas et al., 2018), ignoring the negative impact of

pollution. The environmental constraint is not considered in

this productivity calculation, hence there will always be a

divergence. To address this issue, many researchers

incorporated unexpected output into the agricultural

productivity evaluation system and considered agricultural

productivity under environmental constraints (Liu and Feng,

2019; Hamid and Wang, 2022). In addition to measuring

agricultural production efficiency, scholars also explored its

spatial differentiation and influencing factors (Xiong et al.,

2021; Chopra et al., 2022). It is crucial to analyze the spatial

characteristics of agricultural production efficiency for

rational utilization of natural resources (Hu et al., 2022).

And studying the influencing factors of agricultural

production efficiency is the basis for the country to

accurately formulate agricultural reform policies (Zhou

et al., 2021).

Scholars usually use stochastic frontier analysis (SFA) and

data envelopment analysis (DEA) to calculate agricultural

total factor productivity (Benedetti et al., 2019; Shen et al.,

2019; Adetutu and Ajayi, 2020). SFA model requires the

establishment of specific production functions, which is

limited in practice (Xu et al., 2020). DEA, which is
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applicable to multi-input and multi-output boundary

production functions (Bai et al., 2019), can solve this

problem. DEA has therefore become primary method of

calculating agricultural productivity (Emrouznejad and

Yang, 2018). Chen et al. (2021) employed the three-stage

DEA method to investigate agricultural total factor

productivity. Huang et al. (2022)measured and tested the

robustness of China’s agricultural total factor productivity

using two different DEA models.

However, the efficiency value calculated by the above DEA

model cannot be greater than one, implying that the

differences between decision-making units are not

accurately reflected. Therefore, some scholars gradually

began to use the Super-SBM model to calculate agricultural

total factor productivity, which breaks through the limitation

of efficiency value 1 and improved accuracy. Liu et al. (2020);

Chi et al. (2022) used the Super-SBM model to calculate

agricultural ecological efficiency. Liu et al. (2021) calculated

agricultural total factor productivity based on the Super-SBM

model. However, there is still a lack of research on ALEE based

on the Super-SBM model.

Apart from studying low-carbon agriculture from the

perspective of productivity, scholars have gradually realized

the importance of carbon sink research for the development

of low-carbon agriculture. The research on agricultural carbon

sink is mainly concentrated in foreign countries (Kim et al., 2016;

Kay et al., 2019; Wu et al., 2022). Recently some research on

China’s agricultural carbon sink has been gradually carried out

(Cui et al., 2021; Wu et al., 2022).

In summary, low-carbon agriculture attracts the attention

of many scholars. However, both agricultural productivity and

carbon sink research are focused on agricultural economic

output or carbon emission, and few scholars put agricultural

production, agricultural carbon emission, and economic

output in the same category. The ALEE index we used is a

more comprehensive index, involving more comprehensive

indicators. Most studies take agricultural land, machinery,

labor, fertilizers, pesticides and film as input variables, and

economic output and agricultural carbon emissions as output

variables (Xiang et al., 2020; Chi et al., 2022). However, we add

agricultural capital and agricultural irrigation input variables

on this basis. The ALEE index put agricultural production,

agricultural carbon emission, and economic output in the

same category, which can more accurately reflect the

comprehensive level of economic and low-carbon

development in provinces.

Furthermore, although some researchers agree that

agricultural carbon emissions have spatial effects, there is

little research on the spatial correlation of ALEE. So the

research on spatiotemporal characteristics are lacked. China

has a large territory, and agricultural carbon emissions and

intensity vary greatly across provinces in terms of spatial

distribution, and will continue to rise over time (Huang et al.,

2019). The descriptive analysis of temporal trends and inter-

provincial differences is used to evaluate temporal and

spatial characteristics. Therefore, studying agricultural

carbon emissions in China’s provinces can help formulate

unique emission reduction policies for different regions,

which is critical to achieve the “double-carbon” goal and

ensure the agricultural long-term viability of China.

3 Material and methods

3.1 Research methods

3.1.1 Super-SBM model
Data Envelopment Analysis (DEA) was proposed by

Charnes et al. (1978), an American operational scientist. It

is a method to measure efficiency with multiple inputs and

outputs, which does not need to know the actual production

function of the decision-making unit or estimate the

parameters in advance, thus allowing for greater flexibility

and adaptability. So this method evolves into an important

tool and method of management evaluation and decision

making.

Based on the findings of Liu et al. (2021), this paper employed the

Super-SBM model to calculate China’s ALEE. Traditional DEA

models, such as CCR and BCC, have the advantage of calculating

the optimal distance in the radial direction, but they are incapable of

distinguishing between good and bad output. The SBM directional

distance function is improved on the basis of the traditional DEA

model considering the slack variables as well as good and bad output.

Compared with the traditional SBM directional distance function,

Super-SBM directional distance function overcomes the limitation of

efficiency value 1 and can better distinguish the real efficiency values

of each region.

Assuming that a production set with n decision-making

units (DMU) has been established, this paper employed

vectorsx ∈ Rm, yb ∈ Rs2 to represent input factors, desired

output, and undesirable output. The defining matrices ofX,

Yg, Ybare as follows.

X � [x1, . . . , xn] ∈ Rm×n > 0
Yg � [yg

1 , . . . , y
g
n] ∈ Rs1×n > 0

Yb � [yb
1, . . . , y

b
n] ∈ Rs2×n > 0

(1)

The restricted production possibility set p is as follows:

p\(x0 , y0) � ⎧⎨⎩(x, �yg, �yb)
∣∣∣∣∣∣∣∣∣∣�x≥∑n

j�1
λjxj, �y

g ≤∑n
j�1
λjy

g
j , �y

b ≥∑n
j�1
λjy

g
j , �y

g ≥ 0, λ≥ 0
⎫⎬⎭
(2)

In the above formula, p excludes the decision-making

unit (x0,y0), thus effectively avoiding the situation that

multiple decision-making units may be effective at the

same time in the model. By incorporating the unexpected
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output into the decision-making unit, the following Super-

SBM model expression formula can be obtained.

ρ* � min

1
m
∑m
i�1
xi/xi0

1
s1 + s2

⎛⎝∑s1
r�1
yr

g/yg
r0 +∑s2

i�1
yi

b/yg
i0
⎞⎠

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x≥ ∑n
j�1,≠ 0

λjxj, �y
g ≤ ∑n

j�1,≠ 0

λjy
g
j

�yb ≤ ∑n
j�1,≠ 0

λjy
b
j , �x≥x0, �y

g ≤yg
0 , �y

b ≥yb
0

∑n
j�1,≠ 0

λj � 1, �yg ≥ 0, λ≥ 0

(3)

In the formula, p*is the target efficiency value.x,yg andyb

represent input, expected output and unexpected output

respectively.m,s1 and s2are the number of input indicators,

expected output indicators and unexpected output indicators

respectively. λ is the weight vector.s−、sgand sbare the input

slack, expected output slack and unexpected output slack

respectively. Whenρ≥ 1, the evaluated decision unit is relatively

effective, otherwise, the evaluated decision unit is invalid.

3.2 Spatial measurement methods

3.2.1 Moran’s I index
Spatial factors are crucial in the investigation of

environmental and economic problems. Ignoring spatial

effects and assuming spatial uniform distributed will

inevitably result in a difference between results and

reality. Therefore, this paper considered the spatial factors

and discussed the spatial relationship of regional ALEE. In

general, ALEE in each province has a mutual spatial effect.

That is, the geographical location of an area affects not only

its own ALEE, but also the ALEE of adjacent areas (Chi et al.,

2022). Global Moran’s I statistic is a widely used spatial

autocorrelation statistic, in its specific form as follows:

Moran′ sI � n

∑n
i�1
(xi − �x)2

∑n
i�1
∑n
j�1
Wij(xi − �x)(xj − �x)

∑n
i�1
∑n
j�1
Wij

(4)

Where,n is the total number of spatial units, xirepresents the

observant i at the i-th spatial position. �xis the average value of

the observed values of all spatial units. Wijis the spatial

weight. Reflecting is the degree of similarity of spatial units

attribute values in spatial or spatial proximity. Positive

correlation, negative correlation, and no spatial

autocorrelation are the three types of Moran’s I index.

Besides, it is necessary to test the significance of Moran’s I

value after it has been calculated to ensure its accuracy. The

formula for the test is:

Z � [I − E(I)]�������
VAR(I)√ (5)

Global Moran’s I index only reflects the average correlation

degree between the studied variables and the surrounding areas

of the whole region and cannot investigate internal spatial

distribution characteristics. Therefore, the local spatial

correlation index is introduced in this paper. To observe the

distribution characteristics of the studied variables in the local

space, Moran scatter plot can be drawn using the local spatial

correlation index. The local Moran’s I index is defined as:

Moran′sI � n2

∑n
i�1
(xi − �x)2

∑n
i�1
∑n
j�1
Wij(xi − �x)(xj − �x)

∑n
i�1
∑n
j�1
Wij

(6)

3.2.2 Spatial econometric model
Currently, spatial autoregressive model (SAR) and spatial

error model (SEM) are two classical spatial econometric

models. From Anselin’s (1988) research, the basic form of

spatial autoregressive model is as follows:

⎧⎪⎨⎪⎩
y � ρW1y +Xβ + u
u � λW2 + ϵ
ϵ ~ N(0, σ2

ϵIn) (7)

In Eq. 7: yrepresents the dependent variable. ρand λ are the

coefficients of spatial autoregressive terms, which represent the

spatial effect of the model. Wis a n*n spatial weight matrix.β is

the coefficient of the independent variable, indicating the degree

of action of the independent variable on the dependent variable.

urepresents the interference term. εis a random error term.N

represents normal distribution. σandI are standard deviation and

identity matrix, respectively.

From the research results of Haining (1993), spatial error

model can be expressed as:

⎧⎪⎨⎪⎩
y � Xβ + ϵ
u � λW1ϵ + u
ϵ ~ Nπ(0, σ2ϵIn) (8)

In Eq. 8: λrepresents the coefficient of spatial error term, which

differs from the coefficient in the spatial autoregressive model,

representing whether the residual term of the model has spatial

correlation. Other parameters’meanings are consistent with the Eq. 7.

3.3 Indicator construction

To calculate ALEE, input and output indicators must be

determined. Based on previous research (Liu and Feng, 2019),
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this paper took agricultural labor, agricultural capital,

agricultural mechanical power, agricultural land, agricultural

chemical fertilizer, agricultural film, agricultural pesticide, and

agricultural water as input indicators. In addition, agricultural

output included gross agricultural output value and agricultural

carbon emission. The explanations of specific input-output

indicators is shown in Table 1.

3.3.1 Input indicators
(1) Agricultural labor. Agricultural labor is expressed by the

number of employees in agriculture, forestry, animal

husbandry and fishery (10,000 individuals).

(2) Agricultural capital. Based on previous research (Li et al.,

2021; Liu and Yang, 2021), the “perpetual inventory method”

was used to calculate the capital stock. The calculation

formula isKi,t � Ii.t + (1 − δ)Ki,t−1. WhereKi,t is the capital

stock of the i-th province during the t-th period,Ii,t is the

investment of i-th province in t-th period. δrepresents the

depreciation rate.

(3) Agricultural mechanical power: Agricultural mechanical

power is expressed by the total power of agricultural

machinery (10,000 kW).

(4) Agricultural land. Agricultural land is expressed by the total

planting area of crops (1000 HA)

(5) Agricultural chemical fertilizer. Agricultural chemical

fertilizer is expressed by the net amount of agricultural

chemical fertilizer application (10,000 tons).

(6) Agricultural pesticide. Agricultural pesticide is expressed by

the use amount of pesticide (10,000 tons).

(7) Agricultural film. Agricultural film is expressed in tons of

agricultural film.

(8) Agricultural water. Agricultural water is expressed in

effective irrigation area (1,000 ha).

3.3.2 Output indicators
(1) Expected output: Expected output is represented by gross

agricultural output value (100 million yuan). In this paper, the

total output value of agriculture, forestry, animal husbandry and

fishery based on 2000 (that is, the general agricultural output

value) was taken as the expected output of agriculture.

(2) Unexpected output: Unexpected output is characterized

by agricultural carbon emissions (10,000 tons). This paper

adopted the calculation method in the 2007 National

Greenhouse Gas Inventory Guidelines compiled by IPCC

(Solomon, 2007), and the calculation formula is as follows:

E � ∑ ei � ∑ (Ti × δi) (9)

In the formula, Erepresents the agricultural total carbon

emission. eirepresents the carbon emission from carbon

emission sourcesi. Ti represents the consumption of carbon

emission sourcesi. δi represents the carbon emission

coefficient of carbon emission sourcesi. In this study, nine

kinds of agricultural production data were used to calculate

CO2 emissions, and the related parameter values are shown in

Table 2.

3.3.3 Indicators of influencing factors
A variety of factors, including economy, society, technology,

and system, will have a significant impact on the low-carbon

economic efficiency. Based on previous research, this paper

concluded that seven factors will influence ALEE: Economic

growth level (X1), Capital deepening degree (X2), Agricultural

scientific and technological progress (X3), Government fiscal

expenditure (X4), Agricultural planting structure (X5), Rural

electricity consumption (X6) and Agricultural disaster (X7). The

explanations of specific factors are shown in Table 3.

(1) Economic growth level (X1): The scale of regional

agricultural output and the agricultural technological

progress are directly influenced by the level of agricultural

economic development, which has a significant impact on

agricultural production efficiency (Liu et al., 2021). The

continuous improvement of economic development level

TABLE 1 Input-output variables of ALEE.

Variable classification Specific variable Variable explanation

Input variable Agricultural labor Number of employees in agriculture, forestry, animal husbandry and fishery

Agricultural capital Actual agricultural capital stock based on 2000

Agricultural mechanical power Sum of all kinds of mechanical power in agricultural production process

Agricultural land Total sown area of crops

Agricultural chemical fertilizer Application amount of agricultural chemical fertilizer

Agricultural water Agricultural irrigation area

Agricultural pesticide Agricultura pesticide usage

Agricultural film Agricultural film usage

Output variable Expected output Actual gross output value of agriculture, forestry, animal husbandry and fishery based on 2000

Unexpected output Estimated agricultural carbon dioxide emissions by region
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can provide the necessary material and technical foundation

for environmental improvement, especially in the face of

declining ecological capital and more stringent resource and

environmental constraints. This variable was expressed using

per capita gross agricultural output value in this paper.

(2) Capital deepening degree (X2): The inflow of social capital

into agriculture has resulted in the decrease of agricultural

labor force, the increase of the agricultural capital-to-labor-

force ratio, and the deepening of agricultural capital. On the

one hand, capital deepening solved the problem of

insufficient agricultural investment and promoted

agricultural development. On the other hand, because of

the low production capacity of China’s agriculture, it was

insufficient to absorb the increasing capital investment, and

some enterprises blindly followed the trend of investment,

leading to capital waste and reducing agricultural

productivity. This variable was expressed using per capita

agricultural fixed capital investment in this paper.

(3) Agricultural science and technology progress (X3): Since the

reform and opening up, China has made significant

investments in agricultural technology research,

development, and application. It also learned advanced

technology and management concepts from other

developed countries. Agricultural science and technology

advanced at a rapid pace, and significant contributions to

agricultural development was made by effectively improving

agricultural production capacity. China’s agriculture has

recently entered a critical transition period from

traditional to green, ecological, and low-carbon modern

agriculture. Agricultural scientific and technological

advancement can significantly improve the utilization rate

of resources and provide significant impetus for the

sustainable and healthy development of agriculture.

Advances in agricultural science and technology are

helping to improve the ALEE. This variable was expressed

using the ratio of internal R&D expenditure to GDP in this

paper.

(4) Government fiscal expenditure (X4): Fiscal expenditure, as a

form of government intervention, has a significant

regulatory effect on agricultural carbon emissions. The

greater the government expenditure on the agricultural

sector, the more attention the government attaches to

agricultural development. However, government

expenditure, on the other hand, has a “double-edged

TABLE 2 Carbon emission coefficient of agricultural carbon emission sources.

Carbon emission source Carbon source coefficient Reference source

Chemical fertilizer 0.8956 kg/kg Oak Ridge National Laboratory, ORNL

Pesticide 4.9341 kg/kg Oak Ridge National Laboratory, ORNL

Agricultural film 5.18 kg/kg Institute of Resources, Ecosystem and Environment of Agriculture, IREEA

Agricultural diesel 0.5927 kg/kg IPCC United Nations Intergovernmental Panel of Experts on Climate Change

Agricultural ploughing 3.126 kg/hm2 Institute of Agriculture and Biotechnology of China Agricultural University

Agricultural Irrigation 25 kg/hm2 Dubey and Lal (2009)

Pig 34.0910 kg (head•year) IPCC United Nations Intergovernmental Panel of Experts on Climate Change

Cattle 15.91 kg/(head•year) IPCC United Nations Intergovernmental Panel of Experts on Climate Change

Sheep 35.1819 kg/(mere•year) IPCC United Nations Intergovernmental Panel of Experts on Climate Change

TABLE 3 Indicators of influencing factors of ALEE.

Indicator layer Calculation Unit

Economic growth level (X1) Gross output value of agriculture, forestry, animal husbandry and fishery/Total rural population Ten thousand Yuan/
Person

Capital deepening degree (X2) Fixed capital investment in agriculture, forestry, animal husbandry and fishery/Employees in
agriculture, forestry, animal husbandry and fishery

Ten thousand Yuan/
Person

Agricultural science and technology
progress (X3)

Internal R&D expenditure/GDP %

Government fiscal expenditure (X4) Total fiscal expenditure of agriculture, forestry and water affairs/Fiscal expenditure %

Agricultural planting structure (X5) Sown area of food crops/Total sown area of crops %

Rural electricity consumption (X6) Ln (Rural electricity consumption by region) Billion kilowatt hours

Agricultural disaster (X7) Ln (Crop disaster area) Thousand hectares
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sword” effect on agricultural carbon emission performance.

The government fiscal support is conducive to improving the

level of agricultural production, which is inextricably linked

to the promotion of new agricultural varieties, the

construction of rural facilities, and agricultural

technological progress. On the other hand, excessive fiscal

expenditure will disrupt the agricultural market, negating the

important role of the market in the allocation of agricultural

resources and lowering agricultural capital productivity.

Furthermore, increased agricultural fiscal expenditure will

increase agricultural consumption of chemical fertilizers,

pesticides, and other production methods, resulting in an

increase in carbon emissions. Government fiscal expenditure

was represented in this paper by the proportion of

agricultural, forestry, and water affairs fiscal expenditure

to total fiscal expenditure.

(5) Agricultural planting structure (X5): Planting structure has a

significant impact on agricultural production efficiency,

because it dominates the entire agricultural sector. Planting

is generally divided into two categories: food crops and cash

crops. Food crops require more agricultural means of

production than cash crops, so the level of intensification is

low, as is the value generated per unit cultivated land area. The

greater the proportion of food crops in the overall planting

industry, the less likely it is to improve ALEE. This variable

was expressed using the ratio of sown area of food crops to

total sown area of crops in this paper.

(6) Rural electricity consumption (X6): Electricity is a critical

energy for agricultural production. Compared with other

fossil fuels such as diesel, electricity is classified as secondary

energy. Large-scale electricity use can effectively reduce

agricultural diesel consumption, which has a positive

impact on lowering carbon emissions and protecting the

agricultural environment. To eliminate the possible

influence of collinearity, the natural logarithm of rural

electricity consumption by region was used to represent

rural electricity consumption in this paper.

(7) Agricultural disaster (X7): Because of China’s delayed

agricultural modernization, poor agricultural infrastructure,

and relatively backward agricultural production methods,

agricultural production is more vulnerable to natural

disasters than other industrial sectors. Natural disasters will

reduce or even cause the failure of agricultural crops, reducing

the scale of agricultural output. The reduction of agricultural

output obviously has a negative impact on ALEE. The natural

logarithm of crop disaster area was used as a substitute

variable for agricultural disaster in this paper.

3.4 Data sources

Considering the availability and comprehensiveness of data,

the sample includes data from 31 provinces in China from

2000 to 2018. Tibet, Hongkong, Macau and Taiwan are

FIGURE 1
(A) shows the average agricultural low-carbon economic efficiency in East China, Central China, West China and China. (B) Shows the
distribution of agricultural low-carbon economic efficiency in the provinces.
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excluded because of the serious lack of data. The data of

Agricultural labor, Agricultural machinery power, Agricultural

chemical fertilizer, Agricultural pesticides, Agricultural film,

Gross agricultural output value, Gross agricultural output

value index, Sown area of crops, Total rural population, Rural

electricity consumption, and Crop disaster area were from the

China Rural Statistical Yearbook (2001–2019). GDP, Fixed

capital investments in agriculture, forestry, animal husbandry

and fishery, Fixed capital investments price index, agricultural

irrigation area, sown area of crops, Total fiscal expenditure of

agriculture, forestry and water affairs, Total fiscal expenditure

were from China Statistical Yearbook (2001–2019). Internal

R&D expenditure data were from China Statistical Yearbook

of Science and Technology (2001–2019). Other data were from

Local Statistical Yearbooks. In addition, the source of carbon

emission coefficient is shown in Table 2.

4 Empirical results and analysis

4.1 Time series evolution characteristics of
china’s ALEE

All input-output variables were incorporated into the

MaxDEA software based on Eqs. 1–3. After running, the

ALEE of each province was calculated.

FIGURE 2
(A) shows the agricultural low-carbon economic efficiency in each province in 2000; (B) shows the agricultural low-carbon economic
efficiency in each province in 2005; (C) shows the agricultural low-carbon economic efficiency in each province in 2012; (D) shows the agricultural
low-carbon economic efficiency in each province in 2020.
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(1) From the perspective of regions (Figure 1A), ALEE

differences are obvious. The ALEE of the eastern region

is substantially higher than that of the central and western

regions, with the central efficiency being the lowest. This

is due to the significant disparity in natural endowments

and resource allocation between regions. The eastern

region has many advantages in both economic and

technological development. It can be further seen that

the overall fluctuation trend is basically the same. ALEE of

China and the three regions all experience a “L” type trend

of decline first and then stability.

In the first stage (2000–2005), China vigorously developed

agriculture and placed a high value on improving agricultural

production technology. However, the agricultural production

mode was still fairly traditional, with high input, high

consumption, and high emissions. More carbon emissions

were produced while the agricultural economy improved,

resulting in a downward trend of ALEE in the whole country

and the eastern, central, and western regions.

During the second stage (2006–2018), “agriculture, rural

areas and farmers” had been the theme of the No. 1 central

document. Environmental issues in China gradually received

attention. The government issued a series of policies to encourage

the development of low-carbon agriculture. And the work of

reducing agricultural CO2 emissions was carried out in stages. At

the same time, China introduced many advanced technologies

from developed countries. In this context, agricultural carbon

emissions decreased to some extent. However, due to the

agricultural system and resource endowment, China’s

agriculture was still dominated by small farmers, which has a

negative impact on growth in many ways (Cassidy and McGrath,

2015; Ji et al., 2016), resulting in ALEE of China and the three

regions not growing significantly.

The result is inconsistent with prior research on China’s

agricultural productivity considering environmental restrictions.

Most research revealed China’s agricultural green total factor

efficiency has been increasing in the past few years. (Liu et al.,

2021; Han et al., 2018). Similarly, agriculture ecological efficiency

is gradually increasing in most studies (Chi et al., 2022; Liu et al.,

2020). This may be because the ALEE index we use has stricter

restrictions on the environment. China is still implementing

traditional agriculture today, which has resulted in substantial

carbon emissions and significant environmental harm from

national intensive agricultural production. It will take more

time to significantly enhance ALEE, despite the fact that China

has formulated and implemented many energy-saving and carbon

emission reduction strategies in the agriculture sector.

(2) In terms of provinces (Figure 2B), there are significant

differences in ALEE among provinces. Most eastern

provinces are more efficient, at around 1. Hainan,

Shanghai, Beijing, Guangdong, Jiangsu and Tianjin all

reach the forefront of production. In addition, Hainan

and Shanghai are in a leading position in efficiency. In

the central and western provinces, ALEE in central and

western provinces is far lower than that in eastern

provinces, and there are significant differences between

provinces. ALEE in Shaanxi is in the forefront of

production, while the efficiency of Heilongjiang, Gansu,

and Shanxi is at the bottom, with the value that is not

even half of Shaanxi.

4.2 Spatial differentiation characteristics
of ALEE

To more intuitively observe the spatial distribution

characteristics of ALEE in each province, ArcGIS 10.7 was

used to graphically display the ALEE in China for four

representative years: 2000, 2005, 2012, and 2018, as shown

in Figure 2. Overall, ALEE differs substantially between the

east, center, and west, with high-efficiency provinces clustered

in the east and low-efficiency provinces concentrated in the

central and western regions.

ALEE of Hainan, Shanghai, Beijing, Guangdong, Jiangsu, and

Tianjin in the eastern region is at the forefront of China all year.

Hainan has a distinct advantage over other provinces due to its

unique geographical location and stunning natural environment.

TABLE 4 Global Moran’s I of ALEE.

Year Moran’s I E(I) Mean sd(I) Z value

2000 0.2410 −0.0345 −0.033 0.1159 2.3770***

2001 0.2817 −0.0345 −0.0320 0.1189 2.6594***

2002 0.2146 −0.0345 −0.0355 0.1242 2.0056**

2003 0.1613 −0.0345 −0.0395 0.1277 1.5333*

2004 0.0642 −0.0345 −0.0382 0.1165 0.8472

2005 0.1448 −0.0345 −0.0366 0.1228 1.4601*

2006 0.1992 −0.0345 −0.0397 0.1174 1.9906**

2007 0.1872 −0.0345 −0.0470 0.1228 1.8054

2008 0.1830 −0.0345 −0.0407 0.1242 1.7512*

2009 0.2125 −0.0345 −0.0372 0.1169 2.1129**

2010 0.2929 −0.0345 −0.0370 0.117 2.7983***

2011 0.3496 −0.0345 −0.0368 0.1208 3.1796***

2012 0.1846 −0.0345 −0.0385 0.1178 1.8599***

2013 0.1332 −0.0345 −0.0368 0.1235 1.3579*

2014 0.2714 −0.0345 −0.0413 0.1167 2.6213***

2015 0.3501 −0.0345 −0.0374 0.1233 3.1192***

2016 0.3235 −0.0345 −0.0248 0.1168 3.0651***

2017 0.3868 −0.0345 −0.0289 0.1196 3.5226***

2018 0.3214 −0.0345 −0.0374 0.1114 3.1948***

The upper corner marks *, **, *** indicate the significance level of 10%, 5%, and 1%

respectively.
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As a large province with good ecological environment, Hainan

vigorously develops ecological and sightseeing agriculture,

thereby creating a favorable environment for the development

of low-carbon agriculture. Shanghai, Beijing, Guangdong,

Jiangsu, and Tianjin all have high ALEE, which is linked to

their favorable geographic location, particularly the growth of

suburban agriculture. However, ALEE in Hebei and Shandong is

relatively poor. They are even less than 0.7 in 2005. This could be

because their agricultural production structure is largely a crop-

based agricultural province in China.

In general, ALEE of central region is not ideal.

Heilongjiang and Shanxi’s ALEE is always at the bottom

of the country. As a major grain producing area in China, the

planting structure with most food crops and few cash crops

limits the low-carbon development of agriculture in

Heilongjiang. Shanxi’s agricultural production suffers

from poor innate conditions and unreasonable agricultural

industrial structure. Shanxi is a major energy province in

China, with high energy consumption. Furthermore, the

ALEE of other central provinces, such as Anhui, Jilin,

Henan, Jiangxi, Hubei, and Hunan, is high but needs to be

further improved in the future.

ALEE is quite different in western provinces. Yunnan and

Gansu, in particular, have low ALEE. In Guangxi, Qinghai,

Ningxia, and Xinjiang, ALEE is high and growing, while in

Inner Mongolia it shows a downward trend. Chongqing,

Sichuan, Guizhou, and Shaanxi’s ALEE is well overall

during the study period, but it is not consistent. This

contradicts previous research, which found that provinces

with higher economic development also perform better in

agricultural green production, while provinces with lower

economic development perform worse (Pang et al., 2016;

Yang et al., 2018). This demonstrates that provinces with

low economic performance can still improve their low-carbon

efficiency in other ways. For example, a series of subsidy

policies and technology introductions implemented by the

Chinese government in recent years have helped Xinjiang

improve ALEE.

4.3 Spatial correlation analysis of ALEE

As shown in Table 4, this paper used Geoda software to

calculate Global Moran’s I of China’s ALEE, based on Eqs. 4, 5.

The Global Moran’s I values of China’s ALEE are all positive,

as shown in Table 4. Except for a few years (2004), other years

FIGURE 3
(A) shows Spatial autocorrelation of agricultural low-carbon
economic efficiency in China from 2000 to 2005; (B) shows Spatial
autocorrelation of agricultural low-carbon economic efficiency in
China from 2006 to 2010; (C) shows Spatial autocorrelation of

(Continued )

FIGURE 3 (Continued)
agricultural low-carbon economic efficiency in China from
2011 to 2015; (D) shows Spatial autocorrelation of agricultural low-
carbon economic efficiency in China from 2016 to 2018.
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all pass the test of 10%, 5%, or 1% of the significant level. The

findings show a significant positive spatial correlation between

China’s ALEE and geographical location. At the same time, it

implies that ALEE exhibits spatial agglomeration rather than

randomness in spatial distribution. In other words,

neighboring provinces’ ALEE has a strong imitation effect.

This spatial effect must be considered in the empirical study of

the influencing factors of ALEE. Otherwise, the empirical

results may be significantly skewed.

To further explore the local spatial agglomeration

characteristics of ALEE in provinces in China, Moran scatter

plot was further drawn. As shown in Figure 3, then the spatial

correlation of ALEE was analyzed by ArcGIS, based on

calculating Moran’s I index of ALEE in various provinces.

In general, ALEE shows significant spatial agglomeration

characteristics from 2000 to 2018, primarily characterized by

H-H agglomeration and L-L agglomeration, indicating

that ALEE in this region is similar to that of adjacent

regions. In addition, the spatial agglomeration

characteristics of ALEE are improved during the sample

period. More provinces appear L-L agglomeration in 2018.

These provinces have low ALEE, as do surrounding

provinces. This clearly demonstrates that ALEE is spatially

dependent among provinces, while spatial heterogeneity is

weakened.

Specifically, Hainan, Jiangsu, Beijing, Guangdong and

Shanghai are the provinces with H-H concentration, owing

to their favorable geographic location and abundant

agricultural resources. Sichuan, Chongqing, Shandong,

Shaanxi, Henan, Hubei, Shanxi, and Yunnan always show

L-L agglomeration in the sample period. Furthermore, the

number of provinces with L-L agglomeration is growing. Most

provinces show L-L agglomeration between 2016 and 2018,

indicating that China’s ALEE has not been improved

significantly.

5 Spatial econometric analysis of
influencing factors of ALEE

5.1 Results of spatial economic model

In this paper, the traditional least square method was used

to first simulate the model of influencing factors of ALEE, and

then Matlab7.12 software was used to further verify whether

the residual term of the model has spatial autocorrelation,

providing a foundation for the adoption of a spatial

econometric model. Only estimation results can be obtained

by using OLS. Because it fails to account for serial correlations

in the efficiency score. Then, it requires a restrictive

separability condition between the input-output space and

the environmental factors space. The separability condition

means that the exogenous variables do not exert any effect on

the frontier of full efficiency, but may influence

only the distribution of the efficiency scores (Badin et al.,

2010).

The specific regression results are shown in Table 5, which

provides estimation results for four different models, namely

no fixed, spatial fixed, time fixed, and bidirectional fixed, to

demonstrate that controlling the fixed effect can improve

model estimation accuracy. The advantages and

disadvantages of each model are judged by comparing the

parameters of four different models, and the model with the

strongest explanation is chosen.

TABLE 5 Estimation and test results of common panel data model.

Variable No fixed effect Spatial fixation effect Time fixed effect Bidirectional fixation effect

X1 0.0992*** (5.8376) −0.0190 (−1.0497) 0.1416*** (8.0449) −0.0263 (−1.2802)

X2 −0.0915*** (−6.8870) −0.0392*** (−4.4360) −0.0688*** (−4.6971) −0.0590*** (−5.5338)

X3 3.3933*** (4.1916) −0.3448 (−0.2437) 3.0900*** (3.9404) −2.5603* (−1.7770)

X4 −1.0583*** (−5.9186) 0.0543 (0.3874) −0.9096*** (−2.3450) −0.8594*** (−3.1838)

X5 −0.2618*** (−4.0273) 0.1809* (1.8564) −0.3031*** (−4.8438) 0.1419 (1.4424)

X6 −0.0110* (−1.9008) −0.0105 (−0.5794) −0.0045 (−0.6868) −0.0073 (−0.3548)

X7 −0.0656*** (−8.8510) −0.0194*** (−2.7752) −0.06951*** (−8.9413) −0.0117* (−1.6334)

R-squared 0.4687 0.0764 0.5112 0.0721

DW 2.0751 1.7759 2.2012 1.8727

LM-lag 23.7027** 2.8169* 8.3892*** 13.6795***

Robust LM-lag 12.2392*** 9.2494*** 26.3644*** 4.2790**

LM-err 14.5328** 1.7568 0.3546 11.5569***

Robust LM-err 3.0694* 8.1894*** 18.3298*** 2.1564

() represents the T-test value; The upper corner marks *, * *, * * * indicate the significance level of 10%, 5% and 1% respectively. Matlab7.12 is used for model estimation and spatial

autocorrelation test.
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Firstly, the goodness of fit judgment coefficients of the four

models are compared. Compared with the other three models,

the R-squared value of the time fixed effect model is the highest,

which is 0.5112. Therefore, the fitting degree of time fixed effect is

the best. Secondly, compared with the other three models, the

DW value of time fixed effect is also the highest, which is 2.2012.

After the above comparison, it is found that the time fixed effect

performs best in both R-squared value and DW value. Therefore,

the time fixed effect model is the most suitable choice for this

empirical model. At the same time, the second half of Table 6

examines whether the residual term of the model has spatial

autocorrelation. The results show that the LM-lag value of the

time-fixed effect model is 8.3892, which is significant at the 1%

level, but the LM-err value fails to pass the test the significant

level. The results confirm that the residual term of the general

model has significant spatial autocorrelation, which contradicts

the premise that the explained variables of the general model are

independent of each other. Therefore, there may be some

deviation in the estimation results of the model. In this case,

spatial metrology is required to correct the results of the

traditional model. Furthermore, since LM-lag is clearly

superior to LM-err, the spatial autoregressive model is more

appropriate for this paper than the spatial error model.

Since the estimation results of the traditional model

cannot avoid spatial autocorrelation of the residual term,

this paper re-estimated the model using Eqs. 7, 8. Table 6

displays the specific estimation results of the spatial model.

The spatial lag term W*dep.var in the spatial autoregressive

model is 0.1600 and passes the 1% significant level test.

However, the spatial error term Spat. aut. In the spatial

error model is not significant, as shown in Table 6. This

result demonstrates the rationality of spatial econometric

model again. The R-squared values of the spatial models

are all higher than those of common models in Table 6,

indicating that the models’ fitting degree is improved

further. Furthermore, the T-test values of some variable

coefficients in the spatial econometric model are improved,

indicating that the estimation result is optimized on the basis

of common model. Furthermore, compared with the spatial

error model, the R-squared value of the spatial autoregressive

model is higher, implying that the explanatory power of the

model is stronger. By contrast, the estimation results of the

spatial autoregressive model were finally chosen to explain

variables in this paper.

5.2 Analysis of influencing factors of ALEE

Economic growth level (X1) has a positive impact on

ALEE at a significant level of 1%. That is, while other

conditions remain constant, the increase in per capita GDP

can promote the improvement of ALEE. As previously stated,

the development of the agricultural economy will increase

opportunities to contact with advanced agricultural

production technologies and promote the improvement of

agricultural production efficiency. Furthermore, economic

development can generate new concepts of low-carbon

development. Implementing the new concept seriously and

promoting deep agricultural governance can effectively reduce

agricultural carbon emissions and promote low-carbon

agriculture development.

The estimated coefficient of Capital deepening degree (X2) is

negative, and the test of 1% significance level shows that Capital

deepening degree has a negative influence on ALEE. The amount of

capital invested in agriculture has increased in recent years, but the

existing scale of agricultural production has not been considered, so

the amount of capital did not match the scale of agriculture. It was

unable to maximize the utility of agricultural capital, resulting in the

reduction of the effective allocation rate of agricultural factors.

Agricultural scientific and technological progress (X3) has a

positive impact on ALEE at 1% significant level, indicating that

increasing the scientific and technological investment is beneficial to

TABLE 6 Estimation and test results of spatial econometric model (Time fixed effect).

Variable Spatial autoregressive model Spatial error model

X1 0.1317*** (7.5969) 0.1396*** (7.9226)

X2 −0.0660*** (−4.5791) −0.0686*** (−4.6753)

X3 3.4331*** (4.4555) 3.2016*** (4.1298)

X4 −0.7775** (−2.0375) −0.8694*** (−2.2444)

X5 −0.2706*** (−4.3803) −0.2937*** (−4.6804)

X6 −0.0054 (−0.8336) −0.0043 (−0.6508)

X7 −0.0642*** (−8.2738) −0.0692*** (−8.9333)

W*dep.var 0.1600*** (3.3512)

Spat.aut. 0.0359 (0.6302)

R-squared 0.5304 0.5194

The data in () are T-test values, and the upper corner marks *, * *, * * * indicate the significance levels of 10%, 5% and 1% respectively.
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improving ALEE. With the increasing investment in science and

technology, agricultural green technology innovation was promoted.

The combination of agricultural production factors was

continuously optimized, thus improving the agricultural

production efficiency.

Government expenditure (X4) has a negative impact on

ALEE at 5% significant level. In general, increasing

government fiscal investment in agriculture can help to

improve agricultural production efficiency. However, this is

not absolute. Because the investment process may be

accompanied by repeated construction, ineffective

construction, rent-seeking, and wasteful behavior.

Furthermore, low-carbon agriculture is characterized by

large investment and slow effect. The large amount of

government investment in a short period did not yielded

obvious results, but increased agricultural input costs and

reduced agricultural production factor allocation efficiency,

which has a negative impact on ALEE.

Agricultural planting structure (X5) has a significant

negative impact on ALEE. Planting industry is mainly

divided into two categories: cash crops and food crops.

On the one hand, food crops require more agricultural

means of production than cash crops. If the planting

structure is unreasonable, the proportion of food crops is

too high, which will obviously increase agricultural carbon

emissions. On the other hand, massive investment in

agricultural means of production not only increases the

production cost, but also increases the waste of resources,

which has a negative impact on agricultural production

efficiency.

The estimated rural electricity consumption coefficient (X6)

is negative, but it fails to pass the significant level test, indicating that

rural electricity consumption has no significant impact on ALEE.

The reason could be that, while increasing the use of electricity helps

to reduce agricultural carbon emissions, the high cost of electricity

leads to the effect of rural electricity consumption on agricultural

low-carbon economic efficiency is not obvious.

Agricultural disaster (X7) has obvious inhibition effect on

ALEE. That is, assuming all other conditions remain constant, the

larger the affected crop area, the lower ALEE. Crop loss is a direct

result of the natural disasters’ impact on agriculture. At the same

time, its environmental output is greatly impacted. However, as an

unexpected output, agricultural carbon emissions are primarily

caused by agricultural inputs and will not be reduced by natural

disasters. In this case, ALEE must be affected.

6 Conclusions and policy
recommendations

The Super-SBM model was used in this paper to evaluate

the ALEE of 31 Chinese provinces from 2000 to 2018. The

spatial panel model was used to conduct an empirical study

on the influencing factors of ALEE based on the analysis of

regional differences and spatial correlation. The conclusions

are as follows:

(1) In terms of temporal evolution, ALEE in most provinces

shows a downward trend, with only a few provinces

improving. ALEE changes in China and the three regions

are relatively consistent, exhibiting a clear " L ″ trend of

decline first and then stability.

(2) From the spatial differentiation characteristics, provinces in

eastern region have higher ALEE, while those in central and

western regions have lower ALEE. Hainan’s ALEE has an

absolute advantage, while Shanxi is the worst. Only Hainan,

Shanghai, Beijing, Guangdong, Jiangsu, Tianjin and

Shaanxi’s ALEE is at the forefront of production during

the sample period. ALEE in other provinces is not optimal,

and there is room for improvement.

(3) ALEE of adjacent provinces in China has a strong imitation

effect, and there is a significant positive spatial correlation.

China’s ALEE shows obvious spatial agglomeration

characteristics of H-H and L-L agglomeration, which are

further enhanced over time. The number of L-L

agglomeration provinces has gradually increased, indicating

that China’s ALEE has not been improved significantly.

(4) From the perspective of influencing factors, Economic growth

level and Agricultural scientific and technological progress play

an important role in promoting ALEE. However, Capital

deepening degree, Government fiscal expenditure, Agricultural

planting structure, and Agricultural disaster have significant

inhibitory effects on ALEE. Rural electricity consumption has

a negative impact, but it is not statistically significant.

In addition to the above research findings, this paper alsomakes

the following policy recommendations to promote the development

of low-carbon agriculture in China:

(1) To avoid policy convergence and blind duplication, all localities

should consider their current situation. It is necessary to develop

low-carbon agriculture in accordance with local conditions. The

eastern region should continue to maximize its own advantages

by not only focusing on its own modern agricultural

development and technological innovation, but also

strengthening exchanges and sharing experiences with the

central and western regions. Central and western regions

should actively develop distinctive agricultural industries, learn

advanced management methods and technology from the

eastern regions.

(2) Taking the implementation of rural revitalization strategy as an

opportunity to expand the agricultural economy. On the one

hand, economic growth can promote the transformation of

traditional agriculture into new modern agriculture with low

energy consumption, pollution, and emissions. On the other

hand, low-carbon agriculture can become a new economic
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growth point of rural revitalization and comprehensively

promote the modernization process of agricultural production.

(3) R&D of agricultural low-carbon production technology should

be strengthened. Enterprises should be encouraged to

participate in agricultural technological innovation and

improve the conversion rate of agricultural technological

achievements. The government should not only prioritize the

R&D of agricultural ecological carbon sequestration technology,

but also put it into practice as soon as possible.

(4) Agricultural carbon emissions can be effectively controlled

from the source by reducing traditional agricultural inputs

such as chemical fertilizers, pesticides, and agricultural films, and

continuously improving the treatment level of waste resources.

At the same time, organic fertilizer can be promoted to improve

the recycling rate of chemical fertilizer. Furthermore, studies on

the composition ratio of poultry feed can reduce the intake of

substances that may cause carbon emissions

(5) The original agricultural industrial structure is no longer capable

of meeting the demands of regional growth. Agricultural

industrial structure must be further adjusted and optimized, as

well as new division of labor and scientific layout. To promote

green, healthy, and ecological breeding, the structure should be

adjusted to avoid blind duplication. All localities should rationally

divide the planting structure and breeding density according to

their own conditions and agricultural development needs.

(6) The efficiency of government public investment should be

improved and a long-term low-carbon agricultural

development mechanism should be created. Some

adjustments should be made to the current agricultural

subsidy policy. The government needs to make rational

use of funds and put forward some targeted fiscal policies.
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