
Good environmental
governance: Predicting PM2.5 by
using Spatiotemporal Matrix
Factorization generative
adversarial network

An Zhang1, Sheng Chen1,2,3*, Fen Zhao4 and Xiao Dai5

1College of Public Administration, Chongqing University, Chongqing, China, 2China Institute for
Development Planning, Tsinghua University, Beijing, China, 3Collaborative Innovation Center for Local
Government Governance at Chongqing University, Chongqing, China, 4School of Computer Science
and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China, 5School
of Cyberspace Security and Information Law, Chongqing University of Posts and Telecommunications,
Chongqing, China

In the context of low-carbon globalization, green development has become the

commonpursuit of all countries and the themeofChina’s development in thenewera.

Fine particulate matter (PM2.5) is one of the main challenges affecting air quality, and

how to accurately predict PM2.5 plays a pivotal role in environmental governance.

However, traditional data-drivenapproaches anddeep learningmethods forprediction

rarely consider spatiotemporal features. Furthermore, different regions always have

various implicit or hidden states,whichhave rarely beenconsidered in theoff-the-shelf

model. To solve these problems, this study proposed a novel Spatial-Temporal Matrix

Factorization Generative Adversarial Network (ST MFGAN) to capture spatiotemporal

correlationsandovercomethe regionaldiversityproblemat thesametime. Specifically,

Generative Adversarial Network (GAN) composed of graph Convolutional Network

(GCN) and Long-Short-Term Memory (LSTM) network is used to generate a large

amount of reliable spatiotemporal data, and matrix factorization network is used to

decompose the vector output by GAN into multiple sub-networks. PM2.5 are finally

combined and jointly predicted by the fusion layer. Extensive experiments show the

superiority of the newly designed method.
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1 Introduction

With the rapid development of China’s economy and the acceleration of urbanization

process, the excessive emission of pollutants has caused severe pollution to the air and impedes

the process of sustainable development seriously (Chen and Li, 2021; Dong et al., 2021). In

many industrial cities, coal is the regions’ lifeblood. Meanwhile, road transportation and

automobile transportation have become the main ways of transporting goods, which leads to

air pollution to a certain extent. PM2.5 is the primary air pollutant, which turns out to be the
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focus of China’s haze governance at this stage. PM2.5 harms human

health, which has been brought to the center of public attention

(Xing et al., 2021). If PM2.5 can be accurately predicted, which will

have important implications for environmental management and

human health. The concentration of PM2.5 is affected by urban

spatial morphology, land use layout, and meteorological factors (Ma

et al., 2019). Long-time exposure to air pollution will increase the risk

of cardiovascular and respiratory disease (Ma et al., 2020). To find

solutions, the Chinese government has set up air quality monitoring

stations in most cities, which can monitor PM2.5 and other air

pollutant concentration in real-time. Based on observed data, many

researchers employ various models to predict PM2.5, which can

provide guidance for governmentmanagement (Gu et al., 2019). The

PM2.5 predictionmethods fall into two categories:model-driven and

data-driven methods. The model-driven methods particularly

estimate the PM2.5 concentration by establishing mathematical

and statistical models. The data-driven methods predict

PM2.5 concentration by using neural networks, support vector

regression (SVR), and other machine learning models.

With the development of artificial intelligence and machine

learning in recent years, methods such as artificial neural network

(ANN) and SVR have been widely used in the prediction of air

pollutant concentration. SVR model was employed to predict

PM2.5 by using data from surrounding monitoring stations

(Xiao et al., 2020). In Pak et al. (2020) research, A CNN-LSTM

model was used to extract temporal and spatial features and predict

PM2.5 of Beijing in China. However, there is currently rare work

that consider the regional diversities. In different regions, the

historical PM2.5 steady-state features of cities are usually

different, and some cities follow the same pattern of the

PM2.5 concentration (Du et al., 2021). There are three

challenges in predicting PM2.5: spatial correlations, temporal

correlations, and regional diversity. To cope with the challenges,

this paper proposes a novel Spatial-Temporal Matrix Factorization

Generative Adversarial Network called ST-MFGAN, which can

capture spatiotemporal correlations and overcome regional

diversity problems. Specifically, each component of GAN has a

GCN-LSTM pipeline to capture spatiotemporal information. The

output of the GAN is fed to dense layer and undergoes matrix

decomposition to form multiple matrices. Each matrix is learned

through an independent sub-net. These sub-net parameters will not

interfere with each other and PM2.5 are finally combined and

jointly predicted by the fusion layer. The main contributions of this

paper are as follows:

1) In this paper, we propose a novel model, ST-MFGAN, to

comprehensively consider spatiotemporal correlations and

regional diversity. We design an ad-hoc predictor to achieve

effectively prediction.

FIGURE 1
The architecture of LSTM.

FIGURE 2
The framework of ST-MFGAN.
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2) Most of PM2.5 prediction approaches do not adequately

consider the spatiotemporal correlation within the

datasets. In this paper, GAN is composed of GCN and

LSTM, which can capture spatial information and temporal

information to improve the performance of

predicting PM2.5.

3) We verify our model and the other baselines in the

PM2.5 prediction research line. Related results show that

ST-MFGAN achieves a better performance compared with

the existing models.

2 Related methods

2.1 GAN

GAN consists of two models: generator G and

discriminator D, which are in a state of adversarial game.

In the process of game (Goodfellow et al., 2014), generator

plays the role of a liar, which can generate data similar to real

data. The discriminator acts as a judge, distinguishing real

data from generated data. G and D can be seen as players in

FIGURE 3
The RMSE based on different GCN and LSTM blocks.

FIGURE 4
The weights change between LSTM blocks.
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two-player adversarial game. In theory, the discriminator and

generator can achieve Nash equilibrium. In other words, the

discriminator cannot distinguish between real data and

generated data, the generator can generate data close to

real data meanwhile. Based on this principle, the objective

function V (G,D) of GAN is given as follows:

V(G,D) � Ex~Pdata[logD(x)] + Ez~Pz[log (1 −D(G(z))] (1)

Where z represents random noise comes from the prior

distribution, x samples from real data distribution, D(x)

represents the probability that x come from the real data, and D

[G(z)] is the probability that the input comes from the generated

data rather than real data. In the training process ofG,D [G(z)] tend

to approach 1 as much as possible. In other words, G tries to

minimize the objective function as much as possible. In the training

process of D, D tries to maximize the objective function as much as

possible. GANs have been gradually applied to prediction tasks

recently due to admirable ability of feature extraction (Yoon et al.,

2019), which has inspired amyriad of follow-ups to employ GAN to

generation and prediction tasks. Considering that, employing GAN

to PM2.5 prediction is appealing for this paper.

2.2 GNN

GNNhas achieved state-of-the-art results on various graph-based

learning tasks, such as a node or link classification. In recent studies,

the mainstream of GNNs fall into Graph Convolutional Network

(Kipf and Welling, 2016) and Graph attention network (Velickovic

et al., 2017). Due to the powerful fitting abilities on non-Euclidean

data, graph neural networks have been applied to fields such as social

networks, knowledge graphs, molecular structures, and traffic

networks. However, we focus on the variants of GNNs in the field

of pollutant prediction in this paper.

FIGURE 5
The training loss of different models.

FIGURE 6
Experimental results of different methods on the Baoding test set.
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2.3 LSTM

LSTM (Hochreiter and Schmidhuber, 1997) is a type of

Recurrent Neural Network (RNN), which is designed to solve

gradient explosion in RNN, and it is usually used for time

series prediction. LSTM consists of three parts, namely the

input gate, the output gate and the forget gate. The network

structure of LSTM can be shown as Figure 1. LSTM is widely

used to predict time series.

3 Prediction model via adversarial
training

3.1 The establishment of PM2.5 prediction
model via adversarial training

This paper proposes a PM2.5 prediction model based on

GAN, named ST-MFGAN. The framework of ST-MFGAN can

be constructed as Figure 2. The random noise is fed to the

FIGURE 7
Experimental results of LSTM method in Baoding test set.

FIGURE 8
Experimental results of GRU method in Baoding test set.
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generator, and generator output data with spatiotemporal

information similar to the real data. The real PM2.5 and

generated PM2.5 concentration are fed to a dense layer. Then,

a matrix factorization layer filters various regional hidden

information in different sub-network. Finally, we use the

fusion layer to utilize all the different hidden state

information for collaborative prediction. When constructing

the loss function of the generator, the MSE loss is added to

original objective function of GAN, which can reduce the

instability of GAN during training. The loss functions of the

generator and the discriminator can be described as:

Dloss � −1
n
∑n
i�1
logD(x) − 1

m
∑n
i�1
logD(1 −D(G(z))) (2)

gloss � 1
n
∑n
i�1
log(1 −D(G(z))) (3)

Gloss � agMSE + bgloss (4)

FIGURE 9
Experimental results of CNN-LSTM method in Baoding test set.

FIGURE 10
Experimental results of CNN-GRU method in Baoding test set.
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The loss function of the G consists of two parts, a and b are

manually set hyperparameters, considering that the proportion

of a and b should be the same, so a and b are both 0.5.

3.2 Modified GCN and LSTM for
spatiotemporal information capturing

PM2.5 contains ammonium nitrate, which is easily

decomposed when the temperature is high. Ammonium

nitrate is also easily deliquescent, so temperature and

humidity are closely correlated with PM2.5. The wind and

vortex help the PM2.5 concentration in the air to spread

horizontally and vertically, so the wind speed and vortex state

are both related to PM2.5. Precipitation acts as a resistance to

PM2.5 concentration, which will produce moisture removal and

downward airflow. Therefore, precipitation can be also closely

correlated with PM2.5 concentration. Based on the above

analysis, this paper chooses time, temperature, humidity, wind

speed, precipitation and other variables as input to predict the

FIGURE 11
Experimental results of IDW-LSTM method in Baoding test set.

FIGURE 12
Experimental results of RBF-LSTM method in Baoding test set.
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change of PM2.5 concentration. Assuming that the input matrix

X = {x1, x2,. . ., xt}, X represents data at t time points, where x1,

x2,. . ., xt represent time, temperature, humidity, wind speed,

precipitation and vortex status at t time respectively. GCN and

LSTM are added to the generator and discriminator of GANdue to

strong feature extraction capabilities of them. This paper selects

historical air data of different cities in the Beijing-Tianjin-Hebei

region of China from the ERA5 datasets. Assuming that the input

matrix Xi � {X1
i , X

2
i . . .X

M
i }, X represents input data, where Xi

represent i th city, M represents total time intervals. GCN and

LSTM are added to the GAN generator and discriminator to

capture spatial and temporal information, respectively. Similarly,

Y � {Y1, Y2 . . .YN} � {{Y1
1, Y

2
1 . . .Y

M
1 }, {Y1

2, Y
2
2 . . .Y} . . . {Y1

N,Y
2
N

. . .YM
N }, where Yis label information. Here, to fully use spatial

information, we modified traditional GCN aggregation matrix.

Traditional GCN follows layer-wise propagation:

Hl+1 � σ( ~A ·Hl ·W) (5)

Here ~A is adjacency matrix of graph with added self-

connections. Hl and Hl+1 are outputs of (l-1)-th and l-th

layers. H0 � X is input data. In this paper, we modified ~A ,

assuming that two city pattern similarity can be calculate as:

Mt(xt
i , x

t
j) � xt

i

→ · xt
j

→⎞⎠/∣∣∣∣∣∣∣xt
i

→∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣xt
j

→∣∣∣∣∣∣∣⎛⎝ (6)

Then, we can represent adjacency matrix as:

At � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ Mt(xt
1, x

t
1) / Mt(xt

1, x
t
N)

..

.
1 ..

.

Mt(xt
N, x

t
1) / Mt(xt

N, x
t
N)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7)

By this way, our modified GCN can be represent as:

Hl+1(t) � σ(At ·Hl(t) ·W(t)) (8)

And then the output of GCN is fed to LSTM. We perform

spatiotemporal learning on the input data to GCN and LSTM

and conduct adversarial training to generate data similar to real data.

3.3 Matrix factorization networks

Matrix factorization introduces a large number of parameters

to learn the differences of different subregions. Each parameter

subset learns independently and does not interfere with each

other, which ensures the independence and reliability of the

prediction of each region.Therefore, matrix factorization

network is widely used in deep learning due to the advantage

for spatio-temporal data in recent years (Wang andMa, 2021). In

FIGURE 13
Experimental results of ST-MFGAN method in Baoding test set.

TABLE 1 The RMSE and MAE of the five methods in the test set.

Methods RMSE MAE

GRU 39.68 ± 0.84 26.23 ± 0.66

LSTM 35.42 ± 0.47 23.42 ± 0.35

CNN-GRU 33.47 ± 0.32 20.67 ± 0.44

CNN-LSTM 31.62 ± 0.43 17.63 ± 0.67

RBF-LSTM 32.35 ± 0.46 19.22 ± 0.87

IDW-LSTM 30.97 ± 0.24 17.77 ± 0.27

ST-MFGAN 28.94 ± 0.22 14.95 ± 0.29
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order to predict PM2.5 more accurately, the real data x and the

generated data G(z) in Section 3.2 are combined together in a

certain proportion. Then we propose the formula:

Xc � x + γG(z), where Xc denotes the hyperparameter for

adjusting the ratio of x and G(z). After generated data

through generator of GAN, the corresponding vectors is

generated through the dense layer. And we assume that the

network structure of the vectors is F′ ∈ Rnf×nf′ . Then, the matrix

decomposition network can be used to make adaptive

adjustments to the number of variable regions in the network,

and the matrix decomposition network can be written

as W � [W1, . . .Wnr] ∈ Rnr×nf′×nf ,Wi ∈ Rnf×nf .

We suppose R � [r1, . . . rnr] ∈ Rnr×R and

P � [p1,/, pnp] ∈ Rnp×R, where np � nf × nf′. To make the

process of matrix decomposition more smooth, we suppose

W � RPT, then the learning targets are revised as R and P.

FIGURE 14
RMSE of different methods on the test set.

FIGURE 15
MAE of different methods on the test set.
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The output of the MF network can be expressed as

f′
i � ωi · fi + bi, i � 1 → nr. And f′

i(i � 1 → nr) is combined

by the fully connected layer, which is used to jointly predict PM2.5.

3.4 Model summary

In this paper, ST-MFGAN is proposed to predict PM2.5. The

generator and discriminator consist of GCN and LSTM, which can

capture spatiotemporal correlations among the inputs and

overcome the regional diversity problem. Matrix factorization

networks is also used to make adaptive adjustments to the

number of variable regions in this model, which can effectively

reduce the interference between the parameters of each sub-

network, and it can be used to predict PM2.5 more accurately

compared to other models. In order to verify the effectiveness and

superiority of the proposed method, comparative experiments and

ablation experiments will be conducted in next section.

4 Experiment and result analysis

ERA5 dataset is used in this paper, and the historical air data of

13 cities in the Beijing-Tianjin-Hebei region are selected. It canmake

sense to choose this dataset since these cities are withmore severe air

pollution in China. Air data for the period 2015–2018 are selected

from the data set of 13 cities in experiments.When dividing the data

set, 3-year data from January 2015 to December 2017 is used for the

training set, and data from January to December 2018 is selected for

the testing set. To eliminate the dimensional influences between

different indicators, we normalize all the features in the datasets,

which is shown as:

xi � Xi − μ

τ
(9)

Where μ and τ represent the mean value and variance of X. In the

training process of ST-MFGAN, in order to prevent the

discriminator or generator from being locally optimal, the

discriminator and generator alternately iterate. After each

iteration of the discriminator, the generator then iterates once.

The training of ST-MFGAN will continue until the model is

stable. All experiments in this paper are conducted based on

Nvidia 3,090 (24 GB) and Tensorflow, which is an open source

machine learning framework. In the experiment, the epochs are set

to 200, the batch-size is 64, the number of neurons in each layer of

LSTM is 8, and the dropout value is 0.1, the learning rate is set at

0.01, and Adam optimizer is used to updates the network. In order

to find the optimal number of LSTM and GCN blocks, this paper

conducts experiments by setting different blocks. The results of the

experiments are shown in Figure 3. It can be seen that the RMSE is

the smallest when the number of LSTM blocks is set to two and the

number of GCN blocks is 1. Therefore, the number of LSTM

modules is set to two and the number of GCNmodules is set to one

in this paper. Figure 4 shows the weights of the two LSTM blocks,

from which it can be seen that the weights are updated when the

input data are passed through each of the two LSTM blocks.

To verify the effectiveness and superiority of the proposed

method, comparative experiments with other mainstream data-

drivenmethods are conducted.We adopot six different models of

GRU, LSTM, CNN-GRU, CNN-LSTM, IDW-LSTM, RBF-LSTM

as baseline for this paper. GRU, LSTM, CNN-GRU, CNN-LSTM

are the basic regression prediction models, which are widely used

in PM2.5 prediction. IDW-LSTM is a methodology framework

for PM2.5 prediction, which consists of inverse distance

weighting and BLSTM (Ma et al., 2019). RBF-LSTM is

proposed to forecast PM2.5 concentration, which consists of

radial basis function and LSTM (Chen and Li, 2021). In the

comparative experiments in this paper, the number of GRU

layers of the GRU method is set to 2. In CNN-GRU, the number

of CNN layers is set to 1, and the number of GRU layers is 2. The

number of CNN layers in CNN-LSTM is 1, and the number of

LSTM layers is 2. In IDW-LSTM, the number of BLSTM layers is

2. In LSTM and RBF-LSTM, the number of LSTM layers is 2. The

training loss curves of seven models are shown in Figure 5. It can

be seen from Figure 5, the loss of seven models do not decrease at

the later stage of traing process, which indicates that all models are

fully trained, which reflects the rigor and fairness of this paper to a

certain extent. As can be seen from Figure 5, the loss of ST-

MFGAN decreases fast during the training process and fluctuates

less significantly in the later stages of training, which verifies that

proposed model is stable during training. This can further indicate

that proposed model can be better applied to predict PM2.5.

The PM2.5 prediction results on the Baoding test set are

shown in Figure 6. As can be seen from Figure 6, the prediction

curve of ST-MFGAN is closer to that of the actual

PM2.5 compared with other models. Especially, when the real

PM2.5 turn to be a brief peak, ST-MFGAN is more able to

estimate the trend of PM2.5 and can predict more accurately than

other models. As shown in Figures 7–13, the prediction effect of

each method can be presented more clearly. The performance of

ST-MFGAN is significantly better than other comparative

models. In terms of the prediction performance, ST-MFGAN

can predict the trend of PM2.5 more accurately.

In order to more intuitively describe the prediction accuracy

of various methods, the root mean square error (RMSE) and

mean absolute error (MAE) are adopted to evaluate the

TABLE 2 The RMSE andMAE of the ablation experiments in the test set.

Methods RMSE MAE

GAN 42.64 ± 0.84 31.16 ± 0.69

GCN-GAN 35.58 ± 0.48 24.67 ± 0.57

LSTM-GAN 32.45 ± 0.42 19.28 ± 0.35

ST-MFGAN 28.94 ± 0.22 14.95 ± 0.29

Frontiers in Environmental Science frontiersin.org10

Zhang et al. 10.3389/fenvs.2022.981268

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.981268


prediction performance of each model. The calculation of RMSE

and MAE is defined as:

RMSE �
��������������
1
m
∑m
k�1

(yk
∧ − yk)2

√√
(10)

MAE � 1
m
∑m
k�1

∣∣∣∣∣∣yk
∧ − yk

∣∣∣∣∣∣ (11)

Where yk
∧

represents the predicted PM2.5 concentration, and yk

is the actual PM2.5 concentration. The smaller the value of MAE

and RMSE are, the closer the predicted PM2.5 are to the actual

PM2.5. In order to ensure the reliability of the experiments,

repeated experiments are carried out in this paper, and the

average value of multiple experiments is taken as the result of

MAE and RMSE. From the results in Table 1, it can be concluded

that the RMSE and MAE of ST-MFGAN are the smallest among

the seven models. The predicted PM2.5 concentration of ST-

MFGAN is closer to the actual PM2.5 concentration, and the

performance of the prediction is better than the others. It fully

verifies the effectiveness of the proposed ST-MFGAN model.

From Figure 14 and Figure 15, it can be seen more intuitively that

ST-MFGAN has the lowest MAE and RMSE, which denotes that

ST-MFGAN achieves the best performance of PM2.5 prediction.

To further verify the validity of the model structure proposed

in this paper, ablation experiments were conducted in this paper.

We compare ST-MFGAN with the original GAN, GCN-GAN

(GAN with generator of GCN), and LSTM-GAN (GAN with

generator of LSTM), and experiments results are shown in

Table 2.

It can be seen from the ablation experimental results that ST-

MFGAN achieves the best prediction performance due to hitting

lower RMSE and MAE, which further verifies the effectiveness of

the model structure proposed in this paper.

5 Conclusion

This paper propose a PM2.5 prediction method based on ST-

MFGAN. The generator and discriminator consist of GCN and

LSTM, which can capture spatiotemporal correlations among the

inputs compared with original GAN, and it can overcome the

regional diversity problem. Matrix factorization networks are

also used to make adaptive adjustments to the number of variable

regions in this model. Compared with PM2.5 prediction methods

based on LSTM, GRU, CNN-LSTM and CNN-GRU, IDW-

LSTM, and RBF-LSTM, the method in this paper has a better

prediction performance, which can be used in governing

environment. It can be seen from the results of this paper that

PM2.5 concentration changes periodically and is difficult to

control. Therefore, the government needs to strengthen

environmental management and introduces a series of

powerful policies to control the concentration of PM2.5.

Although the PM2.5 prediction method of ST-MFGAN can

effectively predict the concentration of PM2.5, there is still room

for further improvement of this paper. Most studies on

PM2.5 prediction use various meteorological variables to

predict PM2.5. However, few studies currently take policy

factors into account. Future research can take the policy into

consideration, which may improve the forecasting effect of

PM2.5. Compared with GRU, LSTM and other models, GAN

may bring additional cost during the training process. Future

research can focus on the study of lightweight GAN for

PM2.5 prediction, which can reduce the number of

parameters of the model so that GAN can be trained and

predicted more quickly in the prediction task.
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