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Improving green total factor productivity (GTFP) is an effective way to achieve

efficient use of resources and low-carbon development in the transportation

industry. Accurately grasping the spatial associated structure and its influencing

factors of China’s transportation GTFP is of great significance for promoting

coordinated regional development. This study used the DEA-Malmquist model

to measure China’s provincial transportation GTFP from 2006 to 2019. The

spatial associated matrix is constructed by the modified gravity model, and the

social network analysis (SNA) method is used to analyze the structural

characteristics and influencing factors of the GTFP spatial associated

network. It is found that: 1) The tightness of the spatial associated network

of China’s transportation GTFP increased year by year, and the hierarchical

spatial structure was gradually broken. 2) There are significant differences in the

status of various regions in the spatial network. Among them, Shanghai plays the

role of “leader” and “core participant”, with the highest point centrality and

eigenvector centrality; Jiangxi and Guangdong play the role of “intermediary”

and “bridge”; However, Jilin, Qinghai, Ningxia, and other regions have a weak

influence on the spatial correlation. 3) Spatial aggregation analysis shows that

block I has a strong correlation with other regions, while the spatial correlation

level of the other three plates is relatively poor. 4) QAP analysis shows that

province adjacency, per capita GDP, and technological innovation have a

significant positive impact on the spatial correlation. Therefore, the Chinese

government should increase the level of informatization and create a regional

coordinated development mechanism to optimize the overall development

pattern of the transportation industry.
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1 Introduction

The tightening of resources and environmental constraints

has caused countries around the world to consider “green”

development while promoting economic growth, and

increasing the contribution share of green total factor

productivity (GTFP) in economic development. As the basic

carrier and strategic leading industry of economic and social

development, the transportation industry accounts for about

24.34% of the total carbon emissions of global CO2 emissions

(Shao and Wang, 2021). This sector is the second-worst emitter

of greenhouse gas worldwide and a key to China’s achievement of

its carbon peak and neutrality strategic goals (Wei et al., 2021).

Research shows that China’s transportation GTFP is

characterized by a significant spatial imbalance and

autocorrelation, and regional green development is affected by

interval externalities (Yang et al., 2011; Yuan et al., 2017; Liang

and Li. 2021;Wei et al., 2021). At present, investigating the role of

interval relations is often based on new economic geography and

spatial econometric models, and mainly focuses on “nearby”

spatial effects and local spatial characteristics. There is a lack of

systematic analysis of the overall network connection and the

overall spatial pattern and driving mechanism of GTFP in

China’s transportation. However, clarifying the spatial

structure characteristics of China’s transportation GTFP and

its influencing factors under the goal of “carbon peak and

neutrality” is of great significance for promoting “greening”

and coordinated development between regions.

The most common method for studying complex

relationships is Social Network Analysis (SNA). SNA uses an

incidence matrix to represent complex associations and uses

graph theory and algebraic operations to measure structural

features which can reflect the key features in complex

networks (Steketee et al., 2015). SNA analyzes the network

from the three levels of the whole, individuals, and subgroups.

It not only reveals the correlation characteristics of the network

from the perspective of attribute data but also discovers the

relationship between network nodes from the perspective of

relational data. Moreover, in social network analysis, the

Quadratic Assignment Procedure (QAP) algorithm studies the

correlation between two variable matrices or the regression

relationship between multiple variable matrices and one

variable matrix through the arrangement of matrix rows and

columns (Ma et al., 2019). Because network data often have

problems such as multicollinearity and autocorrelation, the QAP

algorithm is more suitable for regression analysis of influencing

factors than other methods. In this research, we use SNA theory

to conduct comprehensive and in-depth research on the spatial

association and network structure characteristics of the

transportation GTFP in China and use the QAP method to

further explore its influencing factors.

The rest of this paper is organized as follows. Section 2 is the

review of related literature. Section 3 constructs the research

model and describes the variable selection. Section 4 analyzes the

evolutionary trends of the carbon emission network using the

research results obtained from analyzing the spatial association

effect in China’s provincial transportation. This section also

explores the influencing factors of transportation carbon

emissions by QAP. The last section summarizes the full study

and proposes corresponding policy recommendations.

2 Literature review

Under the strategic guidance of building China’s strength in

transportation and green development, how to break away from

the previous development model of over-reliance on high

investment in infrastructure and high consumption of

resources and energy to achieve high-quality development has

attracted the attention of many scholars. The essence of this is the

problem of transportation efficiency. For example, Sun et al.

(2022) believed that the development of public rail-based

transportation networks can reduce carbon emissions,

promote transportation efficiency and achieve green and

sustainable development of transportation. Wu et al. (2015),

and Chang et al. (2013) used the data envelopment analysis

method to study the transportation efficiency in various

provinces in China. They found that China’s transportation

industry is environmentally very inefficient, and the spatial

distribution varies greatly. Jiang et al. (2020) built a three-

stage DEA model to analyze the transportation carbon

emission efficiency in the Yangtze River Economic Zone from

1985 to 2016. They pointed out that the optimization of

industrial structure is conducive to the improvement of

transportation carbon emission efficiency. Park et al. (2018)

used the SBM-DEA model and state-level data to assess the

environmental efficiency of the transportation sector in the U.S.

from 2004 to 2012. The study discovered that the U.S.

transportation sector was environmentally inefficient and the

states could substantially reduce carbon emissions to improve the

environmental efficiency of their transportation sectors. Peng

et al. (2020) evaluated the carbon emission efficiency of

transportation in 30 provinces in China from 2004 to

2016 using a Super-SBM model and used Moran I index to

analyze the spatial distribution characteristics. They found that

the carbon emission efficiency of transportation is characterized

by “high in the east and low in the west”, and has significant

spatial dependence and agglomeration characteristics.

However, the transportation efficiency analyzed by the above

studies is mostly relative efficiency, which cannot truly reflect the

effect of transportation resource allocation and the level of green

development. Therefore, some scholars have researched total factor

productivity. With the gradual attention paid to green development,

scholars have tried to combine the level of carbon emissions and

total factor productivity to comprehensively evaluate the level of

GTFP in transportation.GTFP as themain tool to explore the source
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of economic growth has become an important indicator for

evaluating the efficiency of transportation resource allocation and

the status of sustainable development (Peng and Wu, 2019). Yang

et al. (2011) used the production function model and the

Geographically Weighted Regression (GWR) model to analyze

the spatial impact of technological progress on China’s traffic

GTFP. They pointed out that spillover effects of green

technologies should be encouraged and regionally differentiated

policies should be implemented to promote the growth of GTFP.

Zhang et al. (2011) combined a variety of poor environmental

outputs with TFP to calculate the GTFP in Chinese provinces.

Kumar. (2006) and Biresh et al. (2011) incorporated CO2

emissions into TFP and analyzed the GTFP of different

countries. Huang (2020) used the Hicks-Moorsteen index to

calculate the GTFP of road transportation and analyzed its

spatial distribution characteristics. She pointed out that green

technologies in various provinces are interrelated and GTFP

should be promoted from the perspective of spatial correlation.

Based on the DEA-Malmquist index method, Chen and Pan, (2016)

measured the total factor productivity (TFP) of the logistics industry

in 30 provinces in China from 2005 to 2014 under low carbon

constraints. Using exploratory spatial data analysis methods, they

found significant spatial correlations in TFP between provinces.

Nevertheless, the current research on transportation GTFP

mainly focuses on the time series trend and spatial “nearby”

dimension. Few studies have focused on the spatial correlation of

transportation GTFP. Social network analysis, as a method based

on graph theory, uses relational data to conduct an in-depth

analysis of spatial network associations and system structure. In

recent years, many scholars used the SNA method to analyze the

spatial network relationship in the field of total factor

productivity. Yan and Zhu. (2021), Huang et al. (2021),

Zhang et al. (2021), Liu and Song. (2018), Zhang and Yu.

(2017), and others used the SNA method to analyze the total

factor productivity of China’s light industry, tourism, water

resources, energy, and social economy. They revealed the

characteristics of their spatial network structure from three

levels of integral, individual, and regional characteristics,

thereby providing the theoretical basis and reference for

grasping and improving total factor productivity and regional

balanced development. However, there is almost no research on

GTFP in transportation using the SNA method, and it is more

used to analyze the spatial network relationship of transportation

carbon emissions in China’s provinces.

It can be seen that the existing research on GTFP in China’s

transportation is more of a time series evolution trend analysis.

Regarding its spatial structure characteristics, the current

research only uses “cross-sectional data” for analysis, which is

not conducive to grasping the time-varying trend of the spatial

characteristics of the transportation GTFP. On the other hand,

existing studies usually adopt traditional measurement models

and exploratory spaces data analysis, and other methods to

analyze the spatial heterogeneity, clustering, and convergence

of GTFP in transportation. However, these methods only

consider the situation of “nearby” geographical location, and

the results are often “partial”. It is difficult for them to outline the

complex spatial correlation network, and they cannot well reflect

the spatial correlation structure and aggregation of GTFP in

transportation. Therefore, this study used the SNA method to

analyze the network characteristics, evolution trends, and

influencing factors of the spatial correlation effect of GTFP in

China’s provincial transportation. The results of this research will

help decision-makers grasp the overall structure of the

transportation GTFP and understand the internal connections

and differences among regions. It also has important theoretical

significance and application value for building a cross-regional

transportation GTFP coordinated promotion mechanism,

formulating a targeted and regional transportation reform and

development policy, and achieving the “carbon peak and

neutrality” and sustainable development goals.

3 Methodology

3.1 DEA-malmquist model

Compared with other measurement methods (mainly

including the growth kernel algorithm and stochastic Frontier

analysis), the Malmquist model based on Data Envelopment

Analysis (DEA) has a lot of advantages in the measurement

methods of total factor productivity (Peng and Wu, 2019): 1)

There is no need to determine the form of the production function

in advance, so it can avoid improper model setting that affects the

accuracy of the analysis results; 2) It can handle the situation of

multiple input-output and is suitable for inter-period analysis in

different economic regions 3) The total factor productivity growth

rate can be decomposed into factors such as technical efficiency

and technological progress, which has a strong guiding significance

for policy formulation. Therefore, this paper chose the DEA-

Malmquist model to measure the GTFP of China’s

transportation. At present, researchers generally use the output-

orientedMalmquist productivity change index constructed by Fare

et al. (1994), its calculation equation can be expressed as:
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In Eq. 1, Mi,t+1(xt
i , y

t
i , x

t+1
i , yt+1

i ) is the change in total factor

productivity of province “i” from period “t” to period “t+1”;
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(xt
i , y

t
i ) and (xt+1

i , yt+1
i ) represent the input-output vector of

province “i” in period “t” and “t+1” respectively; Dt
i(xt

i , y
t
i ) and

Dt
i(xt+1

i , yt+1
i ) respectively represent the output distance function

of period “t” and “t+1” with the cutting-edge production

technology of period t as a reference; Dt+1
i (xt

i , y
t
i ) and

Dt+1
i (xt+1

i , yt+1
i ) respectively represent the output distance

function of “t” and “t+1” with “t+1” cutting-edge production

technology as a reference. PECHt+1
t , SECHt+1

t , and TCt+1
t

respectively represent the pure technical efficiency change

index, scale efficiency change index, and technological progress

index of the province “i” from “t” period to “t+1” period; V and C

respectively represent the variable and constant returns to scale.

WhenmeasuringtheGTFPofChina’stransportationbasedonthe

DEA-Malmquistmodel, it isfirstnecessarytoscientificallyselectinput

and output indicators. In terms of input indicators, the capital stock,

laborforce,andenergyconsumptionofthetransportationindustryare

selected as input elements. Among them, the transportation capital

stockisestimatedbyreferringtotheresearchofZhangetal. (2004)and

Shan (2008), using the “perpetual inventorymethod”; The labor force

is represented by the number of employees in the transportation

industry in each province; What’s more, based on the total

consumption of nine types of energy in the transportation

industry: raw coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel

oil, liquefied petroleum gas, and natural gas, and the standard coal

coefficientisusedtoconvertthemintostandardcoal,whichrepresents

the total energy consumption (Song et al., 2017).

In termsofoutput indicators, select the industrial addedvalueof

the transportation industry, transportation turnover, and carbon

dioxide emissions as output factors. Among them, industrial added

value and transportation turnover are regarded as the expected

output, and carbon dioxide emissions are regarded as undesired

output (Yuan et al., 2017). Considering data availability,

transportation turnover was calculated by road, rail, and water.

Due to the different units of passenger and freight turnover, the

passenger turnover and freight turnover are converted into

comprehensive turnover indicators based on the conversion

factor. With reference to the passenger-freight conversion

coefficient standard, because it is difficult to obtain detailed

passenger turnover by berths or seats in waterway passenger

transportation, so this study takes the conversion factor of

waterway passenger turnover as 1. Therefore, the conversion

coefficients of passenger turnover for railways, highways, and

waterways are 1, 0.1, and 1. In addition, this study used a top-

down approach to calculate carbon emissions (Song et al., 2017).

3.2 Revised gravitational model and spatial
association matrix

The construction of the spatial incidence matrix is the basis for

the application of the social network analysismethod. In the existing

research, the determination of the spatial association relationship

mainly uses the gravitymodel and the vector autoregressive Granger

causality test (VAR Granger Causality). The VAR model is more

sensitive to the choice of data lag order, while the gravity model is

more suitable for overall analysis. In addition, the gravitational

model can also describe the strength of the connection between the

two regions, and even the evolution trend of the spatial relationship

from the aspects of geographic distance, economic level, population

size, and energy consumption (Liu et al., 2020). Therefore, this study

chose the gravity model to construct the spatial correlation strength

of the green total factor productivity of transportation in various

provinces in China. At the same time, in order to enhance the

applicability, the original equation was revised, as shown in Eq. 2

after revision (Wu et al., 2019):

Yij � kij

������
PiTiGi

3
√

×
������
PjTjGj

3
√

( dij
gi−gj)

2 , kij � Ti

Tj
(2)

In Eq. 2, Yij is the link strength of the transportation GTFP in

the province “i” to province “j”; Pi and Pj represent the

population size of the province “i” and province “j”, which is

replaced by the number of permanent residents at the end of the

year; Ti and Tj are the green total factor productivity of

transportation in the province “i” and province “j”; Gi and Gj

are the actual regional GDP of the province “i” and province “j”,

indicating the level of regional economic development; kij
represents the contribution rate of the province “i” in the

green total factor productivity link between province “i” and

province “j”. Since the link strength of green total factor

productivity between regions will be affected not only by

geographical distance but also by economic distance, the ratio

of geographical distance dij to per capita GDP difference gi-gj is

used to comprehensively express the influence of distance factors.

dij is represented by the shortest road distance between province

“i” and the capital city of province “j”. In addition, according to

Taaffe’s research, the distance attenuation coefficient is

determined to be 2 (Taaffe 1962).

Based on Eq. 2, a 30*30 contact strength matrix of

30 provinces in the year can be obtained. The average value

of each row of data in the matrix is regarded as the critical value.

If the value in the matrix is greater than the average value, it is

recorded as “1”, which means that there is a spatial correlation

between the two. Otherwise, it is recorded as “0”, which indicates

that there is no spatial correlation between the two. Finally, a

spatial binary (0–1) matrix of green total factor productivity of

transportation was constructed and used as the data basis for

spatial network structure analysis.

3.3 Social network analysis

Social Network Analysis (SNA) is based on relational data,

uses graph theory tools and algebraic models to describe the

relational modes between network nodes, and explores the

influence of each relational model on individual members of
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the network and the network as a whole (Shen et al., 2021).

Through in-depth analysis of the relationship between the

members of the network, the overall structural characteristics

of the network and the interaction between the nodes are

revealed (Liu and Song, 2018) This study used the social

network analysis method and the related measurement

indicators to analyze the overall spatial network

characteristics, centrality characteristics, and clustering

characteristics of GTFP in China’s transportation from two

dimensions of time and space. It is hoped that the

development trend and influencing factors of GTFP in China’s

transportation can be discovered, so as to provide a policy basis

for optimizing the spatial allocation of resources and improving

green total factor productivity.

3.3.1 The integral structural characteristics of the
network

Network density and network relevance (network association

degree, network grade, and network efficiency) are usually used

to describe the integral structural characteristics of the network

(Ducruet and Beauguitte, 2014).

1) Network density (ND). It refers to the closeness of contact

between various points in a network. It is also defined as the

ratio of the number of connections owned to the maximum

number of connections possible in the entire network.

Assuming that the number of nodes in the network is N

and the number of associated lines that exist in the network is

L, then the calculation equation for the network density ND

can be expressed as:

ND � L

N(N − 1) (3)

2) Network association degree (NAD). It reflects the robustness

of the network. If there is a direct or indirect path between

each node in the network, it means that the network has good

connectivity. If many lines in a network are connected by a

node, it means that the operation of the network greatly

depends on this node. Once the node is excluded, the network

may collapse, which means that the network is not stable and

the connectivity is low. Assuming that the number of network

nodes is N and the number of unreachable nodes in the

network is V, the calculation of the degree of network

connectedness NAD is:

NAD � 1 − V

N(N − 1)/2 (4)

3) Network grade (NG). It refers to the degree of asymmetric

reachability between network nodes. The higher the

network grade is, the stricter the network structure,

which means that it is more difficult to integrate

different regions. Assuming that the number of

symmetrically reachable nodes in the network is K, that

is the maximum possible number of symmetrically

reachable nodes, the calculation equation of the network

grade NG is as follows (Vanderelst 2015):

NG � 1 − K

max(k) (5)

4) Network efficiency (NE). It refers to the extent to which

there are redundant connections in the network. The

lower the network efficiency, the more overflow

channels between nodes, and the more stable the

network. Assuming that the number of redundant

connections in the network is M, and max(M) is the

maximum possible number of redundant connections,

the network efficiency NE is calculated as (Ducruet and

Beauguitte, 2014):

NE � 1 − M

max(M) (6)

3.3.2 The centrality analysis of the network
Centrality is an indicator used to measure the status and

role of each node in the network. The higher the centrality of a

node, indicating that it is in the center of the network, the

greater its influence on other nodes in the network. Generally,

the indicators that describe the centrality of a network include

point centrality, betweenness centrality, closeness centrality,

and eigenvector centrality (Borgatti et al., 2009; Wen et al.,

2018).

1) Point centrality (PC). It refers to the number of nodes directly

associated with a node in the network (represented by n),

reflecting the degree to which each node is at the center of the

network (Linton 2004). Assuming that the number of nodes

in the network is N, the calculation equation for point

centrality PC is as follows:

PC � n

N − 1
(7)

2) Betweenness centrality (BC). This index characterizes the

degree of resource control of a node. If a node is on the

shortest path of many other point pairs, then the node has a

high degree of betweenness centrality (Diez and Berger,

2005). Assuming that the number of shortcuts between

node j and node k is gjk, and the number of shortcuts

passing through node i is gjk(i), then the ability bjk(i) of

node i to associate node j with node k can be expressed as

bjk(i) � gjk(i)/gjk.

The betweenness centrality of all point pairs in the network

corresponding to node i is added and standardized, and the

betweenness centrality BC can be obtained:
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BC � 2∑N
j ∑N

k bjk(i)
N2 − 3N + 2

, (j ≠ k ≠ i, j< k) (8)

3) Closeness centrality (CC). It describes the degree to which a

point is not controlled by others (Song et al., 2019). A node

has high closeness centrality if the distance between it and all

other nodes in the network is short, meaning it is less likely to

be controlled by other points. The calculation equation for

closeness centrality CC is shown in Eq. 9, where dij is the

length of the shortcut from point i to point j (Bai et al., 2020).

CCAPi �
n − 1
∑n

j�1dij
× 100 (9)

4) Eigenvector centrality (EC). It depends not only on the

number of its adjacent nodes but also on the importance

of its adjacent nodes. It is a function of the centrality of

adjacent nodes and reflects the importance of each node in the

network. That is, the more important the adjacent node is, the

more important the node is. The purpose of the study of

eigenvectors is to find the core actors on the basis of the

overall structure of the network (Wen et al., 2018). The

calculation equation of the eigenvector centrality EC of

node i is:

ECi � xi � c∑n

j�1aijxj (10)

Among them, c is a proportional constant, denoted x = [x1,x2,

. . . xn]
T. When the steady state is reached after many iterations, it

can be written in matrix form: x � cAx. It means that x is the

eigenvector corresponding to the eigenvalue c−1 of matrix A,

which can also be expressed as Ax � λx.

3.3.3 Spatial aggregation analysis
The block model is the main method of spatial clustering

analysis in social network analysis (Liu et al., 2020). It can analyze

the role of each location (block) in the network. Through block

model analysis, the development of the spatial correlation

network of GTFP in transportation can be investigated from a

new dimension, and the internal structure state of the spatial

correlation network of GTFP in transportation can be revealed

and portrayed. Furthermore, it can also display the number of

blocks in the network and which provinces each section contains,

which helps in analyzing the relationship between the blocks.

The blocks can be divided into four types. 1) The net-income

block. The members of this type of block receive both the

relationship from other block members and the relationship

from the internal members of the block, and the relationship

from the outside of the block is more than its overflow

relationship to other blocks; 2) The net spillover block. This

type of block has significantly more contact with other blocks

than it receives from other blocks; 3) The two-way spillover

block. Members of this block both send out contacts and receive

contacts from other blocks, and there are relatively many

contacts from members within the block; 4) The broker block.

This type of block not only sends contacts to other blocks, but

also receives contacts from other block members, and the block

has more connections with other block members.

3.4 QAP association and regression
analysis

Since this study used “relational data”, there is a high

similarity between explanatory variables. In order to avoid the

problem of multicollinearity, the QAP analysis method was used

to study the influencing factors of the spatial association network

of China’s transportation GTFP. It mainly includes QAP

association analysis and QAP regression analysis (Shao and

Wang, 2021).

QAP association analysis is a method to compare the

similarity of each element in two square matrices, which is

based on the replacement of matrix data (Feng C et al., 2021).

First, convert each matrix into a long vector of n (n-1) numbers

(the numbers on the diagonal are ignored), then calculate the

correlation coefficient between the two vectors; Second,

randomly permute the rows and columns of the matrix at the

same time, then calculate the correlation coefficients and save the

results. Repeating this calculation process hundreds or even

thousands of times will get a distribution of correlation

coefficients; Third, compare the correlation coefficient

calculated in the first step with the correlation coefficient

distribution obtained after random permutation. Obtain the

significance level of the correlation coefficient according to the

ratio of the correlation coefficients greater than or equal to the

coefficient calculated for the first time in the distribution; Finally,

the result is obtained by judging whether the correlation

coefficient falls into the rejection area or the acceptance area.

The principle of QAP regression analysis is similar to that of

association analysis (Li et al., 2021). It studies the regression

relationship between multiple matrices and one matrix and

evaluates the significance of the coefficient of determination R2.

Regarding the influencing factors of the spatial association

network of China’s transportation GTFP, the existing research

believes that regional differences in income level (Yuan et al.,

2017), industrial structure (Feng X W et al., 2021), technological

innovation level (Du and Li. 2019; Wang et al., 2021), and

environmental regulation (Shen et al., 2019) have an

important impact on the spatial association: of GTFP. At the

same time, the spatial relationship of GTFP in the transportation

industry is also affected by the difference in the development level

of the transportation system. The higher the output of the

transportation system, the stronger its current transportation

capacity is; The larger the investment in the transportation

industry, the more complete the transportation system will be.

These are conducive to promoting the flow of population and
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resources between regions, thereby strengthening the spatial

association. Therefore, we used the comprehensive

transportation turnover and investment in the transportation

industry to represent the development quality of the

transportation system. In addition, regions with closer

distances are more likely to have spatial association

relationships (Bai et al., 2020), so we used geographical

distance and adjacency relation to represent the spatial

distance between regions.

Therefore, 8 variables are selected from five aspects: spatial

distance, regional economic development level, the development

level of the transportation system itself, technological innovation

level, and environmental regulation to explain the factors

influencing the spatial relationship of GTFP in China’s

transportation. Correspondingly, the selection and

measurement methods of each variable are shown in Table 1.

Build the model as follows:

Q � f(R,D, PG, IS, TT, TI, TL, ER) (11)

TABLE 1 Influencing factors and variable description of the spatial associated network of China’s transportation GTFP.

Influencing factors Variables Measurement method

Spatial distance Adjacency relation (R) If the provinces are adjacent, the value is 1, otherwise, it is 0

Geographical distance (D) The shortest road distance between provincial capital cities

Regional economic development level Per capita GDP (PG) Real GDP per capita in each province using 2006 as the base period

Industrial structure (IS) The tertiary industry’s share of GDP

The development level of the transportation
system itself

Transportation
turnover (TT)

The comprehensive transportation turnover, the passenger turnover of railways, highways, and
waterways is converted according to the conversion factors of 1, 0.1, and 1

Transportation
investment (TI)

The amount of investment in the transportation industry

The level of technological innovation Technological
innovation (TL)

The number of patent applications of industrial enterprises

The environmental regulation Environmental
regulation (ER)

The amount of investment in industrial pollution control

FIGURE 1
Analytical framework.
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In Eq. 11,Q represents the spatial correlation matrix of the

green total factor productivity of transportation in each

province in China. The value of each indicator is expressed

by the mean value of the corresponding indicators of each

province from 2006 to 2019, and then the absolute value of the

difference between provinces is used to construct a difference

matrix.

In summary, this article will use the SNA methods to

analyze the integral structural characteristics, individual

structural characteristics, and clustering characteristics of

China’s transportation GTFP from two dimensions of time

and space. Adopt the QAP association and regression analysis

to study its influencing factors. Therefore, the research

framework of this article is shown in Figure 1.

4 Empirical analysis and results
discussion

This study selected the data of 30 provinces (autonomous

regions and municipalities directly under the central

government) in China from 2006 to 2019 as the research

object. Due to the lack of data for Tibet, Hong Kong, Macau,

and Taiwan, this article would not analyze them. At the same

TABLE 2 Green total factor productivity of China’s transportation in 2006–2019.

Province 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Beijing 0.93 0.96 0.95 0.99 1.01 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.99

Tianjin 0.99 1.01 0.79 1.07 1.00 0.99 0.93 0.96 0.97 0.96 0.98 1.00 1.00 1.00

Hebei 0.97 1.03 1.05 1.00 0.98 1.01 1.02 0.97 1.01 0.97 0.91 1.06 0.96 0.99

Shanxi 1.01 1.03 0.86 0.95 1.03 1.01 1.00 0.97 0.99 0.99 0.99 1.01 1.03 1.02

Inner Mongolia 0.96 0.97 0.99 0.97 0.99 0.99 0.99 1.03 1.00 0.99 1.08 1.03 1.02 0.98

Liaoning 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.01 0.99 0.99 1.01 1.00 0.99 0.99

Jilin 0.96 0.93 0.99 0.99 0.99 1.01 1.00 0.97 0.97 0.98 1.00 1.01 1.05 1.00

Heilongjiang 0.96 1.01 1.03 0.95 1.01 0.91 1.00 0.98 1.00 0.99 1.00 1.01 1.01 1.00

Shanghai 0.97 0.97 0.98 0.97 1.04 1.01 0.99 0.97 1.03 0.99 0.98 1.02 1.03 1.01

Jiangsu 1.00 0.98 1.00 0.95 1.00 1.02 1.02 0.92 0.97 0.95 0.98 1.00 0.99 1.00

Zhejiang 0.99 0.99 0.98 0.97 1.01 0.96 0.99 1.02 1.00 0.99 1.00 0.99 1.01 1.02

Anhui 0.97 0.95 1.03 0.96 0.97 0.96 0.99 0.91 0.98 0.95 0.99 0.98 1.02 1.00

Fujian 0.87 0.97 0.92 0.94 0.97 0.97 1.00 0.97 0.99 0.99 0.99 1.00 0.99 0.99

Jiangxi 0.99 0.99 1.01 0.97 0.95 0.99 1.04 0.93 0.99 0.97 1.00 0.99 0.98 0.98

Shandong 1.00 0.94 1.06 0.81 0.95 0.92 1.01 0.94 1.00 0.99 0.99 1.01 1.00 1.00

Henan 1.01 0.96 0.95 0.97 0.96 0.98 1.01 0.96 1.01 0.97 1.01 1.00 0.97 1.00

Hubei 0.97 0.99 0.99 1.02 1.01 0.98 1.02 1.02 0.99 0.99 0.96 1.01 1.00 0.98

Hunan 0.83 0.86 1.00 0.94 0.99 0.99 1.04 0.93 0.98 0.97 0.99 0.99 0.99 0.98

Guangdong 0.99 0.98 0.99 0.96 0.99 1.00 1.00 1.00 1.02 0.99 1.01 1.00 1.00 0.99

Guangxi 0.95 0.99 1.02 0.98 1.01 1.01 0.98 1.04 0.96 0.99 0.99 0.99 1.01 0.99

Hainan 0.84 0.99 0.92 0.98 0.99 1.01 1.01 0.98 1.04 0.99 1.00 0.99 1.00 1.03

Chongqing 0.99 0.95 1.01 1.03 0.97 1.00 0.96 0.97 1.01 0.96 0.99 0.99 1.02 1.00

Sichuan 0.90 0.96 0.95 0.96 1.01 1.02 0.99 1.05 0.97 1.00 0.95 0.99 1.01 0.99

Guizhou 0.95 0.97 0.96 0.99 0.98 0.99 0.98 1.01 1.00 0.99 0.99 1.02 1.00 0.99

Yunnan 1.02 1.00 0.97 1.00 0.97 1.00 1.00 1.01 0.99 1.00 1.00 1.01 1.00 0.99

Shaanxi 0.98 0.96 0.96 0.97 0.99 1.00 1.00 1.03 1.00 1.00 1.03 1.00 0.98 1.00

Gansu 1.01 1.00 1.01 0.97 0.98 1.00 0.97 0.93 0.99 1.00 0.99 1.01 1.02 1.00

Qinghai 0.98 0.84 0.97 0.99 1.02 1.00 1.00 0.99 0.98 0.98 0.98 0.99 0.99 0.98

Ningxia 0.97 1.01 1.08 1.05 1.01 1.01 1.01 0.95 0.97 0.98 0.98 0.97 1.01 0.99

Xinjiang 0.97 1.00 1.00 1.00 0.98 0.99 1.01 0.98 1.01 0.98 0.99 1.00 1.02 0.99

Average in eastern area 0.96 0.98 0.97 0.97 0.99 0.99 1.00 0.97 1.00 0.98 0.99 1.01 1.00 1.00

Average in central area 0.96 0.96 0.98 0.97 0.99 0.98 1.01 0.96 0.99 0.98 0.99 1.00 1.01 0.99

Average in western area 0.89 0.89 0.91 0.91 0.91 0.92 0.91 0.91 0.91 0.91 0.91 0.92 0.92 0.91
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time, due to the strong special-purpose type of pipeline

transportation among the five major transportation modes,

and the difficulty of obtaining air transportation data, this

article only studied the GTFP of railways, highways, and

waterways. The data of relevant indicators come from the

“Statistical Yearbook” and “China Energy Statistical Yearbook”

of each province.

4.1 Spatial-temporal analysis of GTFP in
transportation

This study is based on the DEA-Malmquist model and used

Max DEA7.0 software to process the transportation input and

output data of 30 provinces in China, and calculated the

transportation GTFP index of 30 provinces in each year, as

shown in Table 2 1.

It can be seen from Table 2 that the transportation GTFP of

each area has improved during the sample investigation period.

What’s more, the average for eastern rose from 0.96 in 2006 to

1.00 in 2019, for the center rose from 0.96 to 0.99, for western

rose from 0.89 to 0.91. There are significant differences in the

traffic and transportation GTFP between the three major areas of

the east, middle, and west2.

In order to further understand the provincial and regional

differences in China’s transportation GTFP, this study took

2019 as an example and used ArcGIS 10.7 to visually describe

the spatial distribution trend of GTFP in China’s transportation,

as shown in Figure 2. The Z-axis represents the value of the green

total productivity of transportation in each province, the X-axis

represents the east-west direction, and the Y-axis represents the

north-south direction. Figure 2 shows that China’s

transportation GTFP has significant regional differences in

space. Specifically, in the east-west direction, the fitted curve

shows a trend of “high in the east and low in the west”, indicating

that the overall transportation GTFP in the eastern region is

higher than that in the western region; In the north-south

direction, the fitted curve presents an “S”-shaped curve of “the

northern bulge and the southern depression”, indicating that the

overall transportationGTFP in the northern region is higher than

that in the southern region. However, the transportationGTFP in

some provinces in the southern region, such as Hainan Province,

is higher than that of the surrounding areas. This is because of its

special geographical location, the area’s water transportation has

been vigorously developed, so the level of carbon emissions is

relatively small compared to other regions, thereby increasing the

level of GTFP.

4.2 Structural characteristics analysis of
the GTFP network

The associated network of China’s transportation GTFP is

constructed through the revised gravity model. Based on

Netdraw of Ucinet, the network structure diagram between

Chinese provinces in 2006–2019 is drawn, as shown in

Figure 3. As can be seen from the figures, there is an obvious

FIGURE 2
The spatial distribution pattern of China’s transportation GTFP in 2019.

1 Because the Malmquist productivity index measures theGTFP changes
in adjacent years, the calculation is performed on data from 2005 to
2019, while the calculation results start from 2006.

2 Eastern area: Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, Hainan; Central area:
Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan;
Western area: Inner Mongolia, Guangxi, Chongqing, Sichuan,
Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang.
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spatial correlation between the GTFP of the provinces during the

inspection period. What’s more, the spatial correlation has

broken through the traditional geographic spatial constraints

and is no longer limited to the correlation between neighboring

provinces, but it is spatially associated with its non-neighboring

provinces. The overall network presents a more complex, multi-

threaded spatial network relationship. Therefore, in order to

effectively achieve the overall improvement of China’s

transportation GTFP, it is necessary to implement regional

cooperation methods from an overall perspective.

In the meanwhile, it can be seen from the figures that the

number of centrally located provinces has increased. Overall, the

centrally located provinces mainly include Beijing, Shanghai,

Tianjin, Jiangsu, Zhejiang, and Guangdong. These regions

have a strong correlation with other provinces. This is because

these areas have better basic conditions such as transportation

capital, economic development, and talents, as well as strong

innovation capabilities. These factors are conducive to the

effective use of transportation industry resources. In addition,

because the transportation infrastructure in these areas is

relatively complete, it is more conducive to exchanges and

cooperation in the transportation industry. Nevertheless, the

marginal cities in the network have a low degree of relevance

to other provinces, and these provinces are the most central and

western. This is inseparable from the disadvantages of the remote

location, backward economic development, and scarce human

resources.

4.2.1 The integral characteristics of the
transportation GTFP network

For the analysis of the integral network structure

characteristics, four indicators are selected: network density,

network association degree, network grade, and network

efficiency. According to Eqs 3–6, the integral structural feature

index levels of China’s transportation GTFP network in each year

from 2006 to 2019 are calculated, as shown in the following

Table 3.

4.2.1.1 Network density

Network density reflects the closeness of the connections

between nodes in a network, and it is related to the number of

connections between nodes in the network. According to the

calculation results in Table 3, the evolution trend of the network

density and the number of network associations of China’s

transportation GTFP spatial correlation network from 2006 to

2019 is drawn, as shown in Figure 4.

From Figure 4, it can be found that the total number of

network associations of China’s transportation GTFP network

FIGURE 3
The structure of Chinas transportation GTFP in (A) 2006, (B) 2010, (C) 2015, and (D) 2019.
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first rose and then decreased during the study period. The

number of network associations in 2006 was 172, then it rises

slowly, reaching a peak in 2014 with a value of 201. Over the next

few years, it declined slowly, dropping to 196 in 2019.

Correspondingly, the network density also shows a trend of

first rising and then falling, rising from 0.1977 in 2006 to

0.2310 in 2014, and slowly falling to 0.2253 in 2019.

The network density has shown a downward trend after

2014, and this period is China’s 13th Five-Year Plan period. First

of all, from the perspective of the country’s overall development,

during the 13th Five-Year Plan period, China is in a period of

structural adjustment and a shift in growth rate. Macroeconomic

growth has entered a “new normal”, and the economic growth

rate has changed from high-speed growth in the past to medium-

to-high speed growth, the downward pressure on the economy is

greater. Which may affect the flow of resources and people. In

addition, there was very severe haze weather in 2013, which

seriously endangered people’s health. Therefore, the control of

haze at the two sessions in 2014 has also become a hot topic of

discussion and attention. Since then, various places have

introduced vehicle restrictions and increased pollution control

efforts. All of these have a certain hindering effect on the

connection of the development of transportation GTFP in

various provinces in China.

TABLE 3 The characteristics of the integral network structure.

Year Network density Network association
degree

Network grade Network efficiency Number of
network associations

2006 0.197701 1 0.4341 0.7365 172

2007 0.198851 1 0.4307 0.7365 173

2008 0.202299 1 0.432 0.7315 176

2009 0.210345 1 0.4361 0.7167 183

2010 0.213793 1 0.4361 0.7143 186

2011 0.216092 1 0.3 0.7143 188

2012 0.21954 1 0.3 0.7118 191

2013 0.225287 1 0.4337 0.697 196

2014 0.231034 1 0.3 0.6872 201

2015 0.229885 1 0.3482 0.6921 200

2016 0.228736 1 0.2419 0.6921 199

2017 0.226437 1 0.2419 0.697 197

2018 0.21954 1 0.2424 0.702 191

2019 0.22529 1 0.2424 0.6897 196

FIGURE 4
The density and the number of network associations of the transportation GTFP network.
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On the whole, the network density has significantly improved

compared to 2006 and 2019. However, the number of network

associations in the network is 196 in 2019, which is far from the

maximum number of associations of 870 (30*29), indicating that

its spatial association is not high enough, and there is still a lot of

room for improvement. Therefore, it is necessary to further

deepen the communication and cooperation in the

transportation industry between various regions, strengthen

the spatial optimization of the resource elements of the

transportation industry, and continuously improve the green

total factor productivity of transportation. It is worth noting that

as the network density increases, the number of redundant

relationships in the overall network may increase. Once the

capacity of the network is exceeded, it will increase the cost of

the flow of transportation elements between various regions,

thereby reducing the cost of resource usage efficiency. Therefore,

while advancing the coordination and cooperation between

various regions, the network density must be controlled

within an ideal level to achieve the best spatial optimization

configuration effect.

4.2.1.2 Network relevance

The network relevance is measured from different aspects

through the network association degree, the network grade, and

the network efficiency, which reflects the robustness level of the

integral network.

It can be seen from Table 3 that during the study period, all

the network association degree value of the network of China’s

transportation GTFP is 1, indicating that its spatial network

structure has good connectivity and robustness, and all provinces

are in the network of GTFP in China’s transportation. There are

no isolated provinces separated from the network, and the spatial

spillover effect of the network is obvious.

Figure 5 shows that the network grade and network efficiency

values of the transportation GTFP experienced a downward trend.

Regarding the network grade, the investigation period can be

divided into three stages. The first stage is from 2006 to 2010, and

the network grade is stable at about 0.43.2011–2015 is the second

stage, and the network grade shows a trend of volatility and

decline. 2016–2019 is the third stage, and the network grade is

stable at around 0.24. Compared with the network grade of

0.4341 in 2006, it has dropped to 0.2424 in 2019, and the

network grade has significantly reduced. This result shows that

the previous relatively strict spatial correlation hierarchical

structure of GTFP in transportation has been further alleviated,

and the interconnection and mutual influence between various

regions have gradually increased. From the perspective of national

economic development, this may be due to the proposed

development strategy of precise poverty alleviation in order to

achieve the goal of building a moderately prosperous society in all

respects. As a result, remote areas have been developed, and the

gap between the rich and the poor has been narrowing, which in

turn is conducive to the reduction of the level of the network. On

the other hand, from the perspective of the development of the

transportation industry, the provision of supply-side policies has

led to the continuous development of integrated transportation.

The construction of integrated transportation networks has

increased the communication between regions and gradually

broke the strict hierarchical structure.

The network efficiency has shown a trend of declining year

by year, from 0.7365 in 2006 to 0.6897 in 2019, indicating that the

redundancy relationship in the spatial network is gradually

decreasing, the two-way spillover relationship is increasing,

and the stability of the spatial network is improved. The

decrease in network efficiency may be due to the

strengthening of communication between various regions in

FIGURE 5
The network grade and efficiency of the transportation GTFP network.
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the information age, so that the two-way overflow in the network

has increased; at the same time, the increase in the effective

utilization of resources will also reduce inefficient connections

such as overlapping and crossover, making the redundancy

relationship in the network is reduced. However, the network

efficiency in 2019 is 0.6897, which is still at a relatively high level,

indicating that there are still more redundant relationships in the

spatial association network, and the network structure needs to

be further improved.

4.2.2 The individual characteristics of the
transportation GTFP network

Network density and network relevance reveal the integral

structural characteristics of China’s transportation GTFP spatial

TABLE 4 The centrality analysis of the GTFP in Transportation.

Province Point centrality Betweenness centrality Closeness centrality Eigenvector
centrality

Out-
degree

In-
degree

Degree Order Betweenness Order In-
closeness

Out-
closeness

Order Eigenvector Order

Beijing 7 24 24 3 117.664 3 82.857 14.721 3 0.285 3

Tianjin 3 12 12 9 4.983 16 60.417 13.488 5 0.145 16

Hebei 5 5 7 21 9.511 15 52.727 14.573 10 0.124 24

Shanxi 5 2 6 23 1.152 19 46.774 14.573 14 0.108 28

Inner Mongolia 5 1 5 29 0.619 21 46.032 14.573 16 0.095 30

Liaoning 4 3 6 22 0.0619 22 47.541 14.5 13 0.106 29

Jilin 6 0 6 25 0 26 3.333 17.059 28 0.117 25

Heilongjiang 6 0 6 27 0 27 3.333 17.059 27 0.117 26

Shanghai 6 27 27 1 86.507 5 93.548 15.426 1 0.345 1

Jiangsu 5 26 26 2 79.697 7 90.625 15.344 2 0.330 2

Zhejiang 4 18 19 4 20.569 13 70.732 15.104 4 0.260 4

Anhui 3 5 5 30 0.518 23 52.727 13.81 9 0.110 27

Fujian 8 11 15 5 77.86 9 50 16.763 10 0.205 8

Jiangxi 7 6 7 17 156.002 1 53.704 16.667 8 0.151 14

Shandong 5 9 9 11 18.145 14 59.184 14.573 6 0.158 13

Henan 7 7 10 10 39.099 11 56.863 15.847 7 0.185 9

Hubei 11 7 15 6 40.454 10 46.032 17.059 15 0.247 5

Hunan 7 3 7 16 2.623 18 36.25 16.667 17 0.151 15

Guangdong 10 10 14 7 152.459 2 49.153 17.47 12 0.224 6

Guangxi 7 3 8 12 3.902 17 35.366 16.667 18 0.162 10

Hainan 6 1 6 28 0.292 24 33.333 16.477 21 0.131 21

Chongqing 8 4 8 13 110.057 4 29.293 17.683 22 0.144 17

Sichuan 7 1 7 18 0.91 20 22.835 17.47 24 0.142 19

Guizhou 8 3 8 14 78.269 8 35.366 17.683 19 0.162 11

Yunnan 8 2 8 15 37.736 12 34.118 17.683 20 0.162 12

Shaanxi 6 1 6 24 0.143 25 19.463 17.059 25 0.129 22

Gansu 12 4 13 8 84.212 6 23.967 18.354 23 0.218 7

Qinghai 7 1 7 20 0 28 19.463 17.47 26 0.142 20

Ningxia 6 0 6 26 0 29 3.333 20.423 29 0.126 23

Xinjiang 7 0 7 19 0 30 3.333 19.728 30 0.143 18

Average in
eastern area

5.73 13.27 15 - 51.61 - 62.74 15.31 - 0.21 -

Average in
central area

6.5 3.75 7.75 - 29.98 - 37.38 16.09 - 0.15 -

Average in
western area

7.36 1.82 7.55 - 28.71 - 24.78 17.71 - 0.15 -

National
average

6.53 6.53 10.33 - 37.45 - 42.06 16.40 - 0.17 -
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network. While the network centrality analysis would analyze the

status and role of each node in the network from an individual

perspective.

Taking 2019 as an example, based on Eqs 7–10, the point

centrality, betweenness centrality, closeness centrality, and

eigenvector centrality of China’s transportation GTFP network

are respectively measured. The results are shown in Table 4. (The

division of the three major areas is the same as above).

4.2.2.1 Point centrality

The point centrality is used to determine whether each

province is at the center of the spatial association network of

GTFP in China’s transportation.

In 2019, the average value of the point centrality of the

30 provinces in China is 10.33. Above-average are Beijing,

Tianjin, Shanghai, Jiangsu, Zhejiang, Fujian, Hubei,

Guangdong, and Gansu, and all of them belong to the eastern

region except Hubei and Gansu. It means that these regions have

more relationships with other provinces in the spatial association

network. Among them, Shanghai has the highest degree of point

centrality of 27, indicating that Shanghai is at the center of

China’s green total factor productivity spatial network of

transportation. This is because Shanghai has a relatively

complete transportation network, which is conducive to the

flow of transportation production factors with other cities. At

the same time, this is inseparable from its geographical location,

economic development level, abundant transportation capital,

and human resources; In addition, from the mean value of the

point centrality of the three major regions, it can be seen that the

highest mean point degree centrality in the eastern region is 15.

While the central and western regions are 7.75 and 7.55, which

are relatively small. This means that cities in the central and

western regions have poor relevance to other cities, which is

related to their relatively backward economic level and remote

geographic location.

Due to the certain differences in the links between provinces,

this leads to the directional nature of the spatial network. The in-

degree indicates that the province is affected by other provinces,

and the out-degree indicates the influence of the province on

other provinces. If the in-degree is greater than the out-degree, it

means that the province has a net beneficial effect; otherwise, it

shows a net spillover effect. According to Table 4, the top three

provinces with the highest in-degree are Shanghai, Jiangsu, and

Beijing, and the in-degree of these three provinces are much

higher than the out-degree, showing a net beneficial effect. This

indicates that they are more dependent on other provinces. In

addition, the average in-degree and out-degree of the

30 provinces in China are both 6.53, indicating that there is a

better balance on the whole. However, from the perspective of the

three major regions, the in-degree of the eastern region (13.27) is

greater than the out-degree (5.73), the in-degree of the central

region (3.75) is less than the out-degree (6.5), and the in-degree

of the western region (1.82) is less than the out-degree (7.36),

which indicates that the balance of the three major regions is

poor. It shows that the growth of transportation GTFP in the

eastern region is highly dependent on other regions and requires

other regions to continuously send resources to it, while the

central and western regions have a strong spillover effect of

resources. This unbalanced development of transportation GTFP

is not conducive to social and economic development and needs

to be taken seriously.

4.2.2.2 Betweenness centrality

The betweenness centrality indicator is used to measure the

ability of provinces to dominate and control resources in China’s

transportation GTFP spatial association network.

According to Table 4, it can be seen that the mean value of the

betweenness centrality of 30 provinces in China is 28.71 in 2019.

The above-average provinces are Beijing, Shanghai, Jiangsu,

Fujian, Jiangxi, Henan, Hubei, Guangdong, Chongqing,

Guizhou, Yunnan, and Gansu, indicating that these provinces

have played a good role as “intermediary” and “bridge” in the

spatial association network of China’s transportation GTFP.

They are the key network nodes that facilitate the linking of

other provinces. Among them, the betweenness centrality of

Jiangxi and Guangdong are 156.002 and 152.459 respectively,

ranking the top two in the country and much higher than other

provinces, indicating that these two provinces have a strong

ability to control close exchanges between other provinces. They

are the important fulcrum for promoting GTFP growth in

China’s transportation. However, the betweenness centrality of

Jilin, Heilongjiang, Qinghai, Ningxia, and Xinjiang is 0. This is

because these provinces are located in remote areas and cannot

control the links between other provinces in the network.

4.2.2.3 Closeness centrality

The closeness centrality is used to determine how difficult it

is for each province to have an association relationship with other

provinces in the spatial association network of China’s

transportation GTFP.

As can be seen from Table 4, in 2019, the mean value of in-

closeness centrality in 30 provinces in China is 42.06, the mean

value of in-closeness centrality in the eastern region is 62.74, the

mean value of in-closeness centrality in the central region is

37.38, and the mean value of in-closeness centrality in the

western region is 24.78. It shows that the eastern region can

quickly connect with other provinces in the inward flow network

of GTFP growth in China’s transportation, and it is a key actor in

the directed “inflow” network. However, the central and western

regions are not easily connected with other provinces, which may

be due to their poor network accessibility.

It can be seen from Figure 6 that the provinces with the

lowest in-closeness centrality are Jilin, Heilongjiang, Ningxia,

and Xinjiang, all of which have a value of 3.333, much lower than

other provinces. This is because these provinces are remote and

marginal in the space association network of China’s
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transportation GTFP. As a result, it is more difficult for them to

quickly connect with other provinces, and they are less driven by

other provinces.

The average value of out-closeness centrality in 30 provinces

in China is 16.40, and the average value of out-closeness

centrality in eastern, central, and western regions is 15.31,

16.09, and 17.71 respectively. Figure 6 shows that the degree

of out-closeness centrality of each province is relatively small,

indicating that for each province, the difficulty of connecting

with other provinces in the outward flow network of China’s

transportation GTFP growth is similar. The intensity of the

radiation effect of each province on other provinces is also

similar. Nevertheless, Beijing, Tianjin, Shanghai, Jiangsu,

Zhejiang, and other cities with a high degree of point

centrality and betweenness centrality, should assume the role

of driving the development of other provinces. But in fact, their

radiation effect is not strong. This is detrimental to the

development of the network. Hence, in order to promote the

growth of China’s transportation GTFP, it is necessary to

improve the transportation network of these provinces,

strengthen their communication and cooperation with other

provinces’ resources and population, and enhance their

radiation effect, so as to better play their driving force effect

for other provinces.

4.2.2.4 Eigenvector centrality

The eigenvector centrality is used to measure the importance

of each province in the spatial association network of China’s

transportation GTFP so that the core players in the network can

be found.

According to Table 4, it can be seen that the mean value of the

eigenvector centrality of 30 provinces in China is 0.17 in 2019.

The above-average provinces are Beijing, Shanghai, Jiangsu,

Zhejiang, Fujian, Henan, Hubei, Guangdong, and Gansu,

indicating that these provinces have a high influence on the

spatial association network of China’s transportation GTFP.

Different from the results of point centrality, Tianjin’s point

centrality is higher than the national average, while the

eigenvector centrality is lower than the national average, and

Henan is the opposite. It means that although a node with high

point degree centrality has many connection points, its

eigenvector centrality is not necessarily high, which may be

because the connected nodes are not important; Conversely, if

a node has few but important connections, its eigenvector

centrality can also be high. Therefore, although Tianjin has

high connectivity with other regions, the importance of the

regions it connects to is low; However, as China’s

transportation hub, Henan has a strong correlation with many

important regions, so its influence on the network is also high.

In addition, from the mean value of the eigenvector centrality

of the three major regions, it can be seen that the mean value of

the eigenvector centrality in the eastern region is the highest at

0.21 and that in the central and western regions is 0.15, which is

relatively small. This shows that the central and western regions

have a weak influence on the transportation GTFP network. This

is mainly because the economic development level of these

regions is relatively backward, and the transportation

infrastructure network is not perfect.

4.2.3 Spatial aggregation analysis of GTFP in
transportation

Blockmodel analysis mainly determines the role and position

of each block in the network through block clustering. This study

used the block model analysis to cluster and segment the spatial

network of the transportation GTFP in 30 provinces in China.

Drawing lessons from the evaluation method of Wasserman and

FIGURE 6
The in-closeness and out-closeness centrality of the transportation GTFP network.
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Faust about the network block to analyze the correlation

characteristics within and between the plates (Liu and Song,

2018).

Based on the closeness and directness of the spatial

association of GTFP in inter-provincial transportation, the

block model analysis is used for spatial aggregation. Using

the CONCOR method, the maximum segmentation density

is selected as 2, and the convergence criterion is 0.2. The

30 provinces are divided into 4 blocks in 2019, and the

results of the division are shown in Figure 7. From the

results of spatial aggregation, block I has 4 provinces,

namely Beijing, Tianjin, Jiangsu, and Shanghai; Block II has

3 provinces, namely Guangdong, Zhejiang, Fujian, mainly

southeast coastal cities; Block III has 11 provinces, namely

Jilin and Inner Mongolia, Hebei, Heilongjiang, Shanxi,

Liaoning, Ningxia, Shandong, Shaanxi, Qinghai, Chongqing;

Block IV has 12 provinces, namely Hubei, Guangxi, Hunan,

Henan, Sichuan, Guizhou, Yunnan, Anhui, Gansu, Hainan,

Jiangxi, Xinjiang.

In order to see the spatial distribution of each block more

intuitively, based on ArcGIS 10.7, a block distribution map of

China’s transportation GTFP spatial association network was

made, as shown in Figure 8. As can be seen from Figure 8, block I

and block II are located in the eastern coastal areas of China, with

a relatively high level of socio-economic development; Block III is

mainly in the northern part of China, and block IV is mainly in

the southern region of China.

In order to better study the relationship of the GTFP in

transportation among the blocks, the block density matrix of

each block is calculated, as shown in the following Table 5. At the

same time, according to the data calculated in the previous

article, the overall network density of the spatial association

network of China’s transportation GTFP in 2019 is 0.22529.

Therefore, if the network density of a certain block is greater than

0.22529, it means that the transportationGTFP is concentrated in

that block. In order to observe the relationship among various

blocks more clearly, the density matrix of the blocks can be

converted into an image matrix. The specific method is to

compare the network density of each block with the overall

network density. If the value in the density matrix is greater than

the overall network density, the image matrix is set to 1,

otherwise, it is 0. The corresponding image matrix obtained

by calculation is shown in the following Table 5.

It can be analyzed from the image matrix that block I not only

has internal associations, but also receives spillovers from blocks

II, III, and IV. This shows that the four regions of Beijing, Tianjin,

Shanghai, and Jiangsu, are highly dependent on the supply of

resources in other provinces. They need the input of resources

from other provinces to form an agglomeration effect. These four

regions are the areas with a high level of economic development

FIGURE 7
Spatial aggregation result of GTFP in transportation.
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and scientific and technological strength in China, and they are

also the gathering places of China’s resources. Therefore, this

result is in line with China’s reality. It should be noted that block I

is only related to its internal development, and does not have

spillover effects on the other three blocks. This may be because

the transportation GTFP in these areas is still in a period of rapid

development and requires a lot of resources for it. Therefore,

there is no spillover effect in other provinces.

In addition, there is a two-way relationship of sending and

receiving between block II and block IV, indicating that the

interaction between these two blocks is better. This is because

the three provinces of Guangdong, Zhejiang, and Fujian in

block II are located in the southeast coastal area of China. They

have a superior geographical locations, a developed economy,

and a high technological level. The development of

transportation GTFP in block II is inseparable from the

resource support of its adjacent plate, block IV. In addition,

many ports are located in block II. The interactive development

between block II and block IV promotes the connection of

China’s international and domestic trade, and at the same time

promotes the flow of resources and population. This reinforces

the synergies in the development of transportation GTFP and

promotes the growth of transportation GTFP. As for block III, it

only has a spillover effect on block I and is not affected by the

spillover effects of other blocks. This means that block Ⅲ has a

poor correlation with other blocks, and the transportation

GTFP development in the provinces of this block has been

neglected to a certain extent.

FIGURE 8
Block distribution of China’s transportation GTFP.

TABLE 5 The block density matrix and the image matrix.

Block NO. Density matrix Image matrix

Block I Block II Block III Block IV Block I Block II Block III Block IV

Block I 0.333 0.083 0.205 0.146 1 0 0 0

Block II 0.500 0.000 0.030 0.417 1 0 0 1

Block III 0.932 0.182 0.064 0.068 1 0 0 0

Block IV 0.792 0.889 0.068 0.083 1 1 0 0
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From the clustering characteristics of the spatial association

network of China’s transportation GTFP, it can be seen that the

interaction among various blocks is relatively poor. Thereby, to

better promote the improvement of the GTFP in China’s

transportation, the connections among various blocks should

be strengthened.

4.3 QAP analysis of spatial association
influencing factors of the transportation
GTFP

Based on the foregoing discussion, to study the factors

affecting the formation of the spatial association network

structure of China’s transportation GTFP, eight indicator

factors were selected, including adjacency relation (R),

geographical distance (D), per capita GDP (PG), industrial

structure (IS), comprehensive transportation turnover (TT),

the investment in the transportation investment (TI), the

technological innovation (TL), the Environmental regulation

(ER). Afterward, by constructing the difference matrix and

using Ucinet software, QAP association and regression

analysis are performed.

4.3.1 QAP association analysis
Table 6 shows the association analysis results after

5,000 random replacements. Among them, the correlation

coefficients of the six explanatory variables of R, D, PG, IS,

TT, and TL are 0.175, -0.277, 0.479, 0.266, 0.172, and

0.214 respectively, and they all pass the 5% significance level

test. It shows that these factors will affect the spatial association

network structure of GTFP in transportation. However, the

association coefficients of the two explanatory variables of TI

and ER are −0.016 and 0.059 respectively, but their significance

level is higher than 5%, indicating that the effect of provincial

differences is not obvious. This may be because transportation

investment is mainly used to build transportation infrastructure,

while transportation infrastructure construction has a relatively

long construction period and payback period. Therefore, the

difference in transportation investment in a short period will not

have a significant effect on the spatial association among

provinces. The difference in environmental regulations may be

since China’s transportation industry is currently more

dependent on energy consumption, coupled with the fact that

the transportation industry’s environmental regulations are not

strong, and the differences in environmental regulations between

provinces are relatively small, thereby weakening the effect of its

influence on the spatial relationship of GTFP in China’s

transportation.

4.3.2 QAP regression analysis
In order to further quantify the effect of the influence matrix

of these eight factors on the transportation GTFP, and to better

deal with multicollinearity, a QAP regression was conducted

using UCINET software. After 5,000 times of random

replacement, the regression analysis results obtained are

shown in Table 7.

Table 7 shows that the standardized regression coefficients of

R, PG, and TL are 0.137, 0.562, and 0.103 respectively, and all

passed the 1% significance level test. It means that these three

factors can enhance the spatial relationship of GTFP in inter-

provincial transportation. For provinces with large differences in

the level of economic development and technological innovation,

on the one hand, due to the “siphon effect”, the developed regions

have a stronger attraction to resources and talents, thereby

enhancing their relationship with other cities. On the other

hand, in order to improve the development level of the

region, the poorly developed regions have continuously

strengthened exchanges and cooperation with developed

regions, thereby enhancing the spatial relationship with other

provinces.

The standardized regression coefficients of D and IS between

provinces are −0.182 and −0.109, and both pass the 5%

significance level test. It shows that the smaller the

geographical distance between provinces and the closer the

industrial structure, the more conducive to the spatial

TABLE 6 The results of QAP association analysis.

Variable Obs value Significance Average Std dev Min Max Prop > = 0 Prop < = 0

R 0.175 0.000 0.000 0.038 −0.126 0.137 0.000 1.000

D −0.277 0.000 −0.000 0.067 −0.192 0.252 1.000 0.000

PG 0.479 0.000 0.000 0.073 −0.160 0.322 0.000 1.000

IS 0.266 0.004 0.000 0.081 −0.141 0.316 0.004 0.996

TT 0.172 0.021 −0.001 0.069 −0.144 0.300 0.021 0.979

TI −0.016 0.412 0.000 0.058 −0.157 0.260 0.588 0.412

TL 0.214 0.010 −0.002 0.078 −0.152 0.351 0.010 0.990

ER 0.059 0.184 0.001 0.075 −0.150 0.275 0.184 0.816

Frontiers in Environmental Science frontiersin.org18

Wang et al. 10.3389/fenvs.2022.982245

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.982245


association of the transportation GTFP between provinces. This

is because the long distance will hinder the communication and

contact between regions; while the economic development

priorities of regions with large differences in industrial

structure are different, and the gap in the scope of business

operations is large so that there is less contact between each other.

However, the standardized regression coefficients of the

difference in TT, TI, and ER are not significant at the level of

5%. It shows that these three factors have a weak effect on the

spatial association of GTFP in transportation. What’s more, it is

worth noting that the largest standardized regression coefficient

is the difference in the level of per capita GDP, which is 0.562,

indicating that the level of regional social and economic

development is the most important factor affecting the spatial

association of GTFP in transportation.

5 Conclusion, policy implications, and
limitations

5.1 Conclusion

In this study, the transportation GTFP of 30 provinces in

China from 2006 to 2019 has been measured based on the DEA-

Malmquist model, and the modified gravity model has been used

to construct the spatial correlation matrix of the transportation

GTFP. Then, the SNA methods have been employed to conduct

an in-depth analysis of the structural characteristics and

influencing factors of the GTFP spatial association network in

China’s transportation provinces. The following conclusions can

be drawn from the results.

1) The transportation GTFP of each area has improved during

the sample investigation period and there are significant

differences in the traffic and transportation GTFP between

the three major areas of the east, middle, and west. In 2019,

in the east-west direction, the fitted curve shows a trend of

“high in the east and low in the west”. By contrast, in the

north-south direction, the fitted curve presents an “S”-

shaped curve of “the northern bulge and the southern

depression”. Besides, it is worth noting that the GTFP of

transportation in Hainan is higher than that of the

surrounding areas. This is because of its special

geographical location. The area’s water transportation has

been vigorously developed, so the level of carbon emissions

is relatively small compared to other regions, thereby

increasing the level of GTFP.

2) From the perspective of the characteristics of the integral

network structure, the spatial association network of GTFP in

China’s transportation showed complexity during the sample

investigation period. In the meanwhile, the continuous

increase in network density indicates that the development

ofGTFP in transportation among regions is getting closer, but

the overall spatial correlation strength level is not high and

needs to be further strengthened. Both the network grade and

network efficiency are presenting a downward trend, which

shows that the “strictly hierarchical” spatial structure is

gradually being broken, and the stability of the network

has been improved.

3) From the perspective of the central feature of the network

structure: 1) The point centrality of the eastern region is

higher than the national average as well as that of the central

and western regions, indicating that the eastern region is in a

dominant position in the network. Among them, Shanghai

has the highest degree of centrality of 27, implying that it is

at the center of China’s transportation GTFP spatial

association network. 2) Jiangxi and Guangdong’s

betweenness centrality degrees rank among the top two

in the country, and are much higher than that of other

provinces. This indicates that these two provinces have a

strong ability to control close exchanges among other

provinces, and they have played a good role of

“intermediary” and “bridge” in the GTFP spatial

association network of China’s transportation. While the

TABLE 7 The results of QAP regression analysis.

Variable Un-stdized
coefficient

Stdized coefficient Significance Proportion as
large

Proportion as
small

R 0.160345 0.137 0.004 0.004 0.996

D −0.000091 −0.182 0.000 1.000 0.000

PG 0.118530 0.562 0.000 0.000 1.000

IS −0.037509 −0.109 0.012 0.989 0.012

TT −0.000005 −0.045 0.109 0.892 0.109

TI −0.000017 −0.020 0.248 0.752 0.248

TL 0.000001 0.103 0.008 0.008 0.992

ER 0.000000 0.027 0.196 0.196 0.804

Note: R2 = 0.331, R2 = 0.325 after adjustment, and the significance level are 0.000.
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betweenness centrality of remote areas such as Jilin,

Heilongjiang, Qinghai, Ningxia, and Xinjiang is 0, they

are in a passive position in the network. 3) From the

perspective of closeness centrality rankings, the top five

in the country are Shanghai, Jiangsu, Beijing, Zhejiang,

and Tianjin, which play the role of central actors in the

network; while the bottom five provinces in the country are

Jilin and Heilongjiang, Qinghai, Ningxia, and Xinjiang,

which play the role of marginal actors in the network. 4)

The eigenvector centrality in the eastern region is higher

than the national average, and both are higher than those in

the central and western regions, indicating that the eastern

region has a greater influence on the network. Among them,

the eigenvector centrality of Shanghai, Jiangsu, and Beijing

ranks among the top three in China, and is much higher

than other provinces, indicating that these three provinces

have a high influence on the transportation GTFP network.

4) The analysis result of the blockmodel shows that block I includes

four provinces of Beijing, Tianjin, Shanghai, and Jiangsu, with a

relatively high level of social and economic development. This

block not only has internal correlations, but also receives

spillovers from blocks II, III, and IV. But it does not have a

spillover effect on other blocks, which shows that provinces in

this block are highly dependent on the resource supply of other

provinces. The provinces in block II are Guangdong, Zhejiang,

and Fujian, which are mainly located in the coastal areas of

southeastern China. Block III is mainly in central and northern

China, and block IV is mainly in central and southern China.

Among them, there is a two-way relationship of sending and

receiving between block II and block IV, indicating that the

interaction between these two blocks is better. However, block III

only has a spillover effect on block I, which means that the

provinces in block Ⅲ have abundant resources to provide

support for the development of provinces in block I, but they

have poor relevance to other blocks. This may imply that the

development of GTFP of transportation in the provinces in this

block has been neglected to a certain extent.

5) According to the results of the QAP analysis, the adjacency

relation, the difference in per capita GDP, and the difference

in technological innovation have a significant positive impact

on the spatial association of GTFP in China’s transportation.

Differences in the geographic distance and industrial

structure between provinces have an inhibitory effect on

spatial associations. However, the differences in

comprehensive transportation turnover, transportation

investment, and environmental regulations have no

significant effect on the spatial association of GTFP in

transportation. What is more, it is worth noting that the

largest standardized regression coefficient is the difference in

the level of per capita GDP, which is 0.562, indicating that the

level of regional social and economic development is the most

important factor affecting the spatial association of GTFP in

transportation.

5.2 Policy recommendations

In order to further enhance the GTFP of China’s

transportation and promote the coordinated development of

various provinces, the following policy recommendations are

put forward.

1) When formulating relevant policies, the government should

pay attention to the spatial connection of the transportation

GTFP in various provinces. It is necessary to continuously

improve the level of informatization to strengthen resource

exchange and cooperation between provinces, optimize the

allocation of resources from the perspective of overall spatial

development, and create a regional coordinated development

mechanism. This is conducive to improving the intensity of

inter-provincial spatial correlation and the effective use of

resources, thereby optimizing the overall pattern of GTFP in

China’s transportation.

2) Efforts should be devoted to narrowing the development gap

between regions and improving the development level of

remote areas, especially the bottom five provinces, in order

to strengthen their connections with other provinces, thereby

altering their marginalities and breaking the hierarchical

structure of the network. focus on improving the

technological innovation level of Shanghai, Jiangsu, Beijing,

Zhejiang, Tianjin, and other provinces that are at the center of

the network and have great influence, and improve their

transportation infrastructure construction network to better

play their driving effect on other provinces. In addition,

because the central region acts as an “intermediary” and

“bridge” in the transportation network, it is necessary to

strengthen the construction of transportation infrastructure

in this region to provide a solid guarantee for the development

of China’s transportation.

3) Improving the connection among the four major blocks and

enhancing their interactive effect are of vital importance. On

the one hand, it is necessary to continuously improve the

GTFP of transportation in the provinces in block I in order to

give full play to its radiant driving effect on other blocks. On

the other hand, exchanges and cooperation between the other

three blocks should be enhanced, so as to increase the overall

strength of the network and promote the balanced and

coordinated development of GTFP in China’s regional

transportation.

4) It is necessary to strengthen the construction of

comprehensive transportation infrastructure and improve

the level of inter-regional interconnection, which will

reduce the cost of factor flow. Moreover, this is conducive

to promoting coordinated development between regions and

reducing the differences in the development of industrial

structure between regions, so as to promote the overall

improvement of green total factor productivity in China’s

transportation.
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5.3 Limitations and prospects

This study has great research value for realizing the green and

sustainable development of the transportation industry and

ensuring the realization of the “carbon neutral” development

goal. However, it should be pointed out that this study still has

the following shortcomings. First, due to the limited accessibility, it

was not possible to obtain relevant data at the city level, so we

constructed the spatial association network of China’s

transportation GTFP from a provincial perspective, which will

lead to relatively rough research results. In the future, further data

mining is needed to refine the research results and improve the

application value of the research. Second, only nine types of energy

consumption and carbon dioxide emissions were considered in the

calculation of the transportation GTFP. The measurement results

are somewhat one-sided. Therefore, the index system construction

method needs to be further improved, so as to enhance the

accuracy of relevant research results. Third, the network

relationship of GTFP in transportation is affected by multiple

factors. It is thus one-sided to investigate only the eight influencing

factors such as the neighboring relationship between provinces,

geographical distance between provinces, per capita GDP,

industrial structure, comprehensive transportation turnover,

transportation investment, technological innovation, and

environmental regulations. Other factors such as topography,

marketization level, etc. need to be discussed in detail in the future.
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