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A series of lockdown measures in response to the Corona Virus Disease 2019

(COVID-19) outbreak resulted in a drop in anthropogenic emissions and changes in

concentrations of PM2.5 and O3. Backward trajectories analysis, cluster analysis,

potential source contribution function (PSCF) and concentrationweighted trajectory

(CWT) technologies were conducted to reveal the characteristics and potential

source areas of pollutants in Beijing before the COVID-19 outbreak (BCO period),

during the outbreak (COB period) and after the outbreak (ACOperiod), as well as the

contemporaneous period in 2019 (CCO period), which is critical for exploring the

efficient control measures and making policy. The results indicated that despite

the significant reduction in anthropogenic emissions during the epidemic, the PM2.5

concentrations increased by 1.0% caused by unfavorablemeteorological conditions.

O3 concentrations increasedby 174.8%compared to that during theBCOperioddue

to the increased temperature and inappropriate precursor reduction ratios. A

considerable decrease of NO3
- in PM2.5 was observed under the influence of

significant reductions in vehicle emissions during the lockdown. The cluster

analysis revealed that short-range transport played a significant role in the

accumulation of local PM2.5 pollution, while long-range northwest airflows

contributed more to O3 accumulation, and weakened as the season changed.

The PSCF and CWT analysis demonstrated that potential source areas of PM2.5

weremostly located in the central and southern Hebei, the southwestern Shandong

in the CCO period, and expanded to central Inner Mongolia and northern Shanxi in

the COBperiod. These areaswere highly compatible with the high emission areas of

the emission inventory statistics. After the outbreak, the source areas of O3 were

centered in the Beijing-Tianjin-Hebei region and Shandong province, with a radial

dispersion in all directions, while they were distributed in the central Mongolia and

Inner Mongolia during the other periods.
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1 Introduction

China has recently experienced unprecedented

industrialization, urbanization, and economic growth. As a

consequence, PM2.5 (particulate matter with an aerodynamic

diameter of less than 2.5 μm) and O3 have become the major air

pollutants, which can negatively affect climate and ecosystems by

reducing atmospheric visibility (Yao et al., 2021) and enhancing

oxidation (Wang Y. et al., 2021), induce cardiovascular and

respiratory disease (Lei et al., 2019; Yang et al., 2022), and

increase the risk of premature death (Wang C. et al., 2021).

PM2.5 and O3 have a complex relationship in that they share

common precursors, namely volatile organic compounds

(VOCs) and nitrogen oxides (NOx) (Wang Y. et al., 2020),

and interact with each other in the atmosphere. Aerosol

particles affect photolysis efficiency by interfering with

ground-level radiation, as well as NOx and HO2 uptake,

thereby inhibiting O3 formation (Li et al., 2019). High ozone

concentrations lead to increased atmospheric oxidation, which

favors the production of secondary particulate matter in PM2.5

(Zhao et al., 2018). Since 2013, a series of policies were enacted in

China (Geng et al., 2019; Wang et al., 2019), which significantly

improved air quality as a result (Li W. et al., 2020), while PM2.5

heavy pollution events still occurred from time to time (Feng

et al., 2019; Zhao et al., 2021). In addition, ozone pollution has

deteriorated significantly, especially in the Beijing-Tianjin-Hebei

(BTH), Yangtze River Delta region (YRD), etc. (Fan et al., 2020).

Therefore, it is crucial to conduct research on the characteristics

of PM2.5 and O3 to deal with the huge challenges brought by the

regional complex air pollution.

The worldwide outbreak and spread of COVID-19 in early

2020 created an unprecedented nationwide extreme reduction

scenario. The strength of labor-intensive activities such as

transportation, building construction, and catering services

were significantly reduced, atmospheric pollution emissions

from these sections dropped dramatically. Light and

processing industries were basically shut down, while

continuous energy supply equipment for thermal power

generation, residential heating, steel and petrochemicals

production were still in operation (Tang et al., 2021).

Numerous studies have reported the decline in the traffic

emissions of air pollutants, especially NO2 (Liu F. et al., 2020;

Le et al., 2020; Huang et al., 2021). The average daily traffic flow

in Beijing decreased rapidly by 62% during the outbreak, also the

emission intensities of NOx, PM2.5, CO and HC from vehicles

were reduced by approximately 30% (Cao et al., 2021). Daily

emissions of SO2, NOx, VOCs and PM2.5 from the thermal power

and industrial sectors in the BTH region decreased by 25%, 29%,

40% and 20%, respectively (Tang et al., 2021). After the outbreak,

the level of anthropogenic activities picked up as work and

production resumed. The daily traffic flow in Beijing increased

rapidly by nearly 50% fromMay 1 to June 15 in 2020 but declined

again after that by approximately 23% because the COVID-19

epidemic recurred in the Beijing Xinfadi Market (Cao et al.,

2021). At the same time, a growing emission of primary

oxygenated VOC by 51.10 ± 8.28% was observed for the

enhanced usage of clean and disinfected products (Zhang Z.

et al., 2022).

The reduction in primary pollutant emissions has led to a

decrease in pollutants’ concentrations in the atmosphere and

a significant improvement in air quality (Chauhan and Singh,

2020; P. Wang et al., 2020a). NO2, PM2.5 and PM10 were

reduced dramatically by 50.6%, 41.2% and 33.1% in Wuhan

city by taking the most stringent control measures (Sulaymon

et al., 2021). PM2.5 concentrations in the YRD region and

Pearl River Delta region decreased by 41.87% and 43.30%,

respectively (Liu et al., 2022). However, inappropriate

emission reduction ratios and unfavorable meteorological

conditions not only moderated the impact of emission

reduction on air quality, but also may cause an increase in

pollutant concentrations (Ma et al., 2022). Due to the effects

of meteorological conditions, such as high temperature, high

humidity, and low wind speed, as well as the incomplete

shutdown of the energy sector during the lockdown, PM2.5

concentrations in the BTH region only decreased by 2.01% (Liu

et al., 2022). The related studies found an increase of 19.5% in

Beijing during January and February 2020 (Nichol et al., 2020),

even heavy pollution days (Wang P. et al., 2020; Zhang X. et al.,

2022). In addition, significant NOx emission reduction

weakened the NO titration effect (NO + O3 = NO2+O2) and

lowered O3 utilization (Mahato et al., 2020). Coupled with the

increased temperature during the outbreak, elevated O3

concentrations were reported at multiple locations (Le et al.,

2020; Shi et al., 2021). The resulting enhanced atmospheric

oxidation further contributed to secondary aerosol generation

(Wang Y. et al., 2021; Huang et al., 2021).

Regional transport also has a significant impact on the

air quality. The Hybrid Single-Particle Lagrangian Integrated

Trajectory (HYSPLIT), the Potential Source Contribution

Function (PSCF), and the Concentration Weighted Trajectory

(CWT) technologies have been widely applied to identify the

regional transport pathways of airflows and potential source

areas contributions (Zong et al., 2018; Hui et al., 2019;

Xiong and Du, 2020). Studies have investigated the

potential source regions of air pollutants by the PSCF

model in Jiaxing, and found that the COVID-19 outbreak

resulted in a significant decline in weighted PSCF value, while

exerted little effect on potential source areas (Xiong et al.,

2021). The reduced potential source areas due to the lockdown

were observed in Changchun by HYSPLIT and PSCF model

(Gao et al., 2021). The transport pathways and source

distribution of PM2.5 in the BTH region during the polluted

episodes of the COVID-19 outbreak were investigated by

HYSPLIT, PSCF and CWT method, and deduced that local

emission sources dominated air pollution during the first

episode, while short-distance transport from the southern
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and southwestern areas was primarily responsible for the

second episode (Zhao et al., 2020).

In a word, air pollutants concentrations are affected

by meteorological conditions, local emissions, and regional

transport (An et al., 2019), while significant emission

reductions during the epidemic lockdown contributed to

meteorological conditions and regional transport to pollutant

concentrations more prominent. Therefore, the objectives of

this paper are organized as follows: 1) to analyze the

concentration characteristics of PM2.5 and O3 in Beijing

before, during and after the outbreak of coronavirus disease

in 2020 as well as the same lockout period in 2019. 2) to

investigate the relationship between air pollutants (PM2.5 and

O3) and meteorological variables (temperature, relative

humidity, wind speed and wind direction) by correlation

analysis. 3) to demonstrate the transport pathways and

potential source contribution of air pollutants at different

stages based on backward trajectory, cluster, PSCF and CWT

analyses. 4) to reveal the causes of variations in pollutants

concentrations, transport pathways, and potential source

areas in different periods. The results can provide scientific

and technological support for future joint prevention and

control of regional air pollution in Beijing.

2 Materials and methods

2.1 Study area and data collection

This study focused on Beijing, the detailed target area

and environmental monitoring sites are shown in Figure 1.

To investigate the effects of the COVID-19 epidemic, the

hourly concentration profiles of PM2.5 and O3 were obtained

from site 1 (116.136°E, 39.742°N) located in Liangxiang town

at an altitude of 47 m, and the hourly profiles of PM2.5

components were derived from site 2 (115.832°E, 39.542°N)

located in Dashiwo town at an altitude of 52 m. Both sites 1 and

2 are located in the plain area of Fangshan district, in

southwestern Beijing, and the distance between the two sites

is 34.2 km. The meteorological data were obtained from the

hourly ERA5 reanalysis dataset, which involved temperature

(T), relative humidity (RH), wind speed (WS), and wind

direction (WD). The wind directions were categorized as

follow: 348.76° < N ≤ 11.25°, 11.26° < NNE ≤ 33.75°,

33.76° < NE ≤ 56.25°, 26.26° < ENE ≤ 78.75°, 78.76° < E ≤
101.25°, 101.26° < ESE ≤ 123.75°, 123.76° < SE ≤ 146.25°,

146.26° < SSE ≤168.75°, 168.76° < S ≤ 191.25°, 191.26° <
SSW ≤213.75°, 213.76° < SW ≤ 236.25°, 236.26° < WSW ≤

FIGURE 1
Topography map of Beijing and distribution of the environmental monitoring sites.
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258.75°, 258.76° < W ≤ 281.25°, 281.26° < WNW ≤ 303.75°,

303.76° < NW ≤ 326.25°, 326.26° < NNW ≤ 348.75°.

The study period was divided into four parts, including

the contemporaneous period of the COVID-19 outbreak

(CCO period, from January 23 to 31 March 2019), the

period before the outbreak (BCO period, from 15 November

2019, to 22 January 2020), the period of the outbreak (COB

period, from January 23 to 31 March 2020), as well as the

period after the outbreak (ACO period, from May 1 to 15 July

2020).

2.2 Backward trajectory analysis

HYSPLIT model, developed by United States National

Oceanic and Air Administration (NOAA) (Draxler and

Hess, 1998), was performed to calculate 48-h backward

trajectories with 1-h time resolution to track the transport

pathways of airflow arriving at site 1. Regarding the height of

the starting point, some researchers use 500 m above ground

level (AGL) to start well within the boundary layer (Liu Y. et al.,

2020; Fang et al., 2021). Others use a height of 100 m AGL to

represent the near-ground situation (Gao et al., 2021; Wang

et al., 2022). Therefore, backward trajectory simulations were

performed at both 100 and 500 m AGL to investigate the effect

of release height on clustering analysis and potential source

area identification.

HYSPLIT is a full-fledged system for transforming basic air

parcel trajectories into sophisticated dispersion and deposition

models (Li L. et al., 2017), which can determine the sources of air

masses arriving at a receptor location. The input meteorological

data were provided by the global data assimilation system (ftp://

arlftp.arlhq.noaa.gov/pub/archives/gdas1/).

Moreover, cluster analysis as a multivariate statistical analysis

technique categorizes the trajectory data into various transit

clusters by Angle distance or Euclidean distance methods (Li

D. et al., 2017). The Euclidean distance method can categorize

backward trajectories based on velocity as well as the direction of

airflows (Zhou et al., 2021). Therefore, the Euclidean distance

method was used to divide the backward trajectories into distinct

clusters based on the TrajStat model (version 1.5.3) in MeteoInfo

software (version 3.2.2).

2.3 Potential source contribution function
and concentration weighted trajectory
technologies

The PSCF method can build a probability map of the areas

surrounding a receptor site based on the allocation of air mass

residence time to pinpoint potential sources affecting the air

quality at the receptor site (dos Santos and Hoinaski, 2021).

Each trajectory was classified as polluted or clean based on a

threshold value. According to the backward trajectories

modeling results, the geographic region was divided into

grid cells at 0.25° × 0.25° resolution, and the PSCF value for

the ijth grid cell is defined as

PSCFij � mij

nij
(1)

where in Eq. 1 mij and nij represent the number of polluted and

total trajectories endpoints that fall in the ijth grid cell,

respectively. Since PSCF is a conditional probability function,

large uncertainty arises when the airflow’s residence time in the

grid is short, that nij is less than three times the average number

of trajectory endpoints (Avg) of all grid cells in the study area.

Therefore, an arbitrary weight function Wij multiplied by the

PSCF to reduce the uncertainty (Wang H. et al., 2018; Liu et al.,

2018), which is defined as WPSCF and can be calculated by Eq. 2

and Eq. 3 below:

WPSCFij � PSCFij × Wij (2)

Wij �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.00 nij > 3Avg
0.70 Avg< nij ≤ 3Avg
0.42 0.5Avg< nij ≤Avg
0.17 0< nij ≤ 0.5Avg

, (3)

However, PSCF only represents the proportion of polluted

trajectories in the grid cells, but can’t reflect their contribution to

the receptor sites. Therefore, the CWT method was used to

analyze its pollution contribution to the target grid and identify

potential source areas by calculating the average weight

concentration (Cij) of the ijth grid. The calculation formula is

as follows (Li H. et al., 2020):

Cij �
∑M

l�1Clτijl

∑M
l�1τ ijl

(4)

Where in Eq. 4 l is one of the tracks passed through the ijth grid,

M is the total number of trajectories, Cl is the concentration of

track l when it crosses the ijth grid, and τijl represents the dwell

time of trajectory l in the ijth cell. The spatial and vertical

difference in the pollutant abundance along the trajectories

may cause the potential uncertainty in concentration

contribution to the receptor site, so the Wij was also

employed in the CWT method to reduce uncertainty.

3 Results and discussion

3.1 Overview of pollutants concentration

3.1.1 Variation in PM2.5 and O3 concentrations
Figure 2 shows the time series of PM2.5 and O3

concentrations and the meteorological parameters (T, RH, WS

and WD) during the CCO, BCO, COB and ACO periods. The
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wind direction and wind speed rose diagrams for each period are

shown in Supplementary Figure S1. The ranges and mean values

of PM2.5, O3 and meteorological variables in different periods are

presented in Table 1. In addition, the correlation between

pollutants and meteorological variables in each period was

further analyzed by pearson correlation analysis (Figure 3).

FIGURE 2
Time series of (A) PM2.5 andO3, concentrations, (B) temperature (T) and relative humidity (RH), and (C)wind speed (WS) and wind direction (WD)
during the CCO, BCO, COB and ACO periods in Beijing.

TABLE 1 Range and average concentration of pollutants and meteorological variables during the four periods.

CCO BCO COB ACO

PM2.5 (μg/m
3) Range 4.3–204.9 6.1–284.2 3.3–217.2 3.6–109.4

Mean 58.7 ± 45.4 54.9 ± 46.7 59.4 ± 52.6 28.8 ± 17.9

MDA8 O3 (μg/m
3) Range 31.9–176.7 4.3–68.6 27.3–134.0 51.0–294.9

Mean 94.1 ± 28.4 36.7 ± 19.5 83.1 ± 18.6 155.8 ± 49.5

T (°C) Range -6.6–16.0 -9.1–8.5 -5.6–15.6 14.7–31.9

Mean 3.6 ± 5.9 -1.9 ± 3.2 3.9 ± 5.2 24.7 ± 3.7

RH (%) Range 15.7–77.8 17.7–93.6 22.2–93.2 22.5–91.0

Mean 39.1 ± 14.5 53.6 ± 15.6 55.2 ± 16.6 52.2 ± 16.7

WS (m/s) Range 1.0–4.5 1.0–5.0 0.9–5.3 1.0–4.8

Mean 2.3 ± 0.7 1.9 ± 0.8 2.3 ± 0.9 2.4 ± 0.8
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The average concentrations of PM2.5 in four periods were

58.7 ± 45.4, 54.9 ± 46.7, 59.4 ± 52.6, and 28.8 ± 17.9 μg/m3,

respectively. In terms of polluted days, the 24-h mean

concentration exceeded the Grade II (75 μg/m3) Ambient

Air Quality Standard (AAQS, GB 3095–2012), still

accounted for 29.9%, 16.2% and 27.9% of total days during

the CCO, BCO and COB periods. Two polluted episodes

lasting about a week occurred during both the CCO and

COB periods. During the CCO period, one pollution episode

lasted from 19 to 24 February 2019 (CCO I episode) and the

other was from 27 February to 5 March 2019 (CCO II

episode), with the average PM2.5 concentration of

133.2 and 122.9 μg/m3, and the highest daily PM2.5

concentrations were 2.7 and 2.2 times the Grade II AAQS,

respectively. Polluted episodes during the COB period lasted

from 24 to 29 January, 2020 (COB I episode) and 8 to

13 February, 2020 (COB II episode), with the average

concentration of 155.5 and 151.6 μg/m3, which were both

approximately twice the standard limit. Despite the

significant reduction in anthropogenic emissions during

the outbreak, PM2.5 concentrations increased by 8.2% and

1.0% compared to the pre-outbreak period and the reference

period in 2019, which was mainly attributed to the significant

negative impact of two heavy pollution episodes caused by

unfavorable meteorological conditions. By Pearson

Correlation Analysis, PM2.5 concentration was significantly

and positively correlated with RH during the CCO (r = 0.56),

BCO (r = 0.54) and COB (r = 0.51) period. RH during the

COB period increased by 3.0% and 41.2% compared to that of

the BCO and CCO periods, which favored heterogeneous

chemistry and led to the increase in PM2.5 concentrations (Le

et al., 2020; Huang et al., 2021). Also, due to the low surface

temperature in winter, the increased temperature may lead to

the formation of an inversion layer, resulting in PM2.5

accumulation (Xu T. et al., 2019). During the ACO period,

the high temperature in summer not only enhanced the

atmospheric convection to accelerate the diffusion of PM2.5

(Yang et al., 2016), but also made the loss of volatile

components in PM2.5 (Wang et al., 2006; Chuang et al.,

2017). Combined with the washing effect of frequent

precipitation (Wang X. et al., 2018), PM2.5 concentrations

dropped by 51.5%.

During the CCO, BCO, COB and ACO periods, the hourly

mean concentrations of O3 were 57.9 ± 40.8, 20.6 ± 22.8, 56.6 ±

30.2 and 103.5 ± 59.3 μg/m3, respectively. O3 concentrations

increased by 174.8% during the outbreak relative to the pre-

lockdown period, which might be influenced by the reduced

NO2 that weakened the NO titration effect and lowered O3

utilization (Le et al., 2020; Nichol et al., 2020; Shab et al., 2020).

Restrictions on vehicles during the epidemic closure have led

to a significant reduction in NOx emissions, especially in the

central cities (Supplementary Figure S2). At the same time, the

increased use of disinfection and cleaning products during the

prevention and control period has led to an increase in the

precursor of ozone, namely VOCs, which may also cause a

significant increase in ozone concentration. The maximum

daily 8-h average (MDA8) O3 concentrations were used to

assess the severity of ozone pollution, with polluted days

having MDA8 O3 concentrations greater than 160 μg/m3,

and moderately polluted days having MDA8 O3

concentrations greater than 215 μg/m3. Then, a day is

deemed to be extremely polluted if the MDA8 O3 surpasses

265 μg/m3. O3 concentrations continuously increased as the

epidemic progressed, with the number of polluted days

growing from none in BCO and COB periods to 37 days

during the ACO period. Moderately polluted days

accounted for 11.8% in this period. May 1st was an

extremely polluted day with a MDA8 O3 concentration of

294.9 μg/m3, which was 1.8 times the standard value. A six-

day-long ozone pollution process occurred from June 18 to

June 23, with MDA8 O3 concentrations 1.1–1.4 times the

standard. There was a significant positive correlation

FIGURE 3
Heat map of the correlation between pollutants and
meteorological variables in different periods.
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between O3 and T (r = 0.68), and this pollution process

corresponds to high temperatures, with an average of 28.5°C.

3.1.2 Profiles of water-soluble inorganic ions
(WSIIs) in PM2.5

WSIIs are the dominant component of PM2.5, accounting for

20–77% of the total PM2.5 (Sun et al., 2019), comprised of NO3
−,

SO4
2-, NH4

+, Cl−, K+, Ca2+, Na+, Mg2+, and often increased rapidly

during the haze event in Beijing (Xu Q. et al., 2019). The

characteristics of WSIIs in PM2.5 during four periods are

shown in Figure 4. The ions that accounted for a significantly

large part include NO3
−, SO4

2- and NH4
+, which constituted

secondary inorganic aerosol (SIA), accounting for 77.8%, 88.2%,

76.0% and 93.9% during CCO, BCO, COB and ACO,

respectively. NO3
− always played an important role in PM2.5,

with proportions of 39.3%, 41.8%, 30.6% and 38.4% during the

four periods, which indicates that motor vehicles might be the

important sources of PM2.5 (Ahmad et al., 2020). The decreased

proportion of NO3
− during the COB period reflects the PM2.5

emission reduction of mobile sources during the COVID-19

lockdown. The percentage of NO3
− increased during the ACO

period as the blockade was relaxed and vehicle activity resumed.

SO4
2- increased during the outbreak compared to the pre-

outbreak period and the reference period in 2019, presumably

due to increased demand for coal for heating as people stayed in

their homes during the lockdown (Sulaymon et al., 2021). NO3
−/

SO4
2- is often used to determine what kind of source pollution is

dominant in cities, with values greater than 1, mobile sources

have a larger impact, and vice versa, stationary sources have a

larger impact (Kong et al., 2021). The ratio of NO3
−/SO4

2- was

2.1, 2.0, 1.6 and 1.3 during four periods. This illustrates that the

mobile sources played a more important role than stationary

sources in Beijing. The relatively lower value of NO3
−/SO4

2- in

COB and ACO periods reflected that the impact of mobile source

abatement is greater than that of stationary source abatement.

Other WSIIs (Cl−, K+, Ca2+, Na+, Mg2+) accounted for less with a

total proportion lower than 24.0%. Ca2+ mainly comes from road

dust and construction dust (Xiong et al., 2021). The

concentration of Ca2+ decreased in the COB period by 67.9%

and picked up in the ACO period, which was also associated with

the lockdown.

3.2 Backward trajectory analysis and
cluster analysis

3.2.1 The impact of release height in the HYSPLIT
model

The results of backward trajectory and cluster analysis at

500 m were slightly different from the results at 100 m

(Supplementary Figure S3, Supplementary Table S1). The

clusters calculated at 500 m release height were longer than

that at 100 m. This reflected that the trajectories that started

higher above ground tended to move faster and went back farther

than those that started at lower heights, which was consistent

with previous studies (Gebhart et al., 2005). In addition, the

number of clusters in the COB and ACO period was less than that

of 100 m. However, the coming direction of the clusters did not

alter significantly, also the dominant clusters and the ranking of

clusters by proportion remained the same as at 100 m. In general,

the release height had little influences on the trajectory and

cluster analysis. The changes in clusters number and percentage

may be caused by the chosen Eulerian clustering method, for the

Eulerian method clusters trajectories by velocity and direction,

while the velocity of trajectories at 100 and 500 m differed.

We also conducted PSCF and CWT analysis at the release

height of 500 m AGL (Supplementary Figure S4 and S5) to clarify

the impact, and found that the distribution of potential source

regions was very similar, like the results of previous studies (Zhu

et al., 2011; Fang et al., 2018). Due to the longer retracing distance

of the partial backward trajectory at 500 m altitude, the WPSCF

andWCWTmaps were larger at the release height of 500 m than

that of 100 m, which may be helpful to identify more source

areas. However, considering that a height of 100 m is the layer we

are more concerned about, which is more reflective of the ground

situations. In addition, the abnormally shallow planetary

boundary layer heights (PBLH) during the epidemic may

bring uncertainty to the simulation results at 500 m (Su et al.,

2020), therefore, this paper focused on the case of a release height

of 100 m.

3.2.2 Backward trajectory analysis and cluster
analysis

In this study, the Grade II AAQS (75 μg/m3) was used to

distinguish polluted and clean trajectories of PM2.5, while the

FIGURE 4
Contribution of identified components of PM2.5 in Beijing
during the CCO, BCO, COB and ACO periods.
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hourly mean concentrations were regarded as the threshold of

O3, with the value of 57.8 μg/m3, 20.5 μg/m3, 56.5 μg/m3,

103.3 μg/m3 for CCO, BCO, COB, ACO period, respectively.

Figure 5 depicts the calculated backward trajectories arriving in

Beijing during the four periods, as well as the main clusters.

Statistical characteristics are shown in Table 2.

Overall, 1,632, 1,656, 1,656 and 1824 backward trajectories

were clustered into 3, 3, 4 and 5 clusters during the CCO, BCO,

COB and ACO period, respectively, whose characteristics in each

period coincided with the monsoon climate of Beijing. Since the

CCO, BCO and COB period were closer to the winter season,

influenced by the strong Siberian cold current, with the strong

northwest winds prevailed, so the clusters originating from the

northwest accounted for more than 68%. In contrast, the ACO

period is in summer, when Beijing is under the Pacific subtropical

high pressure with prevailing southeast winds. The distribution

of clusters in this period was relatively scattered, and cluster 5

originating from the Yellow Sea and reaching Beijing via

Shandong and southeastern Hebei was getting the upper hand

by 29.61%. The proportion of the longest Cluster 1, which passed

through western Mongolia, Central Inner Mongolia and

Northwestern Hebei Province, dropped from 34.7% in the

BCO period to 11.4% in the ACO period as the season

changed. While the shortest Cluster 2 occupied a large

proportion of 28.3%–50.9% though reached Beijing via various

cities in Hebei province during different periods. It was a circular

cluster covering Langfang located in the south of Beijing in the

CCO period, but originated from Zhangjiakou in BCO and COB

period. This reflected the great contributions of the short-range

transport from regions around Beijing. Trajectories belonging to

Cluster 2 increased by 4.5% in the COB period compared to the

BCO period, which may be influenced by the difference in WD

and WS. Before the outbreak, Cluster 2 was coming from the

WNW direction accounting for only 4.8%, with a mean WS of

1.8 m/s. While Cluster 2 came from the NNW direction

accounting for 20%, with a mean WS of 2.7 m/s during the

outbreak.

The PM2.5 carried by different clusters during the four

periods showed a similar pattern that a small amount of

PM2.5 attached to those long clusters, while short clusters

carried more PM2.5. Because the short clusters reflected stable

meteorological conditions (low wind speed, weak diffusion and

dilution effect) (Chen et al., 2018), and passed through areas with

advanced industries located in Hebei and Shandong province,

FIGURE 5
Cluster-mean back-trajectories by using theHYSPLITmodel in Beijing at 100 mAGL during the CCO (A), BCO (B), COB (C) and ACO (D) periods.
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TABLE 2 Statistical characteristics of clustered trajectories at 100 m AGL during four periods.

PM2.5 O3

Num Mean_Val
(μg/m3)

Stdev
(μg/
m3)

P_Ratio
(%)

P_Mean_Val
(μg/m3)

P_Stdev
(μg/m3)

Num Mean_Val
(μg/m3)

Stdev
(μg/
m3)

P_Ratio
(%)

P_Mean_Val
(μg/m3)

P_Stdev
(μg/m3)

CCO Cluster
1

483 30.3 41.6 11.0 124.1 59.5 480 62.1 37.4 59.2 89.3 17.8

Cluster
2

472 86.8 51.3 51.5 123.4 45.2 486 53.5 45.6 39.7 99.9 34.0

Cluster
3

589 54.0 56.8 24.5 132.5 61.5 582 56.7 38.7 51.0 89.2 21.4

All 1,544 56.6 55.4 28.5 126.5 52.9 1,548 57.3 40.7 50.0 91.9 24.5

BCO Cluster
1

565 37.3 49.2 13.1 142.5 59.0 561 33.0 24.8 60.6 50.3 15.2

Cluster
2

758 79.4 54.3 36.8 130.3 60.0 746 8.9 13.4 14.1 36.9 14.6

Cluster
3

306 25.8 19.8 3.6 88.9 13.9 305 26.5 22.9 53.1 45.4 14.0

All 1,629 54.7 53.2 22.3 131.5 59.5 1,612 20.6 22.8 37.7 46.7 15.5

COB Cluster
1

251 15.0 19.6 2.0 90.6 18.9 245 66.9 25.6 74.7 79.8 10.8

Cluster
2

859 83.2 66.0 44.9 137.0 62.7 846 55.0 30.6 45.5 82.3 19.7

Cluster
3

536 43.8 40.5 18.3 116.6 30.0 526 54.0 30.8 54.8 78.0 15.1

Cluster
4

24 13.0 13.8 0.0 0.0 0.0 23 56.1 29.2 43.5 85.8 8.3

All 1,670 59.3 59.3 29.3 132.5 58.0 1,640 56.5 30.2 52.8 80.4 16.6

ACO Cluster
1

199 18.1 21.6 3.5 90.0 10.6 194 79.1 47.0 23.2 143.3 36.6

Cluster
2

489 30.6 19.6 3.7 91.8 13.5 496 108.6 62.9 49.6 161.7 40.0

Cluster
3

275 14.8 11.6 0.0 0.0 0.0 273 84.9 53.0 33.0 146.2 32.2

Cluster
4

256 38.3 26.6 5.9 117.5 39.5 261 132.7 62.3 62.8 170.6 45.0

Cluster
5

529 33.2 21.1 5.3 93.4 14.2 521 102.2 54.5 43 152.8 39.9

All 1748 28.6 22.0 3.9 97.9 24.0 1745 103.3 59.4 44.1 158.1 40.1

Num indicates the trajectory numbers of each cluster during four periods; Mean_Val indicates the mean concentration of PM2.5 or O3 in each cluster during four periods; Stdev represents the standard deviation of the concentration of the contaminants; P_Ratio represents the

proportion of contaminated trajectories to total trajectories; P_Mean_Val indicates the mean concentration of PM2.5 or O3 of polluted trajectories in each cluster; P_Stdev represents the standard deviation of the concentration of the contaminants in polluted trajectories.
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FIGURE 6
WPSCF maps for PM2.5 (A–D) and O3 (E–H) arriving in Beijing at 100 m AGL during the four periods. (A) and (E) showed the situation during the
CCO period; (B) and (F) showed the situation during the BCO period; (C) and (G) showed the situation during the COB period; (D) and (F) showed the
situation during the ACO period.
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FIGURE 7
WCWTmaps for PM2 5 (A–D) and O3 (E–H) arriving in Beijing at 100 m AGL during the four periods. (A) and (E) showed the situation during the
CCO period; (B) and (F) showed the situation during the BCO period; (C) and (G) showed the situation during the COB period; (D) and (F) showed the
situation during the ACO period.
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which were conducive to the transport of pollutants towards

Beijing. Meanwhile, the airflows in the long clusters moved

quickly and passed through cleaner areas, bringing less

pollution to Beijing and facilitating pollution dispersion.

Cluster 2 was polluted clusters in the CCO, BCO and COB

period, with the mean concentrations of 86.6 ± 51.3, 79.4 ±

54.3 and 83.2 ± 66.0 μg/m3, respectively. Compared to the BCO

period, the average PM2.5 concentrations and the number of

contaminated trajectories contained in the contaminated

Cluster 2 increased slightly during the outbreak. However,

according to the 2019 and 2020 MEIC emissions inventory

map (Supplementary Figure S6), primary emissions of PM2.5 in

Zhangjiakou decreased during February and March

2020 compared to November and December 2019, leading to

the assumption that secondary PM production in Zhangjiakou

was transported to Beijing with the air mass during the outbreak

(Huang et al., 2021). Compared to the CCO, BCO and COB

period, the concentration of PM2.5 in each cluster was

significantly lower during the ACO period, which could be

attributed to the lush vegetation and adequate rainfall in

summer. In particular, plant leaves can efficiently absorb and

remove air pollution particles, and rainfall has a large effect on

pollutant removal, which can speed up the particle

sedimentation process under the combined actions

(McDonald et al., 2007). According to cluster analysis of

WSIIs (Supplementary Table S2), NO3
− showed the same

trend as NH4
+, with the highest concentration occurred in

Cluster 2. In contrast, the characteristics of SO4
2- varied in

four periods. Especially for Cluster 3, originated from central

Mongolia, passed through central Inner Mongolia and

northwestern Hebei Province, resulting in more SO4
2- during

the BCO and COB periods.

The situation of O3 was the opposite. The clusters carrying

more PM2.5 tended to have a lower O3 concentration, and the

clusters with less PM2.5 had a higher concentration of O3. The

long Cluster 1 originating in western Mongolia carried more O3

than other clusters during the CCO, BCO and COB period, but

was still far below the limited value specified in the AAQS, with

concentrations of 62.1 ± 37.4, 33.0 ± 24.8, 66.9 ± 25.6 μg/m3,

respectively. After the COVID-19 outbreak, the concentration of

O3 in each cluster was significantly higher compared to the

previous periods, which may be caused by the high

temperatures and intense ultraviolet irradiation in summer.

3.3 Potential source regions identification
during four periods

The clustering analysis could only reveal the major direction

of airflows, therefore we performed PSCF and CWT analysis to

further determine the distribution of potential source areas

contributions (Fan et al., 2019; Fang et al., 2021). The WPSCF

results of PM2.5 and O3 during four periods were represented in

Figure 6 (A-D) and Figure 6 (E-H), respectively, as well as the

WCWT map represented in Figure 7 (A-D) and Figure 7 (E-H).

For PM2.5, significant potential source areas with high

WPSCF values (>0.7) can be observed in the CCO and COB

period, reflecting the important contribution of regional

transport to heavy pollution episodes. Moreover, these areas

overlapped highly with the high emission areas shown on the

MEIC inventory map (Supplementary Figure S6). PM2.5

emissions are concentrated in the economically developed and

densely populated areas east of the Heihe-Tengchong line. And

in North China, especially in Hebei, Shandong, Henan and

Shanxi province, the majority of PM2.5 emissions are

contributed by the industrial sector (Fang and Yu, 2021).

High emission areas in the BTH region are concentrated in

the south and southeast, including the central urban areas of

Beijing and Tianjin, as well as Langfang, Baoding, Shijiazhuang,

Xingtai and Handan in Hebei Province. More PM2.5 emissions in

winter than in summer due to residential coal-fired heating.

During the CCO period, the majority of potential source areas

were located in the southwestern provinces with dense industrial

facilities, high energy consumption and air pollutant emissions

(Zhang et al., 2018; Zheng et al., 2019), including the central and

southern Hebei province, the southwestern Shandong province,

and the northern Henan province, with the WCWT value

exceeding 100 μg/m3. Accordingly, the monthly PM2.5

emissions in these places were higher than 200 t from January

to March 2019. Some regions of southwestern Inner Mongolia

and northern Shanxi also contributed to PM2.5 in Beijing with

WCWT values higher than 80 μg/m3 and emissions higher than

100 t. This indicating that primary PM2.5 emissions from those

areas contributed significantly to Beijing by short-range

transmission. The distribution of potential source areas in the

COB period was remarkably similar to that of the CCO period.

Southwestern Shandong province, central and southern Hebei

province were still important potential source regions, while the

scope has shrunk and the contribution has diminished. This

reflected the obvious impact of emission reduction caused by the

COVID-19 lockdown, which was further confirmed by the

significant reduction of PM2.5 emissions in these regions

observed on the MEIC inventory map from January to March

2020. Additionally, a northwest-southeast oriented strip area

extending from western Inner Mongolia to central Shanxi was

also the potential source region withWCWT higher than 100 μg/

m3. Considering that emissions in this area did not differ

significantly between CCO and BCO periods, the secondary

PM2.5 generated under high humidity contributed to PM2.5

accumulation and occurrence of heavy pollution episodes in

Beijing through long-distance transport. A dust storm lasting

about 12 h with wind force 6-7 on 18 March 2020 under the

influence of a Mongolian cyclone was reported, which also

contributed to the higher WCWT values in the pathway area.

From the WPSCF and WCWT map of WSIIs

(Supplementary Figure S7 and S8), the distribution of
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potential source areas of NO3
− and NH4

+ showed a similar

pattern. Southern Hebei Province, western Shandong

Province, and northeastern Henan Province were potential

source areas for them with WPSCF greater than 0.7 during

CCO and COB periods. Compared to the CCO period, the

belt region from western Inner Mongolia to northern Shanxi

Province, and western Hebei Province was also the potential

source area of NO3
− and NH4

+ in the COB period. Although the

distribution of potential source areas was extremely similar, the

contribution differed greatly. In the CCO period, the WCWT

values of NH4
+ in southern Hebei Province, western Shandong

Province, and northeastern Henan Province reached higher than

18 μg/m3. The distribution of the potential source area of SO4
2-

varied widely among the four periods. During the CCO period,

the potential source area was mainly distributed in southern

Henan province and western Shandong province, and mainly

distributed along the landward side of Bohai Bay during the BCO

period.

Compared to PM2.5, the distribution of potential source areas

for O3 was more dispersed and widespread. Central Mongolia

and central Inner Mongolia were the potential areas of O3 during

the CCO, BCO and COB period, with the WPSCF value higher

than 0.7. This indicated that long-range transport exerted crucial

effects on local O3 accumulation. However, it is also possible that

the high extremes in the grids far from the study area are caused

by the low number of trajectories and the short total dwell time,

despite the introduction of the Wij (Wei et al., 2020). Over time,

the main extent of the potential source area is gradually moving

in a northwest-southeast direction toward Beijing, and the

northern Hebei province and Beijing itself had become

potential source areas by the time of the COVID-19 outbreak.

Therefore, in addition to long-range transport from Mongolia,

short-range transport and local generation were also important

causes of O3 accumulation in this period. The potential source

areas expanded significantly after the COVID-19 outbreak,

centered in the BTH region and Shandong province with a

radial dispersion in all directions, and covered the Henan,

Anhui, Jiangsu, Shanxi province. This was highly consistent

with the spatial distribution of NOx emissions, the important

precursor of O3 (Supplementary Figure S2). The WCWT values

of the northern Henan and the northern Anhui were already well

above 100 μg/m3. And in the border area of Shandong, Henan

and Anhui provinces, the WCWT values were greater than

160 μg/m3 (Figure S9). WCWT values in southeastern

Shandong and northeastern Henan province, the potential

source areas during the COB period, increased from 80 to

100 μg/m3 to 120–160 μg/m3. It is worth mentioning that

WCWT values were notably higher in the Bohai Bay region,

which may be caused by the pollutants transported from their

adjacent sea areas through the sea-land winds (Wang et al., 2022).

Additionally, the PSCF and CWT model adopt the same

treatment for air masses at various locations (e.g., urban,

suburban, rural, forest, and ocean areas), that is the

contributions of unit emission from each grid cell along a

trajectory are equally weighted in calculating the mole fraction

at the receptor sites (Fang et al., 2018), which may cause the

overestimation in the contributions from remote areas such as

ocean and Mongolia. The considerable difference of potential

source areas between ACO and COB period could be explained

by the seasonality or the changes in precursors emissions caused

by the epidemic. To further confirm the dominant influence

factors, a comparison analysis was conducted between the ACO

periods and the reference period in the summer of 2019

(Supplementary Figure S9). The mean MDA8 O3

concentration in the summer of 2019 was 182.5 ± 55.9 μg/m3,

17.1% higher than that during the ACO period. Under the similar

meteorological conditions (Supplementary Table S3), the

incoming direction and proportion of the backward

trajectories were also very similar in these two periods. And

the potential source areas identified by PSCF and CWT methods

were all with the high NOx emission. This suggested that

seasonality dominated the increased O3 concentrations and

the expansion of potential source areas during the ACO

period. However, the contribution of potential source areas

varied considerably. Compared to the reference period in

2019, the decreased WCWT values were observed in

southwestern Beijing, southeastern Hebei, western and central

Shandong, northern Henan, northeastern Shanxi, and so on.

WCWT values in the potential source area south of Beijing

decreased substantially, from higher than 160 μg/m3 in the

summer of 2019 to below 140 μg/m3 during the ACO period.

This suggested that the impact of the epidemic was equally

important.

3.4 Potential source region identification
during heavy pollution episodes

Cluster analysis, PSCF and CWTmethods were conducted to

identify the potential source area of PM2.5 during heavy pollution

episodes in the CCO (Figure 8) and COB period (Figure 9).

Three and four clusters were calculated in the CCO I and II

episode, respectively. During the CCO I episode, Cluster 1

originated from north-central Inner Mongolia, and reached

Beijing through the northwestern Hebei Province, with the

dominant concentration of 109.4 ± 76.6 μg/m3. During the

CCO II episode, the dominant Cluster 3 passed through

Liaocheng, a city in southwestern Shandong Province,

accounting for 50.0% of total clusters, with PM2.5

concentration of 149.3 ± 41.6 μg/m3. The potential source

areas with WPSCF >0.7 and WCWT >200 μg/m3 were mainly

located in cities surrounding southwestern Beijing, like

Zhangjiakou, Baoding and Langfang in Hebei province, as

well as the western Tianjin during the CCO I episode. In

addition, the Xilin Gol league in central Inner Mongolia was

also an important potential source area, which contributed a lot
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to PM2.5 in Beijing with the WCWT higher than 180 μg/m3. The

potential source areas in the CCO II episode were mainly located

in Baoding, Shijiazhuang, Xingtai, and Handan, with WCWT

higher than 140 μg/m3. Heze, Jining, Zaozhuang, and Linyi

located in southwestern Shandong province were also

important potential source areas, with WPSCF higher than 0.8.

Compared with the two heavy pollution episodes in the CCO

period, the concentrations of PM2.5 in the dominant cluster were

higher and the contributions of regional transport were greater

during the COVID-19 outbreak. Three clusters were calculated

in both COB I and II episode, with the direction varying

considerably. The dominant Cluster 2 in the COB I episode

passed through Zhangjiakou, with the PM2.5 concentration of

158.6 ± 84.6 μg/m3. While the concentration of PM2.5 in the

dominant Cluster 1 originating from southeastern Shanxi

province was 186.9 ± 42.9 μg/m3 during COB II episode. The

distribution of potential source areas for the two heavy

pollution episodes was quite different. During the COB I

FIGURE 8
Cluster-mean back-trajectories (A,B), WPSCF maps (C,D) and WCWT maps (E,F) of PM2.5, during the CCO I episode (A,C,E) and CCO II
episode (B,D,F).
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episode, the WPSCF values were higher in the belt region from

western Inner Mongolia to northern Shanxi province, and

western Hebei province. The WCWT values were getting

higher as the trajectory transported, and they were already

greater than 180 μg/m3 by the time it arrived in western Hebei

province. What’s more, local emissions in western Beijing also

contributed significantly during this episode, with the WCWT

values higher than 140 μg/m3. The potential source areas during

the COB II episode were mainly located in the southwest of

Hebei province and the border areas of Hebei, Shanxi and

Henan province, with the WCWT values higher than

200 μg/m3.

4 Conclusion

In this study, urban comprehensive analysis was

conducted in Beijing during four different periods to

FIGURE 9
Cluster-mean back-trajectories (A,B), WPSCF maps (C,D) and WCWT maps (E,F) of PM2.5 during the COB I episode (A,C,E) and COB II
episode (B,D,F).
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identify the variations in pollution levels, chemical

components, air mass trajectory and potential source areas

contributions of PM2.5 and O3.

Despite the significant reduction in anthropogenic

emissions during the outbreak, the average concentration of

PM2.5 increased by 8.2% and 1.0% compared to that of the

BCO and CCO period affected by the high humidity. A

considerable decrease in NO3
− reflected the impact of

significant reductions in PM2.5 emissions from motor

vehicles caused by the lockdown. Opposite to PM2.5, the O3

concentration showed an incremental pattern, and an

exceedance phenomenon was observed after the outbreak,

influenced by high temperatures and intense ultraviolet

irradiation.

Different simulation starting heights have less influence

on the results of backward trajectory clustering analysis, PSCF

and CWT analysis. Due to the high speed, the calculated

reverse trajectory at high altitude is usually longer, and the

obtained PSCF and CWT maps also have a relatively large

range, but may be influenced by PBLH. From the backward

trajectory and cluster analysis, proximity transport from the

surrounding areas of Beijing was always the main external

source of local pollutant accumulation. The contribution of

long-range transport influenced by the Siberian cold current

decreased with seasonal changes, but the contribution of a

sandstorm from the Inner Mongolia desert remained

significant especially in spring. Short clusters from the

southeast tend to carry more PM2.5 compared to long

clusters from the northwest and pass through the area with

heavy industry, while long-range transport from the

northwest is thought to contribute more to O3

accumulation in Beijing.

Source areas identified by PSCF and CWT overlapped

highly with high emission areas in the maps. The potential

source area of PM2.5 expanded in the COB period, from

central and southern Hebei, southwestern Shandong, and

northern Henan province during the COB period to an

extending belt region from western Inner Mongolia to

Beijing. While the contribution of some potential source

areas with heavy industries decreased, which reflected the

effect of emission reductions during the lockdown.

Compared to PM2.5, the potential source area of O3 was

more dispersed, whose contributions to O3 in Beijing were

not significant until the ACO period. This was largely

dominated by seasonality, but the lower contribution of

potential source areas compared to the reference period in

summer of 2019 also indicated the non-negligible impact of

the COVID-19 outbreak. The distribution of potential source

areas in heavy pollution events during the CCO and COB

period was different. Both proximity transport from Hebei

province and remote transport from Inner Mongolia Plateau

played important roles in PM2.5 accumulation in Beijing

during the outbreak.
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