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Existing studies have focused on the impact of innovation on carbon emission

performance but ignore the importance of government support for innovation.

To overcome this challenge, this paper adopts a spatial difference-in-difference

(DID) model to assess the impact of government support for innovation on

urban carbon emission performance based on a quasi-natural experiment of

innovative city pilots (ICP) in China. Using the high-resolution carbon emission

data of 1 km × 1 km for 238 cities from 2008 to 2019 in China, this paper

employees an extended stochastic frontier analysis (SFA) model to measure

urban carbon emission performance. Our findings indicate that ICP

implementation leads to a 1.3% improvement in local carbon emission

performance. Meanwhile, there is a significant spatial spillover effect of ICP

implementation, with a 3.3% improvement in the carbon performance of the

surrounding areas. The results of the mechanism analysis suggest that

government innovation support affects carbon emission performance by

promoting total factor productivity improvement, green innovation, and

industrial upgrading. Further analysis shows that ICP has the strongest

impact on carbon performance in the eastern region, and the impact is

stronger for large cities and resource-dependent cities. Finally, the paper

carries out a series of robustness tests to ensure the reliability of the

analytical results, including parallel trend tests, placebo tests and re-

estimation of different methods. Based on the findings, this paper proposes

feasible policy recommendations in terms of continuous promotion of

government innovation support, regional cooperation and differentiated

innovation support formulation.
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1 Introduction

In recent years, the rapid increase in greenhouse gas emissions

has exacerbated global warming and extreme climate phenomena,

which have seriously threatened the sustainable development of

human society (Magazzino, 2017a; Bai et al., 2019; Du and Li,

2019; Chen and Lin, 2020; Statistical Review of World Energy,

2021; He et al., 2021; Li Y et al., 2022, Li Z et al., 2022; Wang K-L

et al., 2022; Wu C et al., 2022). As the country with the highest

carbon emission in the world, China’s total carbon emission has

increased from 1.419 billion tons in 1978 to 9.899 billion tons in

2020, an increase of 6.98 times (BP, 2021). This means that China

faces enormous pressure to reduce emissions. In 2020, the Chinese

government also proposed the dual carbon goals of “2030 carbon

peak” and “2060 carbon neutrality”, aiming to alleviate the climate

problems caused by greenhouse gas emissions. Improving carbon

emission performance, i.e., the output per unit of carbon emission,

is regarded as the most powerful policy instrument to achieve

the dual carbon goals. How to improve carbon emission

performance has attracted a large number of scholars to study

and discuss.

However, the existing literature has not reached a consistent

conclusion on the impact of government support for innovation

on carbon emission performance. One view is that government

support for innovation can effectively improve carbon emission

performance. Pan A et al. (2022) selected enterprise-level panel

data from 2010 to 2018 to investigate the effect of the pilot carbon

emission trading scheme (CETS). He found a significant positive

effect of government support on carbon emission performance

and total factor productivity based on the PSM-DID model.

Doğan et al. (2022) used data from the G7 countries from 1994 to

2004 to study the effects of environmental taxes on carbon

emissions, natural resource rents, and renewable and non-

renewable resources. He found environmental tax policies can

significantly reduce carbon emissions and improve carbon

emission performance in these countries. The opposite view is

that government support for innovation has a very limited effect

on improving carbon emission performance. Fu et al. (2022)

adopted a game-theoretical framework to examine firms’

operational strategies under a carbon tax policy. They

concluded that carbon taxes do not necessarily lead to the

adoption of green technologies and the improvement of

carbon emission performance. Yıldırım et al. (2022)

empirically investigated the impact of environmental

innovation on CO2 emissions in the energy sector based on a

large dataset of 32 OECD countries from 1997 to 2018. Using a

panel smooth transition regression (PSTR) model, they found

that the impact of government innovation on carbon emission

performance is unstable at different stages due to rebound effects.

Improving carbon emission performance through

technological innovation is an important measure for

countries to mitigate climate problems in the future

(Adedoyin et al., 2022; Pan X et al., 2022). The motivation of

this paper is to comprehensively assess the impact of government

innovation support on carbon emission performance. This paper

argues that existing research faces three challenges, ignoring

these challenges may lead to conflicting views. The first

challenge is to select a more effective model to assess carbon

emission performance. The most widely used methods are data

envelopment analysis (DEA) and stochastic frontier analysis

(SFA) (Kumbhakar et al., 2014; Filippini and Hunt, 2015;

Kang et al., 2022). DEA based on linear programming ignores

unobserved city heterogeneity in carbon emission performance

(Filippini and Hunt, 2015). Meanwhile, the traditional SFA

method cannot remove individual effects, time effects and

unobserved heterogeneity at the same time (Kumbhakar et al.,

2014). This can lead to over- or underestimation of city carbon

emission performance and interfere with the impact of

government support for innovation. The second challenge is

to circumvent the endogenous interference of government

innovation support. Existing literature generally uses

indicators such as government subsidies and tax incentives to

measure the government’s support for innovative behavior, but

such indicators have a strong correlation with urban economic

development (Rawte, 2017; Fu et al., 2022; Tang C et al., 2022).

Carbon emission performance is also strongly related to

economic development, and the resulting endogenous

interference will reduce the reliability of the estimated results.

The third challenge is to overcome the effect of spatial factors on

the results. There are many industrial clusters in China, which

makes the economic development of neighboring cities and

carbon emissions have obvious spatial correlation (Liu et al.,

2022; Zhang Y et al., 2022). In addition, the talents and

technologies attracted by the local government through

innovation support also accumulate innovation elements for

the surrounding areas, thereby affecting the carbon emission

performance of the surrounding areas (Peng H et al., 2021; Gao

and Yuan, 2022; Zhao and Sun, 2022). Ignoring the potential

impact of spatial factors on carbon emission performance in the

evaluation model reduces the reliability of the results. To

overcome the above challenges, this paper adopts a spatial

difference-in-difference (DID) model and uses a quasi-natural

experiment in China to assess the impact of government

innovation support on urban carbon emission performance.

The contribution of this paper is mainly in the following

three points. First, based on the prefecture-level panel data from

2008 to 2019, this paper adopts the extended SFA model

proposed by Kumbhakar et al. (2014) to evaluate carbon

emission performance. This approach considers all the time-

varying, time-invariant, and city characteristics, which help

obtain more reliable calculation of carbon emission

performance. Second, this paper assesses the impact of

government innovation support on carbon emission

performance through a quasi-natural experiment. To explore

the role of the government in urban innovation, China has

implemented the policy of innovative city pilots (ICP), which

Frontiers in Environmental Science frontiersin.org02

Yu et al. 10.3389/fenvs.2022.983711

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.983711


is committed to improving the agglomeration of urban

innovation elements through government participation. ICP

identified Shenzhen as the first pilot city for innovation, and

in 2009, 14 cities including Dalian and Qingdao were identified as

pilot cities for innovation. From 2010 to 2013, more than

40 innovative city pilots were successively approved. In April

2018, another 17 cities were approved to build national

innovative cities, and the number of innovative city pilots

increased to 78. This policy has strong exogenous nature and

can avoid the interference of endogeneity on the evaluation

results to a certain extent. The ICP from China is an

incremental reform that provides important lessons for other

countries and regions committed to improving carbon emission

performance through government innovation support policies.

Finally, this paper incorporates spatial factors in the traditional

DID model. The results estimated through spatial DID model

reduce the interference of spatial factors, which can more reliably

assess the impact of government innovation support on carbon

emission performance.

The reminder of this study is organized as follows: Section 2

provides the literature review. Section 3 provides the policy

background and research hypothesis, Section 4 provides the

methods and data, Section 5 provides the results, and Section

6 provides the conclusions, recommendations, and limitations.

2 Literature review

The existing literature focuses on two aspects of carbon

emission performance, including the measurement of carbon

emission performance and the impact of technological

innovation on carbon emission performance. First, in the

measurement of carbon emission performance, the previous

studies used the indicator of economic output per unit of

carbon emissions (Lee et al., 2002; Filippini and Hunt, 2015;

Chen et al., 2022; Kang et al., 2022). The higher the value of this

indicator, the higher the level of carbon emission performance.

However, this indicator is limited in that it ignores the potential

influence of other factors on carbon emission performance, such

as population and industry level (Kang et al., 2022). To overcome

this limitation, recent studies widely use DEA and SFA to

measure carbon emission performance (Hua et al., 2007;

Filippini and Hunt, 2015; Cao and Wu, 2022; Kang et al.,

2022). It solves for the optimal combination of input and

output factors, and measures carbon emission performance

through the gap between actual carbon emissions and

expected carbon emissions of optimal combination (Hua

et al., 2007; Choi et al., 2012; Molinos-Senante et al., 2014;

Liu et al., 2021; Zhang et al., 2021). However, this approach

does not consider the unobserved heterogeneity among cities.

The bias is acceptable in small samples. However, for large

samples, the overestimation or underestimation due to

unobserved heterogeneity must be considered (Filippini and

Hunt, 2015; Kang et al., 2022). SFA measures carbon emission

performance through extracting the residuals from the stochastic

frontier function estimates (Aigner et al., 1977). The closer the

regression residuals are to zero, the higher the carbon emission

performance. However, the traditional SFA model still cannot

separate the unobserved heterogeneity in the residuals.

Kumbhakar et al. (2014) proposed an extended SFA model

that can separate the time-varying characteristics, time-

invariant characteristics, and urban heterogeneity in the

residuals simultaneously. Therefore, this extended SFA model

will be applied in this paper to evaluate urban carbon emission

performance more reliably. As an important tool for climate

mitigation, how to improve carbon emission performance is a

key academic concern. According to previous studies, economic

development, industrial structure, government intervention, the

level of financial development and the level of foreign investment

are the key factors influencing carbon emission performance

(Magazzino, 2016; Ashraf et al., 2020; Song et al., 2021; Li L et al.,

2022; Pan A et al., 2022; Wang L et al., 2022).

Second, with the rise of emerging technologies such as

industrial robots, big data, cloud computing and artificial

intelligence, whether technological innovation can provide

new impetus for energy conservation and emission reduction

has become a hot research topic (Su et al., 2020; Prasath Kumar

et al., 2021; Wang K-L et al., 2021; Li N et al., 2022; Saheb et al.,

2022). The improvement of cleaner production technology can

reduce carbon emissions in the process of production of

enterprises and reduce carbon emissions per unit of output

(Zhou and Zhao, 2016; Zhou et al., 2021). Zhang and Liu

(2022) and studied the impact of digital finance and green

technology innovation on carbon emissions in China and

found that technology innovation enhances carbon emission

performance. Also, Kuang et al. (2022) explored the impact of

green technology innovation and renewable energy investments

on reducing carbon emissions and found that in the long-term

technology innovation can enhance carbon performance.

However, studies have also shown that technology innovations

increase the risk of enterprises, and the returns to enterprises are

particularly limited (Li W et al., 2022; Su and Fan, 2022). Shaikh

and Randhawa (2022) found that open technological innovation

can also create risks within the organization that can jeopardize

the company’s operations. Wang S et al. (2022) conducted an in-

depth study on the behavioral decisions of executive teams and

corporate green technology innovation. He suggested that

technological innovation is characterized by long cycles, high

investments and high risks for companies.

Previous studies show that energy saving, and emission

reduction cannot be achieved solely by enterprises themselves

through technological innovation (Qiu, 2022; Zhang R et al.,

2022). One important reason is that technological innovations

that focus on energy efficiency and emission reduction do not

bring higher excess returns to companies (Li W et al., 2021).

Companies will devote limited resources to more profitable
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projects (Salmani and Partovi, 2021; Gabdullina et al., 2022). At

this point, the government must subsidize and support the

innovative behavior of enterprises to reduce the R&D risks of

enterprises (Ma and Li, 2021; Fan et al., 2022). Especially for

green production technology, government incentives can

stimulate the innovation of enterprises to a certain extent.

Therefore, it is necessary to pay attention to the role of

government innovation support in the improvement of urban

carbon emission performance.

3 Policy background and research
hypothesis

3.1 Policy background of innovative city
pilots

ICP is an important policy proposed by China based on the

increasingly competitive international situation (Yang J et al.,

2022). This is to enhance the innovation capacity and realize the

national development plan. In the future, China hopes to use

independent innovation as a driving force to promote the

restructuring of the industrial economy and the construction

of a sustainable society. In 2008, Shenzhen became the first

innovative pilot city. The country leverages Shenzhen’s good

innovation capability base to radiate neighboring cities. It is

hoped that the leading role of science and technology will be

brought into play to achieve an overall improvement in the level

of innovation in the region. At the beginning of 2010, 14 more

cities, including Dalian and Qingdao, joined the list of pilot

innovative cities. With the accelerated expansion of the pilot scale

of innovative cities, the number of innovative cities nationwide

has reached 78 as of 2018 (see Figure 1). From the lo-cation of the

pilot innovative cities, there are a certain number of pilots

distributed in the east, middle and west of the country. The

relatively economically developed coastal provinces in the east

have more pilot innovative cities (Yang Z et al., 2022). In terms of

the development of innovative cities, the goal of building

innovative cities is gradually evolving from enhancing

innovation to restructuring urban industries and building

sustainable societies. The country is leveraging the policy

advantages of these innovative cities and promoting the

synergistic development of innovation levels in the

surrounding areas (Gao and Yuan, 2022). Such a trend is

important to China’s early entry into the forefront of

innovative countries.

3.2 Research hypothesis

In this study, we suppose that government innovation

support will enhance local carbon emission performance

through three main channels. First, government innovation

support will improve local carbon performance by enhancing

total factor productivity. It has been documented that

government innovation support significantly increases total

factor productivity (Pan A et al., 2022). This implies that the

output from the given total carbon emissions also increases

significantly, leading to an increase in carbon emission

performance. Second, government innovation support

drives the level of local green innovation and thus

enhances carbon performance. Government innovation

support can effectively reduce the risk of enterprise

innovation and greatly stimulate enterprises’ innovation

behavior in energy saving and emission reduction and

other green technologies (Lin and Ma, 2022). Thus, green

innovation can significantly reduce carbon emissions per

unit of output, i.e., lead to the improvement of carbon

emission performance. Finally, government innovation

support will also promote industrial upgrading, thus

improving the urban carbon emission performance.

Government innovation support can accelerate the

transformation of local enterprises from production and

processing to R&D, i.e., industrial upgrading (Su and Fan,

2022). Industrial upgrading leads to a decrease in the share of

energy inputs in enterprise production and an increase in the

value added of products (You and Zhang, 2022). Therefore,

enterprises can achieve higher output with lower resource

inputs, which leads to the improvement of urban carbon

emission performance. Based on the above analysis, this

paper proposes the first research hypothesis.

H1: Government innovation support can improve local

carbon emission performance through promoting total factor

productivity, green innovation and industrial upgrading.

In addition to influencing local carbon performance, local

government innovation support may also affect the carbon

emission performance of neighboring regions through

spillover effects. Government innovation can effectively attract

various innovation factors to cluster locally, such as R&D

personnel and R&D funds (Li X et al., 2021). Has mentioned

in his study that government environmental support has a

significant innovation agglomeration effect. Similarly, this idea

was also supported by the study of (Peng W et al., 2021).

Neighboring regions can then share the benefits of local

innovation agglomeration through technological cooperation.

Thus, they can improve their own carbon emission

performance. In addition, neighboring regions can provide

a broad market for the output of local innovation factors and

match technical talents. The resulting industrial upgrading

will improve the overall carbon emission performance of the

region (Yang and Liu, 2020; Kuang et al., 2022; Yang Z et al.,

2022). Therefore, the second hypothesis is proposed in this

paper.

H2: There is a significant positive spillover effect of

government innovation on the carbon emission performance

of neighboring regions.
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4 Methods and data

4.1 Spatial difference-in-difference model

This paper employees the ICP as a quasi-natural experiment

and adopts the DID model to assess the impact of government

support for innovation on urban natural carbon emissions.

Selecting the implementation of ICP as dependent variables

can reduce the potential interference caused by endogenous

problems to a certain extent. In addition, considering the

spatial spillover effect of urban carbon emissions (Gao and

Yuan, 2022; Zhao and Sun, 2022), this paper further

incorporates spatial factors into the traditional DID model,

and uses the spatial DID to evaluate the impact of the

implementation of ICP on urban carbon emission performance.

In the inclusion of spatial factors, the most widely used

methods are Spatial Lag Model (SLM), Spatial Error Model

(SEM) and spatial Durbin Model (SDM) (Zhao and Sun,

2022). SLM includes the spatial lag term of the dependent

variable in the model. SEM incorporates the spatial lag term

of the error term into the model. SDM incorporates both the

spatial lag terms of the independent variable and the dependent

variable into the model. Considering the robustness, this paper

will report the estimated results of these three models in the

benchmark analysis. First, the spatial DIDmodel based on SLM is

constructed as follows:

Yit � α + δ∑n

j�1WijYit + βICPit + εit, εit ~ N(0, σ2I) (1)

where Yitdenotes the urban carbon emission performance of city i in

year t, ICPit denotes implementation of the innovative city pilots,

δ∑n
j�1WijYit denotes the spatial lag of carbon emission performance.

Then, the spatial DID model based on SEM is specified:

Yit � α + βICPit + εit (2)

FIGURE 1
Distribution of innovative city pilots in China.
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εit � λWitε + μ, μ ~ N(0, σ2I) (3)

where Yit denotes the carbon emission performance, ICPit

denotes implementation of the innovative city pilots, λ

denotes the estimated coefficient of the spatial auto-

correlation error term; μ denotes the error term. Finally, the

spatial DID model based on SDM is specified:

Yit � α + δ∑n

j�1WijYit + βICPit + +ξ∑n

j�1WijICPit + λConit

+ τ∑n

j�1WijConit + εit,

εit ~ N(0, σ2I)
(4)

where Yit denotes the carbon emission performance, ICPit

denotes implementation of the innovative city pilots, Conit is

the control variables; ∑n
j�1WijYit denotes the spatial lag term of

carbon emission performance, ∑n
j�1WijConit is the spatial lag

term of control variables; ∑n
j�1WijICPit is the spatial lag term of

implementation of the ICP. According to the study of LeSage

and Pace (2009), if the spatial panel model has spatial

hysteresis, the use of point estimation method to test the

spatial spillover effect may lead to bias. Therefore, the total

effect can be divided into direct effect and indirect effect by

calculus method. The original SDMmodel can be rewritten into

the following form:

Yt � (1 − δW)−1(βICPt + γWICPt) + (1 − δW)−1εt (5)

Taking the k-th independent variable as the example, the

result can be expressed as a partial differential matrix according

to the above formula:

[ zY
zX1k

/ zY
zXNK

]
t

� (1 − δW)−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βk
W21λk

..

.

WN1λk

W12λk
βk
..
.

WN2λk

/
/
1
/

W1Nλk
W2Nλk

..

.

βk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

TABLE 1 Variable definition.

Classification Symbol Definition Measurement

Dependent variable cep Carbon emission performance Calculation based on expanded SFA model

Independent variables ICP innovative city pilots Takes the value of 1 if ICP is implemented, 0 otherwise

Control variables lnrgdp Economic development Logarithm of GDP per capita

is Industry structure Value added of tertiary industry/value added of secondary industry

gov Government intervention Government expenditure/GDP

fin Financial development Deposit and loan balance of financial institutions/GDP

fdi Level of foreign investment Actual amount of foreign capital utilized/GDP

Variables in KLH-SFA ∅lngdp Economic aggregate Logarithm of GDP

∅lnpop Total population Logarithm of population

∅lngov Government expenditure Logarithm of government expenditure

∅lnind Total industrial output Logarithm of total industrial output

TABLE 2 Descriptive statistics.

Variable Obs Mean Std Min Median Max Skewness Kurtosis

cep 2,856 0.497 0.169 0.071 0.505 0.818 −0.355 2.232

ICP 2,856 0.171 0.377 0.000 0.000 1.000 1.746 4.047

lnrgdp 2,856 0.481 0.099 0.117 0.482 0.851 −0.258 5.283

is 2,856 0.174 0.079 0.044 0.158 1.485 −0.209 3.615

gov 2,856 0.934 0.579 0.112 0.752 6.071 2.979 33.115

fin 2,856 0.003 0.003 0.000 0.002 0.030 2.216 10.399

fdi 2,856 0.481 0.099 0.117 0.482 0.851 2.032 11.309

∅lnco2 2,856 16.887 0.920 13.795 16.860 19.452 −0.153 3.035

∅lngdp 2,856 16.552 0.918 14.067 16.452 19.760 0.464 3.238

∅lnpop 2,856 14.723 0.831 12.387 14.694 18.241 0.579 4.307

∅lngov 2,856 5.965 0.641 3.833 5.986 8.134 −0.358 3.392

∅lnind 2,856 15.796 0.946 12.863 15.754 18.469 0.120 3.008
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The above matrix reflects that the average values of diagonal

elements and off-diagonal elements are respectively displayed in

the partial differential matrix, and the changes of the

independent variables in this region and other regions denote

the direct and indirect effects.

4.2 Variable

4.2.1 Dependent variable
Based on the review of existing carbon emission performance

assessment approaches, the extended SFA model proposed by

Kumbhakar et al. (2014) is adopted in this paper. This model can

separate the time-varying inefficiency, time-invariant

inefficiency, and urban heterogeneity in the residuals at the

same time. The model is specified as follows:

CEi,t � β0 + f(Xi,t; β) + μit + λi − τ it − γi (7)
PCEPi � exp(−γ̂i) (8)
RCEPi,t � exp(−τ̂it) (9)

CEPi,t � PCEPi × RCEPi,t (10)

where CEi,t denotes the carbon emission of city i in year t;

f(Xi,t; β) is the random frontier function of the carbon emission.

Xi,t denotes the output factor related to carbon emissions

(Filippini and Hunt, 2015; Mele and Magazzino, 2020); β is

the regression coefficient; μit is the regression error term; λi is

the urban effect; τit ≥ 0 and γi ≥ 0 are the inefficiency of

continuous carbon emission and residual carbon emission

respectively. Meanwhile, they meet the following

mathematical distribution requirements: μit ~ N(0, σ2u),
λi ~ N(0, σ2λ), τit ~ N+(0, σ2τ), γi ~ N+(0, σ2γ). Furthermore,

the total carbon emission performance (CEP) is calculated

by multiplying the persistent carbon emission performance

(PCEP) and the residual carbon emission performance

(RCEP).

4.2.2 Independent variable
ICP is an incremental reform, with six batches of cities

implementing ICP. Specifically, 77% of the pilot cities

establishment concentrated between 2010 and 2013, including

41, 6, 3 and 10 cities in 2010, 2011, 2012 and 2013, respectively.

Only Shenzhen was established in 2008, and the remaining

17 pilot cities were established in 2018. This study adopts the

implementation of ICP as the independent variable to assess the

effect of government support for innovation on the improvement

of urban carbon emission performance. The value is 1 if city i has

implemented ICP in year t and 0 if it has not implemented ICP.

4.2.3 Control variable
To assess the impact of ICP on urban carbon emission

performance more reliably, this paper incorporates a series of

control variables in the model, including the level of economic

development (lnrgdp), industrial structure (is), government

intervention (gov), the level of financial development (fin) and the

level of foreign investment (fdi) (Magazzino, 2017b; Ashraf et al., 2020;

Song et al., 2021; Wang B et al., 2021; Pan X et al., 2022; Wang and

Huang, 2022; Wang S et al., 2022; Wang W et al., 2022; Wu D et al.,

2022). The specific measures of each variable are shown in Table 1.

Table 2 further reports the descriptive statistics for each variable.

4.3 Data

This paper is based on the open-source spatial grid monthly

dataset of anthropogenic carbon emissions (ODIAC) deduced by

the team of Oda et al. (2018). This dataset reports high-resolution

carbon emission data of 1 km × 1 km, which is aggregated to

form a prefecture-level city panel carbon emission dataset. The

period of the sample is from 2008 to 2019. The control variables

selected in this paper come from the Chinese City Statistics

Database (CCSD) in Chinese Research Data Services (CNRDS)

Platform (https://www.cnrds.com/Home/Index#/

FinanceDatabase/DB/CCSD) and the China Urban Statistical

Yearbook. Since the spatial DID model requires the data

structure to be a balanced panel, this paper excludes city

samples with missing values in any year. The balanced panel

dataset contains 238 cities per year with a total of 2856 samples.

5 Results

5.1 Measurement of carbon emission
performance

Figure 2 shows the carbon emission performance maps of

cities based on SFA model in 2010, 2015 and 2019. In the same

year, the darker color denotes the higher carbon emission

performance. In terms of the national carbon emission

performance distribution, the average carbon emission

performance of northern cities is relatively high in these

3 years. While the carbon emission performance of southern

cities is relatively low on average. Meanwhile, the carbon

emission performance of coastal cities is on average higher

than that of inland cities at similar latitudes. We also found

that the pattern of carbon emission performance in China

remains roughly the same from 2010 to 2019, but there is an

overall increase in carbon emission performance.

5.2 Spatial autocorrelation test

This paper tested the spatial correlation of carbon emission

performance of cities. Scatter plots of Moran index can reflect the

spatial correlation of carbon emission performance more

visually. Figure 3 shows the scatter plots of carbon emission
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performance of cities in 2010, 2015 and 2019. In these three plots,

the horizontal axis represents the standardized carbon emission

performance, and the vertical axis represents the spatial lagged

values. The coefficients of the primary fit line according to the

scatterplot are significantly smaller than zero, which indicates

that there is a spatial negative correlation between the urban

carbon emission performance. Table 3 shows the specific results

of Moran index of carbon emission performance. The Moran

index is significantly negative at the 1% level for the period

2008 to 2019. The values of the indexes are between -1 and 0. This

shows that the carbon emission performance of cities in China

has a strong spatial correlation. Therefore, spatial factors should

be considered in the estimation model.

5.3 Impact of innovative city pilots on
carbon emission performance

Table 3 reports the baseline regression results. For

comparison and to ensure the robustness of the results, here

we report the regression results including the fixed effects model,

the SLMmodel, the SEMmodel, and the SDMmodel. According

to the results, there is a significant positive contribution of ICP

policy on carbon emission performance. The coefficients of ICP

on carbon emission performance calculated by the four models

are 0.9% (p < 0.01), 1.7% (p < 0.01), 1.2% (p < 0.01) and 1.3% (p <
0.01), respectively. Since SDM considers both spatial lag effects

and spatial error effects, its assessment of ICP effects is more

reliable. Thus, the implementation of ICP leads to a final

improvement of urban carbon emission performance by 1.3%

after excluding the spatial factor interference.

The results indicates that ICP policy can improve carbon

emission performance. Meanwhile, the pilot of innovative cities

helps to respond to cities for green development and economic

improvement. In terms of other control variables, the effect of

GDP per capita on carbon emission performance is significantly

negative at the 1% level in all four models. The effect of industrial

structure on carbon emission performance is also negative at the

1% level. The effect of government expenditure on carbon

emission performance is still significantly negative at the 1%

level in all four models. On the contrary, the effect of deposit and

loan balances of financial institutions on carbon emission

performance is significantly positive at the 1% level in all four

models. The effect of actual utilization of foreign finance on

carbon emission performance is insignificant.

The estimation results of SDM model show that ICP policy

has an important enhancement effect on carbon emission

performance. Since ICP pilot cities are distributed across the

country and carbon emission performance is also spatially

correlated, it is necessary to discuss the spatial spillover

effects. Table 5 further reports the spatial spillover effects of

ICP policies on carbon emission performance. Specifically, the

direct, indirect, and total effects of ICP policy on carbon emission

performance improvement are significantly positive at the 1%

level. This indicates that ICP policies in the region can

significantly contribute to the carbon emission performance of

FIGURE 2
Carbon emission performancemaps of cities. (A) denotes the
maps in 2010, (B) denotes the maps in 2015, and (C) denotes the
maps in 2019.
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the region firstly, and significantly contribute to the carbon

emission performance of other regions. Thus, the average

effect of ICP on carbon emission performance is all elevated,

which is consistent with the study of Xu et al. (2021). However,

the study of Xu et al. (2021) ignored the spatial spillover effect of

ICP. This paper holds that the contribution of ICP policy to the

carbon emission performance of the region is greater than that

for other regions. In addition, some studies use fiscal

innovation spending or carbon taxes to measure

government innovation support and find that the

improvement in carbon performance is not significant (Fu

et al., 2022; Yıldırım et al., 2022). This paper argues that the

assessment results based on the above indicators may be

subject to endogenous interference. In contrast, this paper

uses ICP to measure government innovation support, which

can reduce the potential interference from endogenous. In

conclusion, the government should also pay attention to the

demonstration role of pilot cities, which can improve the

radiation efficiency by enacting policies such as inter-

regional collaboration (De Noni et al., 2017; Tang D et al.,

2022). Such policies can promote the overall improvement of

carbon emission performance in a larger scale.

5.4 Parallel trend test

Figure 4 reports the results of the parallel trend test. None of

the regression coefficients passed the significance test before the

implementation of the ICP policy. This shows that there is no

significant difference between the control and experimental

groups before the implementation of the policy. The hypothesis

of parallel trend was satisfied. In addition, after the

implementation of ICP policy, the regression coefficients

showed a trend of in-creasing and then decreasing. This

shows that the innovative city pilot policy has the strongest

effect in the first 2 years of implementation. And as time passes,

the effect of the policy on carbon emission performance starts to

decline. This means that in the short term, the pilot innovative

cities can bring about an improvement in carbon emission

performance, but the effect will gradually diminish. The

FIGURE 3
Moran scatterplot of urban carbon emission performance. (A)
denotes the Moran scatterplot in 2010, (B) denotes the Moran
scatterplot in 2010 in 2015, and (C) denotes the Moran scatterplot
in 2010 in 2019.

TABLE 3 Calculation of Moran’s I index of urban carbon emission
performance.

Moran’s I Z-value

2008 −0.061*** −24.206

2009 −0.061*** −24.247

2010 −0.072*** −28.834

2011 −0.073*** −29.448

2012 −0.073*** −29.432

2013 −0.074*** −29.702

2014 −0.075*** −30.458

2015 −0.079*** −31.884

2016 −0.081*** −32.869

2017 −0.083*** −33.516

2018 −0.082*** −33.201

2019 −0.083*** −33.521

Note: ***, **, and * denote significant at the 1% level, 5% level and 10% level.
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government should improve the effectiveness of the ICP policy

more in the long term while ensuring the short-term

performance of the policy.

5.5 Further analysis

5.5.1 Mechanism of innovative city pilots
affecting urban carbon emission performance

To test hypothesis 1, this paper constructs the following

mediating effect model to explore the mechanism of the

innovative city pilots affecting urban carbon emission performance:

CEPit � α + βICPit + λConit + εit (11)
Mit � α + βICPit + εit (12)

CEPit � α + βICPit + γMit + λConit + εit (13)

where Mit denotes the mediating variable, including total factor

productivity, green innovation, and industrial upgrading. Total

factor productivity is measured through the extended SFAmodel,

where total GDP is the dependent variable and population,

government expenditure and foreign investment are the

independent variables. Green innovation is measured by the

logarithm of the total number of green invention patents and

green applicable patents in city i in year t. This paper measures

industrial upgrading through the following equation according to

the study of Jie and Qian (2016):

iuit � ∑3

m�1yimt × m,m � 1, 2, 3 (14)

where a denotes the share of industry m of city i in the GDP at

time t. This indicator denotes the evolution of the proportional

relationship between the three major industries in China from

the dominance of the primary industry to the dominance of the

secondary and tertiary industries. Higher value of this indicator

means the higher level of industrial upgrading. If the coefficients

of ICP in Eqs. 11 and M in Eq. 12 pass the significance test, it

indicates that ICP affects urban carbon emission performance

through promoting labor productivity, green innovation, and

industrial upgrading. Table 6 reports the regression results for

this model.

According to the results in Table 6, the impact of ICP on tfp,

green_inn and iu are 0.252 (p < 0.01), 1.376 (p < 0.01) and 0.191

(p < 0.01), which all pass the 1% significance test. This shows that

government innovation support can significantly improve the

urban total factor productivity, green innovation, and industrial

upgrading, which are consistent with the study of Xu et al. (2021)

TABLE 4 Impact of innovative city pilots on urban carbon emission
performance.

Variables FE SLM SEM SDM

ICP 0.009*** 0.017*** 0.012*** 0.013***

(0.002) (0.002) (0.002) (0.002)

lnrgdp −0.015*** −0.004*** −0.008*** −0.013***

(0.002) (0.001) (0.002) (0.002)

is −0.081*** −0.020*** −0.061*** −0.044***

(0.009) (0.008) (0.008) (0.009)

gov −0.085*** −0.039*** −0.062*** −0.075***

(0.009) (0.010) (0.010) (0.010)

fin 0.009*** 0.006*** 0.010*** 0.008***

(0.002) (0.002) (0.002) (0.002)

fdi −0.126 −0.085 −0.062 0.074

(0.185) (0.198) (0.191) (0.188)

wICP 0.033***

(0.004)

wlnrgdp 0.023***

(0.003)

wis 0.127***

(0.015)

wgov 0.111***

(0.024)

wfin −0.023***

(0.004)

wfdi −0.736

(0.453)

City FE Y Y Y Y

Year FE Y Y Y Y

Obs 2856 2856 2856 2856

Log-L 98.384 8231.978 8239.058 8265.711

R2 0.391 0.155 0.036 0.066

Note: 1) ***, **, and * denote significant at the 1% level, 5% level and 10% level. 2) City

FE, and Year FE, denote the city fixed effects and year fixed effects. 3) City-level cluster

robust standard errors are reported in parentheses.

TABLE 5 Direct effect, indirect effect, and total effect of SDM in Table 4.

ICP Lnrgdp is Gov Fin Fdi

Direct effect 0.033*** 0.023*** 0.127*** 0.111*** −0.023*** −0.736

(0.004) (0.003) (0.015) (0.024) (0.004) (0.453)

Indirect effect 0.014*** −0.012*** −0.038*** −0.071*** 0.007*** 0.056

(0.002) (0.002) (0.009) (0.009) (0.002) (0.191)

Total effect 0.048*** 0.026*** 0.155*** 0.122*** −0.028*** −0.935

(0.005) (0.003) (0.019) (0.031) (0.006) (0.620)

Note: (1) ***, **, and * denote significant at the 1% level, 5% level and 10% level. (2) City-level cluster robust standard errors are reported in parentheses.
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and Zheng and Ge (2022). In addition, the results hold that the

coefficients of tfp, green_inn and iu are 0.018 (p < 0.01), 0.008

(p < 0.01) and 0.033 (p < 0.01). This means that there are

significant mechanisms for ICP to improve urban carbon

emission performance through the promotion of urban total

factor productivity, green innovation, and industrial upgrading,

that is, the results support hypothesis 1. Therefore, the

government should not only strengthen its support for

technological innovation, but also further improve the

market allocation of production factors and strengthen the

positive impact of the above three mechanisms (Shen et al.,

2021; Xi and Mei, 2022).

5.5.2 Heterogeneity analysis
There are huge differences in development between different

regions in China. In terms of economic development level, the

eastern region is higher than the western region in the central region

(Dai and Mischke, 2014). As a government-led financial support

policy, there may be differences in the intensity and effectiveness of

ICP implementation in different economic development regions.

Therefore, it is necessary to analyze the differences in the impact of

ICP on different regions. Second, the impact effect of ICP is also

related to the size of cities. The larger the city has a more complex

and well-developed industrial system, the higher the scale effect of

ICP implementation will be (Pan A et al., 2022). Therefore, the

differences in the impact of ICP on the carbon emission

performance of cities of different sizes should be further

explored. Finally, the resource-dependent cities of cities are

also factors to be considered. Compared with resource-

based cities, non-resource-based cities consume less

energy and have lower upside of carbon emission

performance from ICP (Sun et al., 2022). Therefore, this

paper further evaluates the differences in the impact of ICP

on cities of different resource types.

TABLE 6 Mechanisms of innovative city pilots affecting urban carbon emission performance.

tfp cep green_inn cep iu cep

(1) (2) (3) (4) (5) (6)

ICP 0.252*** 0.024*** 1.376*** 0.008*** 0.191*** 0.011***

(0.014) (0.002) (0.082) (0.002) (0.014) (0.002)

tfp 0.018***

(0.006)

green_inn 0.008***

(0.001)

iu 0.033***

(0.004)

Control Y Y Y Y Y Y

City FE Y Y Y Y Y Y

Year FE Y Y Y Y Y Y

Observation 2856 2856 2856 2856 2856 2856

F 326.475 31.785 278.610 102.345 184.184 96.233

R2 0.111 0.079 0.096 0.415 0.066 0.387

Note: (1) ***, **, and * denote significant at the 1% level, 5% level and 10% level. (2) City FE, and Year FE, denote the city fixed effects and year fixed effects. (3) City-level cluster robust

standard errors are reported in parentheses.

FIGURE 4
Results of Parallel Trend Test. The X-axis denotes the window
period for ICP implementation. The Y axis represents the
regression coefficient of ICP implementation. The year before ICP
is implemented as the base period.
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Table 7 reports the results of the heterogeneity analysis of

ICP policies on carbon emission efficiency. The first row of

Table 7 is the baseline row, and the effects of ICP policies on

carbon emission performance are reported from left to right for

eastern regional cities, small cities, and non-resource cities,

respectively. In terms of geographic location, the impact of

ICP policy on carbon emission performance for eastern cities

is 1.9%. The effect of ICP policy on carbon emission performance

in central cities is significantly lower compared to eastern cities,

which is only 0.1%. And the improvement effect of ICP policy on

carbon emission performance in western cities is not significantly

different from that in eastern cities. This indicates that the

government should pay attention to the efficiency of the role

of ICP policies in central cities, while ensuring the continued

improvement of carbon emission performance in the east and

west. The synergistic green development of the country’s eastern,

central, and western cities should be advocated. The size of cities

al-so makes a difference in the impact of ICP policies on carbon

emission performance. For small cities, ICP policies can

significantly improve carbon emission performance by 0.9%.

This improvement is more pronounced in large cities. The

level of improvement in carbon emission performance for ICP

policies in large cities is 1.7%, which is nearly twice as high as in

small cities.

The results indicate that the country should pay attention to

the radiative effect brought by large cities while paying attention

to the development of green innovation in large cities. The large

cities should be the center of a more efficient synergy of policy

implementation in the surrounding small cities (Li X et al., 2022).

Which will promote the synergistic enhancement of

technological innovation and green development in a wider

range of cities through the extensive layout of ICP policies.

The difference between resource-based cities and non-

resource-based cities is obvious. The specific setting of

resource-based cities is based on the total amount of carbon

emissions. Here we set the cities with higher total carbon

emissions as resource-based cities using the data of total

carbon emissions of different cities. Conversely, the remaining

ones are non-resource-based cities. The study of Kang et al.

(2022) points out that the focus of energy efficiency and emission

reduction is on less efficient regions, but does not further assess

the differences in the impact of government innovation support

on cities with different resource types. The effect of ICP policy for

non-resource-based cities on carbon emission performance is

insignificant. In contrast, the ICP policy of resource-based cities

has a 2% enhancement effect on carbon emission performance.

On the one hand, this indicates that resource-based cities are

uniquely positioned to improve their carbon emission

performance based on improved technological innovation,

which is consistent with the findings of Zheng and Ge (2022).

On the other hand, this paper suggests that government

TABLE 7 Heterogeneity analysis.

Variables Region Size Resource Type

ICP 0.019*** 0.009*** −0.001

(0.002) (0.002) (0.003)

ICP×Central −0.018***

(0.004)

ICP×Western −0.005

(0.004)

ICP×Big 0.008***

(0.003)

ICP×Res 0.020***

(0.003)

lnrgdp −0.013*** −0.013*** −0.012***

(0.002) (0.002) (0.002)

is −0.048*** −0.044*** −0.043***

(0.009) (0.009) (0.009)

gov −0.078*** −0.073*** −0.076***

(0.009) (0.009) (0.009)

fin 0.008*** 0.008*** 0.008***

(0.002) (0.002) (0.002)

fdi 0.159 0.091 0.085

(0.188) (0.188) (0.188)

wICP 0.020*** 0.046*** 0.030***

(0.005) (0.006) (0.007)

wICP×Central 0.075***

(0.011)

wICP×Western −0.009

(0.010)

wICP×Big −0.024***

(0.007)

wICP×Res 0.001

(0.009)

wlnrgdp 0.023*** 0.022*** 0.022***

(0.003) (0.003) (0.003)

wis 0.123*** 0.127*** 0.126***

(0.015) (0.015) (0.015)

wgov 0.112*** 0.111*** 0.107***

(0.024) (0.024) (0.024)

wfin −0.026*** −0.023*** −0.023***

(0.004) (0.004) (0.004)

wfdi −0.924** −0.762* −0.576

(0.454) (0.451) (0.451)

City FE Y Y Y

Year FE Y Y Y

Obs 2856 2856 2856

R2 0.056 0.076 0.105

Note: (1) ***, **, and * denote significant at the 1% level, 5% level and 10% level. (2) City

FE, and Year FE, denote the city fixed effects and year fixed effects. (3) City-level cluster

robust standard errors are reported in parentheses.

Frontiers in Environmental Science frontiersin.org12

Yu et al. 10.3389/fenvs.2022.983711

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.983711


needs to improve the effectiveness of ICP policies in non-

resource-based cities. According to the study of Kang et al.

(2022), better policy guidance and implementation are

needed to promote the carbon emission performance of

all types of cities.

5.6 Robustness test

5.6.1 Placebo test
Considering ICP policies may also affect the carbon

emission performance of non-pilot cities, this would lead

to unreliable estimation results. In this paper, a placebo test

is conducted using Monte Carlo simulation. Firstly, we

randomly selected samples from the control group

multiple times as the treatment group. Then, based on

this we then perform PSM-DID regression analysis and

estimate the parameters. If the estimated parameters are

normally distributed with a mean value of 0, then the

results of the analysis in this paper are reliable. Figure 5

gives the estimated coefficient distributions and kernel

density curves after 500 randomly drawn samples. As

expected from the placebo test, the estimated coefficients

show a normal distribution, and the mean value is around 0.

This shows that the change in carbon emission performance

of the real treated group originates from the implementation

of the ICP policy.

5.6.2 Re-estimation using PSM-DID
In our previous study, we used a spatial panel regression.

Based on this paper we obtained a positive result and

concluded that the contribution of ICP policy on carbon

emission performance is significant. To strengthen the

robustness of the study, here we modify the

methodology. Instead of using a spatial panel, we use the

PSM method for post-matching regressions. In applying the

PSM method, we used two conventional matching methods,

namely 1:1 nearest neighbor matching and kernel

density matching. Table 8 reports the regression results

after matching using these two methods. The results

show that the ICP policy can significantly improve the

carbon emission performance of cities by either using

nearest neighbor matching or kernel density matching.

This is consistent with the results of the previous

study using spatial panels. The results of this paper are

robust.

5.6.3 Re-estimation of different dependent
variable

To avoid the potential influence of variable settings on the

estimation results, this paper also chooses to measure the carbon

emission performance of cities by taking the logarithm of

GDP per unit of carbon emissions. Table 9 reports the re-

estimation results for the replaced dependent variables.

Table 9 shows that the effects of ICP policy on urban

FIGURE 5
Results of placebo test. Treatment groups were randomly drawn 500 times in the control group by Monte Carlo simulation and DID regression
was performed. Plot the obtained regression coefficients as a distribution graph. This figure reports the results of carbon emission performance of
non-pilot cities as a dependent variable, presenting a normal distribution with an average value of 0.
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carbon emission performance under the fixed effects model,

SLM model, SEM model and SDM model are 4.9%, 3.7%,

3.8%, and 3.4%, respectively. And all the coefficients passed

the 1% significance test. This implies the regression results of

replacing individual explanatory variables remain consistent

with those of the previous paper. The conclusions of this

paper are relatively re-liable.

5.6.4 Re-estimation excluding
contemporaneous policy disturbances

To exclude the interference of other contemporaneous

policies on the analysis results of this paper, this paper further

controls for low carbon city pilot (LCCP) and carbon emission

trading pilot (CETP) policy shocks in the model (Chen et al.,

2021; Cui et al., 2021). After adding the above two policy shocks,

the results of the impact of ICP on urban carbon emission

performance are shown in Table 10. According to the results

in Table 10, the coefficients of ICP and LCCP are 0.009 (p < 0.01)

and 0.001 (p > 0.1) in column (1). The coefficients of ICP and

CETP are 0.009 (p < 0.01) and 0.011 (p < 0.01) in column (2). The

above results show that controlling for LCCP and CETP

separately, ICP still has a significant positive effect on carbon

emission performance. This shows that the conclusion that

government innovation support enhances carbon emission

performance is robust.

5.6.5 Re-estimation based on an expanded SDID
approach

Chagas et al. (2016) proposed a spatial DID method that can

decompose the treatment effects of the spatial weight matrix. We

used this method for re-estimation to ensure the reliability of the

analytical results in this paper. The results are shown in the

following Table 11.

According to the results in Table 11, the coefficients of ICP

andwICP in restrictedmodel are 0.016 (p< 0.01) and 0.067 (p< 0.01),
which both passes the 1% significance test. In addition, the coefficients

of WT,TICP and WNT,TICP in restricted model are 0.028 (p < 0.01)

TABLE 8 Re-estimation using PSM-DID.

Neighbor
matching (n = 1)

Kernel matching

ICP 0.016** 0.010***

(0.008) (0.002)

lnrgdp −0.053*** −0.014***

(0.008) (0.002)

is −0.070* −0.077***

(0.038) (0.010)

gov −0.310*** −0.085***

(0.073) (0.010)

fin −0.006 0.010***

(0.004) (0.002)

C 1.183*** 0.637***

(0.080) (0.022)

City FE Y Y

Year FE Y Y

Obs 469 2302

F-static 23.595 28.098

Adj-R2 0.371 0.314

Note: (1) ***, **, and * denote significant at the 1% level, 5% level and 10% level. (2) City

FE, and Year FE, denote the city fixed effects and year fixed effects. (3) City-level cluster

robust standard errors are reported in parentheses.

TABLE 9 Re-estimation of different dependent variable.

Variables FE SLM SEM SDM

ICP 0.049*** 0.037*** 0.038*** 0.034***

(0.010) (0.009) (0.009) (0.009)

wICP 1.365***

(0.397)

Control Y Y Y Y

City FE Y Y Y Y

Year FE Y Y Y Y

Obs 2856 2856 2856 2856

Log-L 1161.54 2932.872 2948.328 3038.752

R2 0.884 0.064 0.056 0.079

Note: (1) ***, **, and * denote significant at the 1% level, 5% level and 10% level. (2) City

FE, and Year FE, denote the city fixed effects and year fixed effects. (3) City-level cluster

robust standard errors are reported in parentheses.

TABLE 10 Re-estimation excluding contemporaneous policy
disturbances.

Variables (1) (2)

ICP 0.009*** 0.009***

(0.001) (0.002)

LCCP 0.001

(0.001)

CETP 0.011***

(0.002)

Control Y Y

City FE Y Y

Year FE Y Y

Obs 2856 2856

F 92.88 96.43

R2 0.391 0.403

Note: (1) ***, **, and * denote significant at the 1% level, 5% level and 10% level. (2) City

FE, and Year FE, denote the city fixed effects and year fixed effects. (3) City-level cluster

robust standard errors are reported in parentheses.
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and 0.081 (p < 0.01), which also passed the 1% significance test.

This means that the implementation of ICP policy not only

significantly improves the local carbon emission performance,

but also enhance the carbon emission performance of the

surrounding areas. Consistent conclusions are obtained

based on the extended SDID model estimation proposed by

Chagas et al. (2016), indicating the robustness of the analytical

results in this paper.

6 Conclusion and recommendations

6.1 Conclusion

This paper uses a spatial DID model to assess the effect of

government innovation support on urban carbon emission

performance based on a quasi-natural experiment of ICP from

China. The main findings of this paper can be summarized in the

following three points.

First, this paper measures urban carbon emission

performance through the extended SFA model proposed by

(Kumbhakar et al., 2014). The measurement results indicate

that the average urban carbon emission in China from

2008 to 2019 is 49.7%, and there is still much room for

improvement. In addition, our findings indicate that there is a

significant spatial correlation in urban carbon emission

performance, and that the carbon emission performance in

northern and coastal regions is much higher than that in

central and western regions.

Second, the estimation results of the spatial DID indicate

that the implementation of ICP leads to a 1.3%

improvement in the urban carbon emission performance.

Meanwhile, the implementation of ICP also leads to a 3.3%

improvement in the urban carbon emission performance of

the surrounding areas. The total effects of carbon emission

performance improvement from ICP implementation are

4.8%. The results shows that government innovation

support not only significantly improves local carbon

emission performance, but also has a positive spatial

spillover effect.

Third, the results of mechanism analysis show that

government innovation support enhances urban carbon

performance mainly through three mechanisms, namely total

factor productivity improvement, green innovation, and

industrial upgrading. This paper also conducts a heterogeneity

analysis for cities of different regions, sizes, and resource

dependencies. The results show that there is no significant

difference in the contribution of ICP to carbon performance

between eastern and western cities, while the effect of ICP in

central cities is relatively low. Meanwhile, the increase of ICP on

carbon performance in large cities reaches almost twice that of

small cities. In addition, we also observe that ICP in resource-

based cities have a significant increase on carbon performance,

while ICP in non-resource-based cities have no significant effect

on carbon performance.

Finally, a series of robustness tests were conducted to ensure

the reliability of the analysis results. The parallel trend test

showed that there was no significant difference between the

carbon emission performance of the treatment group and the

control group before the implementation of ICP, while the

carbon emission performance of the treatment group was

significantly higher than that of the control group after the

implementation of ICP. Therefore, the assessment results of

spatial DID are relatively reliable. Meanwhile, the placebo test,

re-estimation based on PSM-DID and re-estimation by replacing

the dependent variable all yielded more consistent conclusions.

This paper further controls for two policies, low-carbon pilot

cities and carbon emissions trading pilot, respectively. The results

show that after controlling for the above two policies ICP still has

a significant positive impact on urban carbon emission

performance.

This paper highlights the important role of government

innovation support in improving urban carbon performance.

Future research can further explore whether the effect of

government innovation support differs across firms with

different characteristics through micro data of firms. In

addition, there is necessary to provide more assessments of

the emission reduction effects of different types of

government innovation support.

TABLE 11 Re-estimation based on an expanded SDID approach.

Variables Restricted model Unrestricted model

ICP 0.016*** 0.027***

(0.002) (0.003)

wICP 0.067***

(0.005)

WT,TICP 0.028***

(0.009)

WNT,TICP 0.081***

(0.005)

Control Y Y

City FE Y Y

Year FE Y Y

Obs 2856 2856

Log-L 64.25 60.65

R2 0.182 0.165

Note: (1) ***, **, and * denote significant at the 1% level, 5% level and 10% level. (2) City

FE, and Year FE, denote the city fixed effects and year fixed effects. (3) City-level cluster

robust standard errors are reported in parentheses. (4) According to the study of Chagas

et al. (2016), the matrix w can be decomposed as w = wT,T+ wT,NT + wNT,T + wNT,NT., The

restricted model reports the results based on matrix w. Since wT,NT, and are wNT,NT, 0-

vectors matrix, the unrestricted model reports the results based on matrix wT,T and are

wNT,T.
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6.2 Recommendations

Based on the findings of the study, this paper puts forward

the following recommendations.

First, government innovation support should be increased to

improve carbon emission performance. China has become the

country with the highest total carbon emissions in the world. The

key to achieving peak and neutral carbon targets lies in the

control of total emissions from high carbon sectors and the

control of overall sectoral emissions performance. The findings

of this paper suggest that the implementation of ICP not only

significantly improves local carbon emission performance, but

also has significant spillover effects on neighboring regions.

Therefore, the role of innovation support in pollution control

should be better utilized. On the one hand, government

innovation support should focus on traditional sectors such as

oil, steel and construction. Promote the improvement of carbon

emission performance of traditional sectors through financial

subsidies and tax incentives. On the other hand, government

innovation support also needs to foster frontier industries such as

carbon capture and storage. These industries can absorb carbon

emissions from traditional sectors, thus effectively improving the

overall carbon performance of the region.

Then, for economies with differences in regional

development, such as China, differentiated innovation support

policies should be developed for different regions. China’s

economic development is characterized by a more developed

eastern coastal region and a more backward central and western

region. As a result, the eastern region has been the first to

complete industrial upgrading and transformation and has

higher carbon performance. While the central and western

regions have taken over part of the industrial transfer from

the eastern regions, and their carbon emission performance is

low. If the similar innovation support policy is adopted

nationwide, it will inhibit the willingness of the central and

western regions to improve their carbon emission

performance through green innovation. Therefore, it is

necessary for the government to give stronger incentives to

the central and western regions to gather innovation factors to

improve their carbon emission performance. The findings of this

paper show that ICP has no significant enhancing effect on

carbon emission performance in the western region. There are

also differences in the effects of ICP with different city sizes and

resource dependence. Therefore, the government should

consider its own geographic environment, city size and

resource dependencies when providing innovation support.

For example, for western cities such as Xining and Lanzhou,

the implementation of ICP may not be effective in improving

carbon emission performance. In contrast, for cities such as

Shanghai, Nanjing, or Hangzhou, ICP can significantly

improve carbon emission performance. In addition,

government can balance such regional differences through the

setting of carbon emission trading allowances. For heavy

industries in resource-based cities, such as mining and

smelting, allow them to obtain higher carbon quotas through

green technology innovation. This would further amplify the

effect of government innovation support on the carbon

performance of such regions.

6.3 Limitations

The study in this paper also has limitations, and further

research can be extended in the following ways. First, due to the

lack of firm-level carbon emission data, this paper only assesses

the impact of government innovation support on carbon

emission performance at the city level. Further research can

explore the impact of government innovation from a more

microscopic perspective by quantifying firm-level carbon

emissions. Second, this paper focuses on the impact of

government innovation support in a sample of developing

countries represented by China. Further research can compare

the differences in the impact of government innovation support

on carbon performance across countries at different stages of

development.
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Appendix A

Table A1 reports the regression results for the stochastic

frontier function. The regression coefficients of economic

aggregate (∅lngdp), total population (∅lnpop) and

industrialized output (∅lnind) are 0.045, 0.119 and 0.083,

respectively. This means that the increase of these factors

significantly raises the urban carbon emissions. In addition,

the coefficient of government expenditure (∅lngov) on urban

carbon emissions is -0.057, which indicates that the increase of

government expenditure can reduce urban carbon emissions.

Based on the regression results, this paper extracts the residuals

and transforms them through the extended SFA model to finally

obtain the urban carbon emission performance.

TABLE A1 Results of energy demand stochastic frontier model.

Variable Coeff T-value

Basic Regression

∅lngdp 0.045*** 2.250

∅lnpop 0.119*** 12.910

∅lngov −0.057*** −2.580

∅lnind 0.083*** 6.480

constant 13.432*** 99.810

Inefficiency and error term

Cu −5.108*** −85.090

Cv −6.306*** −109.420

Log likelihood 3872.048

Note: Cu and Cv are the unconstrained parameters, where exp(Cμ) � σ2μ , exp(C]) � σ2].
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