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Mobilization of dissolved organic carbon (DOC) and CO2 from the frozen peat

to surface waters in the permafrost zone of high latitude regions is expected to

enhance under on-going permafrost thaw and active layer thickness

deepening. Here we explored one of the most remote, pristine, unregulated

and yet environmentally important rivers in western Siberia (Taz). This subarctic

river drains through forested and tundra peat bogs over a gradient of permafrost

and climate and likely acts as an important conduit of CO2 to the atmosphere

and carbon and nutrient exporter to the Arctic Ocean. In a snapshot study

during end of spring flood–beginning of summer baseflow (July 2019), we

monitored daytime CO2 and CH4 concentrations and measured CO2 emissions

using floating chambers in the main stem (700 km from the upper reaches to

the mouth) and 16 main tributaries and we also assessed day/night variations in

the emissions. We further tested the impact of land cover parameters of the

watershed and tributaries. Based on regular monitoring of the terminal

(gauging) station, we quantified the C export to the Arctic Ocean during the

study period. We revealed sizable CO2 emissions from the main stem and

tributaries (1.0 ± 0.4 and 1.8 ± 0.6 g C-CO2 m−2 d−1, respectively). The CO2

concentrations positively correlated with dissolved organic carbon (DOC),

whereas the CH4 concentrations could be partially controlled by dissolved

nutrients (N, P) and proportion of light coniferous forest at the watershed. The

overall C emission from the water surfaces (4,845 km2) of the Taz basin

(150,000 km2) during open water period (6 months, May to October) was

estimated as 0.92 Tg C (>99.5% C-CO2, <0.5% C-CH4) which is twice higher

than the total dissolved C (organic and inorganic) riverine export flux during the

same period. Applying a “substituting space for time” approach for northern and

southern parts of the river basin, we suggest that the current riverine CO2

emission may increase 2 to 3 fold in the next decades due to on-going climate

warming and permafrost thaw. When integrating the obtained results into

global models of C and biogeochemical cycle in the Arctic and subarctic

region, the use of the Taz River as a representative example of continental
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planes should help to estimate the consequences of frozen peatland thaw on

CO2 cycle in the Arctic and subarctic regions.
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CO2, river, export, landscape, Siberia, CH4 (methane), flux, vegetation

1 Introduction

A major challenge of our time is to understand and predict

the effects of climate change on sources and sinks of greenhouse

gases (GHG) in pristine aquatic ecosystems. Subarctic and

Arctic regions are of special interest to future climate change

scenarios, as temperature and precipitation are predicted to

change strongly at high latitudes and influence ecosystems thus

providing a feedback onto the climate system (Mack et al.,

2021). One such critical feedback involves GHG production

and evasion from streams and rivers (Raymond et al., 2007;

Butman and Raymond, 2011; Hotchkiss et al., 2015; Lauerwald

et al., 2015; Luo et al., 2019; Ni et al., 2019). This recognition has

motivated research aimed at understanding climate impacts on

the sources and sinks of GHG in high latitude inland waters

(Campeau and del Giorgio, 2014; Hutchins et al., 2019; Zolkos

et al., 2019; Dean et al., 2020). Of these numerous studies, only a

few were conducted in the permafrost-affected rivers, typically

at the scale of small watersheds (Denfeld et al., 2013; Serikova

et al., 2018; Ji et al., 2020; Castro-Morales et al., 2022). Yet our

knowledge of C cycling in so-called middle eight Arctic rivers

(Severnaya Dvina, Pechora, Pur, Taz, Khatanga, Olenek, Yana,

Indigirka) remains incomplete, preventing accurate

quantification and prediction of C source-sink functions and

responses to climate change. These medium size rivers, virtually

unassessed by scientific research, remained outside of global

efforts of PARTNERS and ARCTIC-GRO research programs

centered on major Arctic rivers (McClelland et al., 2004, 2006;

Raymond et al., 2007; Cooper et al., 2008; Holmes et al., 2013;

Griffin et al., 2018). In particular, the rivers draining permafrost

peatlands of large continental planes are most sensitive to

climate warming and may turn out to be very important

sources of dissolved carbon to the ocean and CO2 emission

to the atmosphere, strongly underestimated at the present time.

This is especially true for remote rivers of potentially high

environmental importance such as the Taz River (Swatershed =

150,000 km2), draining through frozen peatlands of the

Western Siberian Lowland. Up to present time, due to its

remoteness and difficulty in access, this river remained

outside the scope of main research in the terrestrial Arctic.

The peatlands inWSL are highly vulnerable to climate warming

and permafrost thaw, as the ground temperature is around

0°C ± 2°C, suggesting high instability of frozen peat and its

imminent thaw over next decades, which may lead to sizeable

CO2 emission to the atmosphere and C and nutrient export to

the Arctic Ocean.

In addition to scarcity of information on spatial variation of

C emissions in Siberian Rivers, there are sizeable gaps in

understanding of fundamental processes controlling C

exchange and export by these rivers. The reason of this is that

the knowledge on governing factors operating in much better

studied Scandinavian, East Siberian, Canadian, or Alaskan rivers

(Dawson et al., 2004; Teodoru et al., 2009; Koprivnjak et al., 2010;

Striegl et al., 2012; Crawford et al., 2013; Lundin et al., 2013;

Wallin et al., 2013; Leith et al., 2015; Stackpoole et al., 2017;

Rocher-Ros et al., 2019; Gomez-Gener et al., 2021), acquired in

totally different environmental context (relief, permafrost,

vegetation, size of water objects) cannot be directly

extrapolated to WSL rivers draining though taiga and forest-

tundra zone, where the permafrost peatlands and lake-mire

systems are much larger in size. Without knowledge of

sources and pathways for C emission and export, attempts to

understand and predict these fluxes under various climate

warming and permafrost thaw scenarios will be problematic

and likely erroneous.

The present study attempts filling up the above mentioned

gaps by using a medium-size river, not subjected to any

anthropogenic influence (<1 person/km2) and draining

through representative gradient of forest to tundra landscapes

and permafrost zones (from absent and sporadic to isolated in

the south to continuous in the north). The main objective of the

study was to assess the impact of land cover and hydrochemistry

of the water column on CO2 and CH4 concentration and

emission in the Taz River basin. Specifically, we aimed at

three goals: 1) to quantify how the magnitude of C emission

and export fluxes varies across the river main stem and

tributaries over large spatial gradient; 2) to characterize

possible sources of C emission and export in the Taz River

system; and 3) to estimate possible impacts of climate warming

and permafrost thaw on C emissions and export.

2 Study site, materials and methods

2.1 Taz River basin

The Taz River main stem and its 16 tributaries include

watersheds of distinct sizes (catchment area ranged from

149,000 km2 at the Taz’s mouth to 25 km2 of smallest sampled

tributary), with rather similar lithology, but contrasting climate

and vegetation (Figure 1, Supplementary Table S1). The Taz

River basin can be roughly divided into two parts: 1) the upper
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(southern) part 400–800 km upstream of the mouth, where the

permafrost is sporadic to discontinuous and the dominant

vegetation is forest-tundra and taiga, and 2) the lower

(northern) part, 0–400 km upstream of the mouth where the

permafrost is continuous to discontinuous and the dominant

biome is tundra and forest-tundra. The mean annual air

temperatures (MAAT) ranges from −4.6°C in the headwaters

(Tol’ka village) to −5.4°C in the low reaches (Tazovsky town).

The mean annual precipitation is 500 mm y−1 in the central part

of the basin (Krasnosel’kup town) and 600 mm y−1 in the low

FIGURE 1
Map of the studied Taz River watershed. (A) location of the Taz River basin in the Northern Eurasia; (B) Detailed map of the Taz River and
tributaries with sampling points; (C) Monthly discharge (m3 s−1) at the terminal gauging station (Tazovsky) in 2019. See Supplementary Table S1 for
sampling point identification.
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reaches of the Taz River. The lithology of the catchment is

dominated by clays, silts and sands overlayed by quaternary

deposits (loesses, fluvial, glacial and lacustrine deposits). The

dominant soils are podzols in forest areas and histosols in

peatlands.

The peak of annual discharge in 2019 occurred in the middle

of June (5,600 m3 s−1; in August, the discharge was five times

lower, Figure 1). In this regard, the month of July (average

discharge is 2,300 m3 s−1; range 1,920–3,370 m3 s−1) can be

considered as the end of the spring flood period. From

10 July to 16 July 2019, we started the boat trip from the

mouth zone of the Taz River (Gaz-Sale town), and moved,

first, 800 km upstream the Taz river till its most headwaters

(Tol’ka village), and then moved the same route downstream till

the river mouth, with an average speed of 30 km h−1. We stopped

each ~50–100 km of the boat route and sampled for CO2 and

CH4, major hydrochemical parameters, river suspended matter

and total bacterial number of the main stem. We also moved

500–1,500 m upstream of selected tributaries to record CO2

concentrations for at least 1 h and to sample for river

hydrochemistry. In one site of the Taz River main stem and

two tributaries, the measurements of FCO2 were continued from

late afternoon/evening to the next morning.

2.2 CO2 and CH4 concentrations and CO2
fluxes by floating chambers

Surface water CO2 concentration was measured in-situ by

deploying a portable infrared gas analyzer (IRGA,

GMT222 CARBOCAP® probe, Vaisala®; accuracy ±1.5%) of

two ranges (2,000 and 10,000 ppm) as described in previous

work of our group on the Lena River (Vorobyev et al., 2021). For

CH4 analyses, unfiltered water was sampled in 60-ml Serum

bottles and closed without air bubbles using vinyl stoppers and

aluminum caps and immediately poisoned by adding 0.2 ml of

saturated HgCl2 via a two-way needle system. Headspace of N2

(30% of the total vial volume) was created in the laboratory and

CH4 concentrations were analyzed using a Bruker GC-456 gas

chromatograph (GC) equipped with flame ionization and

thermal conductivity detectors. Further details of CH4

analyses are described elsewhere (Serikova et al., 2019;

Vorobyev et al., 2021).

The CO2 fluxes were measured via two floating CO2

chambers equipped with non-dispersive infrared SenseAir

CO2 loggers (Bastviken et al., 2015), at each of the nine

sampling location of the main stem and 16 tributaries

following the procedure described in details in Serikova et al.

(2019) and Krickov et al. (2021). The CO2 accumulation rate

inside the chamber was calculated by linear regression (r2 > 0.95)

for 10–20 min exposure time. In addition to in-situ chamber

measurements, the CO2 flux was calculated from measured CO2

concentration using standard approaches (Wanninkhof, 1992;

Cole and Caraco, 1998; Guérin et al., 2007) as described in details

in Vorobyev et al. (2021). For consistency with previous

assessments, we used a gas transfer velocity (KT) value of

4.46 m d−1 measured in the four largest rivers of Western

Siberian Lowland in June 2015 (Ob’, Pur, Pyakupur and Taz

rivers, Karlsson et al., 2021).

2.3 Chemical analyses of the river water

The dissolved oxygen (CellOx 325; accuracy of ±5%), specific

conductivity (TetraCon 325; ±1.5%), and water temperature

(±0.2°C) were measured in situ at 20 cm depth using a WTW

3320 Multimeter. The pH was measured using portable Hanna

instrument via combined Schott glass electrode calibrated with

NIST buffer solutions (4.01, 6.86 and 9.18 at 25°C), with an

uncertainty of 0.01 pH units. The water was sampled in pre-

cleaned polypropylene bottle from 20 to 30 cm depth in the

middle of the river and immediately filtered on the boat through

disposable single-use sterile Sartorius filter units (0.45 µm pore

size). The first 20 ml of filtrate was discarded. The DOC and

Dissolved Inorganic Carbon (DIC) were determined by a

Shimadzu TOC-VSCN Analyzer (Kyoto, Japan) with an

uncertainty of 3% and a detection limit of 0.1 mg/L. Blanks of

Milli-Q water passed through the filters demonstrated negligible

release of DOC from the filter material. For calculating SUVA254,

we measured ultraviolet absorbance at 254 nm (UV254) using a

10-mm quartz cuvette on a Bruker CARY-50 UV-VIS

spectrophotometer.

The nutrient (N, P) analyses in filtered samples were based on

colorimetric assays (Koroleff, 1983a; Koroleff, 1983b). Total

dissolved nitrogen was measured by persulfate oxidation and

the dissolved inorganic nitrogen forms (NH4
+, NO2

− and NO3
−)

were measured with spectrophotometry. Uncertainties on

nutrient analyses were between 5 and 10%.

The concentrations of particulate organic carbon and

nitrogen (POC and PON, respectively) in the suspended

material were determined via filtration of freshly collected

river water (1–2 L) on-site (at the river bank or in the boat)

with pre-weighted GFF filters (47 mm, 0.45 µm) and Nalgene

250-ml polystyrene filtration units using a Mityvac® manual

vacuum pump. The C and N concentration in RSM was

measured using catalytic combustion with Cu-O at 900°C with

an uncertainty of ≤0.5% using Thermo Flash 2000 CN Analyzer

at EcoLab, Toulouse. The samples were analyzed before and after

1:1 HCl treatment to distinguish between total and inorganic C;

however the ratio of Corganic: Ccarbonate in RSM was always above

20 and the contribution of carbonate C to total C in the RSM was

equal in average 0.3% ± 0.3% (2 s.d., n = 30).

Total microbial cell concentration was measured after sample

fixation in glutaraldehyde, by a flow cytometry (Guava® EasyCyteTM
systems, Merck). Cells were stained using 1 µl of a 10 times diluted

SYBR GREEN solution (10000x, Merck), added to 250 µl of each
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sample before analysis. Particles were identified as cells based on

green fluorescence and forward scatter (Marie et al., 1999).

2.4 Dissolved organic carbon and
Dissolved inorganic carbon lateral export
fluxes

The daily discharge of the Taz River at Tazovsky site (river

mouth in the freshwater zone) was calculated from daily

discharges measured by the Russian Hydrological Survey (AIS

GMVO, 2020) gauging station at Sidorovsk (150 km upstream of

Tazovsky, without any major tributary on this river section),

following the methodology elaborated for Western Siberia

(Rozhdestvensky et al., 2003; Kopysov et al., 2020) and taking

into account daily precipitation and temperature from the

nearest meteorological stations (Bulygina et al., 2021). The

daily discharge reconstruction for the year of 2019 at the

Tazovsky sampling site was performed via Windows-based

HBV-light model (Bergström, 1992; Seibert and Vis, 2012).

Over full year of 2019 at the Tazovsky terminal gauging

station, during high flow of the spring flood (May), we sampled

the river every 2–3 days, whereas during summer, autumn and

winter baseflow we sampled weekly. Altogether, 20 samples

during spring flood, 36 samples during summer-autumn

baseflow and 19 samples under ice in winter were collected.

Water samples were taken 200 m offshore from 0.3 m depth in

pre-cleaned polypropylene bottles and were immediately filtered

through sterile, single use Minisart® filter units (Sartorius, acetate
cellulose filter) with a pore size of 0.45 μm. The DOC and DIC

concentrations were measured as described in Section 2.3 above.

Annual DOC and DIC fluxes were estimated similar to

LOADEST method (https://water.usgs.gov/software/loadest/,

Holmes et al., 2012) from calculated daily element loads. The

latter were obtained from a calibration regression, applied to

daily discharge from the RHS. The calibration regression was

constructed from time series of paired streamflow and measured

element concentration data for 2017–2020 following the

methodology elaborated for similar data set of another

medium-size Arctic river, the Severnaya Dvina (Chupakov

et al., 2020). This permafrost-free river is similar to Taz in

terms of runoff and land cover, dominated by bogs and forest.

2.5 Landscape parameters and water
surface area of the Taz River basin

The physio-geographical and landscape characteristics of the

16 tributaries and the six points at the Taz main stem were

determined by applying available digital elevation model (DEM

GMTED 2010), soil, vegetation and lithological maps

(Supplementary Table S1). The landscape parameters were

typified using TerraNorte Database of Land Cover of Russia

(Bartalev et al., 2011, http://terranorte.iki.rssi.ru). This included

various type of forest (evergreen, deciduous, needleleaf/

broadleaf), grassland, tundra, wetlands, water bodies and other

area. The climatic parameters of the watershed were obtained

from CRU grids data (1950–2016) (Harris et al., 2014) and

NCSCD data (doi:10.5879/ecds/00000001, Hugelius et al.,

2013), respectively, whereas the biomass and soil OC content

were obtained from BIOMASAR2 (Santoro et al., 2010) and

NCSCD databases. The lithology layer was taken from GIS

version of Geological map of the Russian Federation (scale 1:

5 000 000, http://www.geolkarta.ru/). We calculated the area-

weighted average values of the mentioned landscape parameters

inside the sampled areas of the Taz River main stem and

tributaries based on DEM GMTED 2010, using the Zonal

Statistics Methods (ESRI ArcGIS 10.1). We quantified river

water surface area using the global SDG database with 30 m2

resolution (Pekel et al., 2016) including both seasonal and

permanent water for the open water period of 2016 and for

the multiannual average (reference period 2000–2004). We also

used a more recent GRWL Mask Database which incorporates

first order wetted streams (Allen and Pavelsky, 2018). The

Pearson rank order correlation coefficient (RPearson, p < 0.05)

was used to determine the relationship between CO2

concentrations and emission fluxes and main landscape

parameters of the Taz River tributaries, as well as other

potential drivers such as DIC, DOC, SUVA, POC,

macronutrients, and total bacterial number.

3 Results

3.1 Greenhouse gases concentrations and
emissions

The concentrations of organic and inorganic carbon, CO2

and CH4 concentrations, and CO2 emission fluxes of the Taz

River and its tributaries (DOC, DIC, CO2, CH4, and FCO2) are

listed in Table 1 and Supplementary Table S2. Continuous

measurements of CO2 concentration in the Taz River main

stem using submersible Vaissala sensor could be performed

only for a part of the river route (Supplementary Figure S1).

The pCO2 variations over several hundred km distance were

quite low which allowed interpolating the discrete measurements

of CO2 concentrations and fluxes over the full length of the boat

route. The CO2 measurements in the main stem demonstrated

approximately two times higher concentrations in the southern

part of the basin (upper 400 km) compared to the lower part and

ranged from ca. 5,000–6,000 µatm (200–240 µM) in the south to

3,000–3,500 µatm (120–140 µM) in the north (Figure 2A). The

CH4 concentrations were low (0.16 ± 0.05 μmol L−1 in the Taz

River main stem and 0.57 ± 0.09 μmol L−1 in the tributaries)

without any systematic spatial pattern across the basin;

Figure 2B). These values are several hundred times lower than
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those of CO2. Consequently, diffuse CH4 emissions constituted

less than 0.2%–0.5% of total C emissions and are not discussed in

further detail.

The CO2 emission flux measured by chambers yielded

CO2 transfer velocity (KT) of 1.96 ± 0.09 m d−1 with generally

weak spatial variations (1.77–2.19 m d−1) including those

among the tributaries and the main stem (Supplementary

Table S2). During study period, chamber-measured CO2

fluxes of the main stem ranged from 0.3 to 1.8 g C m−2 d−1

in the Taz River (mean 1.0 ± 0.4 g C m−2 d−1), and from 0.2 to

9.4 g C m−2 d−1 (mean 1.8 ± 0.6 g C m−2 d−1) in the tributaries

(Table 1; Figure 2C). The mean CO2 emissions in the upper

(southern) part of the Taz main stem and tributaries were

about two times higher than those in the low reaches (2.17 ±

0.85 and 0.88 ± 0.22 g C m−2 d−1, respectively).

The diel measurements of CO2 flux by floating chambers

in the tributaries of the Taz River demonstrated negligible

impact of day/night period on emission fluxes (±0.5 g C m−2

d−1, or about 30% Figure 3). Although we did not acquire full

24-h time lapse, there was no statistically significant difference

TABLE 1Measuredwater temperature, pCO2, calculated CO2 flux, CH4, DOC, and DIC concentrations, pH and other hydrochemical parameters in the
Taz River main stem and tributaries [mean ± s.d.; (n) is number of measurements].

Main stem n Mean Minimum Maximum

CH4, μmol L−1 5 0.16 ± 0.02 0.12 0.23

CO2, μmol L−1 5 342 ± 23 273 401

FCO2, g C m−2 d−1 (measured by chambers) 4 1.02 ± 0.40 0.28 1.79

FCO2, g C m−2 d−1 calculated with KT = 4.46 4 1.823 ± 0.72 0.493 3.195

Twater
°C 18.68 ± 0.31 17.80 19.50

Tributaries n

CH4, μmol L−1 16 0.57 ± 0.09 0.15 1.51

CO2, μmol L−1 16 349 ± 30 189 623

FCO2, g C m−2 d−1 16 1.76 ± 0.62 0.23 9.37

FCO2, g C m−2 d−1 calculated with KT = 4.464 m d−1 16 2.85 ± 0.95 0.41 16.7

Twater
°C 16 18.7 ± 0.41 15.50 21.7

All basin N

CH4, μmol L−1 22 0.48 ± 0.08 0.12 1.51

CO2, μmol L−1 22 112 ± 24 189 623

FCO2 g C m−2 d−1 (measured by chambers) 18 1.60 ± 0.50 0.23 9.37

KT, m d−1 36 1.96 ± 0.02 1.77 2.19

FCO2 g C m−2 d−1 calculated with KT = 4.46 20 2.85 ± 0.88 0.41 16.7

Twater
°C 22 18.7 ± 0.3 15.5 21.7

pH 22 6.79 ± 0.08 6.21 7.40

O2, mg L−1 22 7.39 ± 0.46 0.12 9.69

S.C., µS cm−1 22 59 ± 4.9 28 125

Bacteria, cell L−1 22 1.6 × 106 ± 1.7 × 105 6.4 × 105 3.2 × 107

Cl, mg L−1 22 1.09 ± 0.48 0.04 8.17

SO4, mg L−1 22 0.69 ± 0.10 0.14 1.88

DIC, mg L−1 22 5.91 ± 0.55 2.67 11.58

DOC, mg L−1 22 13.1 ± 0.63 7.40 18.98

POC, mg L−1 21 6.49 ± 0.68 2.49 14.76

SUVA, L mg−1 m−1 22 4.85 ± 0.08 4.4 6.3

PO4, μg L−1 9 43.3 ± 6.9 8.4 82

Ptot, μg L−1 9 86 ± 9 30 128

NO2, μg L−1 9 3.34 ± 0.56 1.66 7.25

NO3, μg L−1 9 176 ± 14 100 254

NO4, μg L−1 9 29.7 ± 6.34 15.6 73.2

Ntot, μg L−1 9 345 ± 20 282 471
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in measured CO2 flux between short night period and

preceding or following morning or evening time.

Altogether, rather minor or non-systematic spatial and diel

variations in both CO2 concentration and emission fluxes

support the chosen sampling strategy and allow reliable

extrapolation of obtained results to full surface of lotic

waters of the Taz River basin, during open water period.

3.2 Dissolved C concentrations and lateral
export fluxes of the Taz River

The Dissolved Organic Carbon (DOC) concentrations

ranged from 12 to 13 mg L−1 in the main stem (without any

latitudinal pattern over 800 km) to 7.4–19.0 mg L−1 in the

tributaries (Supplementary Figure S2). The SUVA254 ranged

from 4.5 to 5.0 L mg C−1 m−1, Supplementary Figure S2). The

DIC concentrations ranged from 4.4 to 8.6 in the main stem to

2.7–11.6 in the tributaries, and pH was between 6.2 and

7.4 without significant difference between main stem and

tributaries (Supplementary Table S2). The POC concentration

was generally higher in the main stem compared to tributaries

and ranged from 3 to 15 mg L−1. The total bacterial number

ranged from (0.6–3.3) × 106 cell ml−1 for the main stem and

tributaries without systematic spatial variability (Supplementary

Table S2).

The C export flux (May to October) from the Taz basin was

calculated based on monthly-averaged discharge at the river

mouth in 2019 available from Russian Hydrological Survey

and 6-month averaged DOC and DIC concentrations

measured at the Tazovsky gauging station (9.8 ± 2.1 and

10.7 ± 4.5 mg L−1, respectively; which is in good agreement

with DOC and DIC concentrations assessed in July 2019 in

this study at the river mouth (Supplementary Table S3). These

values are also consistent with 3-season sampling of the Taz River

low reaches in 2016 by Serikova et al. (2018). The resulting export

of C during 6 months of open water period amounts to 0.329 Tg

DOC and 0.189 Tg DIC. The former value is in agreement with

DOC yield of the Taz watershed (1.9 t C km−2 y−1 for Swatershed =

150,000 km2, or 0.285 Tg C y−1; which is based on mean multi-

annual values from long-termmonitoring, Pokrovsky et al., 2020;

Gordeev et al., 1996). This confirms the validity of simplified

mean monthly/seasonal calculation for the year of 2019,

employed in the present study. Note that the contribution of

POC to overall C export from the Taz River watershed does not

exceed 10% because the typical yield of POC in WSL rivers of

continuous and discontinuous zone is between 100 and

150 kg C km−2 y−1 (Krickov et al., 2018).

FIGURE 2
The CO2 and CH4 concentrations (A,B) and CO2 fluxes (C) profile of the Taz River main stem (solid circles) and tributaries (open circles). See
Figure 1 and Supplementary Table S1 for identification of tributaries number. Headwaters to the river mouth, from left to right.
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3.3 Impact of water chemistry and
catchment characteristics on CO2 and
CH4 concentrations and CO2 evasion in
the Taz river main stem and tributaries

Spatial variations of main hydrochemical parameters,

nutrients and total bacterial count of the Taz River main stem

and tributaries are illustrated in Supplementary Figure S2 of the

Supplement. It can be seen that these variations were mostly

pronounced for the tributaries and there was no detectable

northward or southward trend of DIC, DOC, SUVA and POC

in the main stem, from the headwaters to the mouth.

Pearson correlations between GHG and the main parameters

of the water column which are likely to control CO2 and CH4

pattern (DOC, DIC, O2, pH, Specific Conductivity, POC, TBC,

macro-nutrients, SUVA and optical/molecular characteristics of

DOM) did not reveal sizable links between these variables with

rare exceptions (Table 2; Figure 4). The CO2 concentration

positively correlated (p < 0.05) with concentrations of DOC

and its aromaticity/humification (RPearson = 0.47, 0.55,

respectively). The CO2 was also positively correlated with

POC, SUVA, nutrients (Ptot, Ntot, Si) and bacterial number

but these correlations were not significant (0.27 ≤ R ≤ 0.40;

p > 0.05). Total dissolved N, DOC, SUVA254 and POC positively

impacted FCO2 but statistically-significant correlation was only

pronounced for Ntot (RPerason = 0.69, p < 0.05). In contrast, there

was a positive correlation (p < 0.05) between the CH4

concentration and that of macro-nutrients (Ptot, NO2, NO3,

NH4, Ntot).

The majority of land cover factors that are known to control the

CO2 concentration and evasion in river waters (organic carbon stock

in soil, proportion of peatland and bogs, tundra coverage, total

aboveground vegetation, type of permafrost, annual precipitation

and river watershed area) were not correlated with CO2 or CH4

concentration and FCO2. Only the watershed coverage by light

coniferous and broadleaf mixed forest was significantly (RPearson =

0.62, p < 0.05) correlated with concentration of CH4 (Table 2).

3.4 Total fluvial C emission from the Taz
River basin

The areal emissions of C (99.8%–99.5% CO2; 0.2%–0.5%

CH4) from the lotic waters of the Taz River basin were

FIGURE 3
Discrete chamber-based fluxes in the Taz River [(A): 46.3 km, main stem (Tz-3), 64.07712°N, 81.93293°E] and two tributaries [(B): Chaselka (Tz-
7), 211 km, 64.9391°N, 81.3651°E: (C) Soryakha, 566 km, 66.982628°N, 81.519432°E] including night time measurements (thick black line). Variations
of water temperature did not exceed 2°C.

Frontiers in Environmental Science frontiersin.org08

Vorobyev et al. 10.3389/fenvs.2022.987596

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.987596


assessed based on total water (lake excluded) coverage of the

Taz river system in 2019 (4,845 km2, of which 3,239 km2 is

seasonal water, according to the Global SDG database (6.6.1);

https://www.nature.com/articles/nature20584). Given that

the measurements were performed at the end of spring

flood in 2019 during still high water period, we used the

3,224 km2 as seasonal average of the river basin (permanent

+½ of seasonal lotic waters). We admit that the uncertainty on

this value is as high as ± 500 km2. Of this water coverage value,

we note that the main stem contributes to 24% of total

water area.

For areal emission calculations, we used the values of

measured CO2 emissions in the main stem (1.02 ±

0.40 g C m−2 d−1 for 774 km2) and tributaries (1.76 ±

0.62 g C m−2 d−1 for 2,450 km2). Similar approach has been

used for the Lena River basin (Vorobyev et al., 2021) and it

allows to account for variability of both tributaries and the

Taz River main channel according to the partial contribution

of different water courses (Table 1). Considering 180 days of

open water period (May to October), the main stem and

tributaries emit 0.142 Tg and 0.776 Tg C-CO2, respectively,

with total emission of the Taz basin equaled to 0.916 ±

0.326 Tg C-CO2. Overall, the C emissions from lotic

waters of the Taz watershed during open-water period

sizably (about a factor of 2) exceeded the C downstream

export.

TABLE 2 Pearson correlation matrix of measured FCO2, CO2, and CH4 concentrations with hydrochemical parameters of the water column and
landscape parameters of the tributaries and the main stem of the Taz River.

CH4 CO2 Fco2

DIC −0.13 −0.03 −0.26

DOC 0.39 0.47* 0.32

POC 0.58 0.40 0.25

pH −0.38 −0.37 −0.33

O2 −0.14 −0.21 −0.33

Specific conductivity −0.11 0.10 −0.25

Twater −0.39 −0.26 0.02

Total bacteria count 0.26 0.35 0.00

Aromaticity/humification 0.41 0.55* 0.35

Po4 0.36 −0.05 −0.25

Ptot 0.45* 0.28 0.23

No2 0.88* 0.08 0.04

No3 0.80* 0.28 0.13

No4 0.83* 0.13 0.23

Ntot 0.49* 0.38 0.69*

Si 0.34 0.28 −0.23

Cretacean (silicate rocks) −0.21 −0.02 −0.21

Paleogene (sands, clays) 0.27 −0.10 0.20

Oligocene - miocene (sands and silts with carbonate concretions) 0.28 0.30 0.02

Dark needleleaf forest −0.12 −0.01 0.25

Light coniferous and broadleaf mixed forest 0.62* 0.31 0.00

Deciduous needleleaf forest −0.01 0.21 0.04

Tundra −0.04 −0.36 −0.18

Riparian area −0.03 −0.08 0.10

Bogs and water 0.05 0.09 0.30

Burned area −0.25 −0.17 −0.05

Phytomass −0.34 0.07 −0.11

Organic c in soil (0–30 cm) 0.32 0.31 0.18

Organic c in soil (0–100 cm) 0.30 0.32 0.18

Mean annual air temperature 0.32 0.40 0.28

Mean annual precipitation 0.00 0.30 −0.12

Permafrost coverage −0.40 −0.03 −0.10

Significant (p < 0.05) correlations are labelled by asterisk.
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4 Discussion

4.1 Weak landscape and river water
composition control on CO2 and CH4
concentration and emission pattern

Lateral variations of CO2 concentrations and emission fluxes

along the ~800 km of the main stem of the Taz River were rather

low, although we noted about two times higher C concentrations

and emissions in the southern part of the basin compared to its

northern part. This, together with also constant pattern of

organic and inorganic solutes -DOC, SUVA254, nutrients and

total bacterial number (Supplementary Figure S2) -suggest high

homogeneity of landscape (external) factors responsible for C

emission and transport in the Taz river.

The variability of CO2 concentration and emission flux in the

tributaries was much larger compared to the main stem, and a

number of land cover features (deciduous needle-leaf forest, C

stock in soil, mean annual temperature and precipitation) and

water column parameters (dissolved N, bacterial number, POC)

FIGURE 4
Significant (p < 0.05) positive control of river water hydrochemical parameters (DOC, POC, Aromaticity, nutrients), bacterial number (TBC) and
land cover parameters (forest) on CO2 and CH4 concentrations in the Taz River main stem and tributaries.
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exhibited positive correlations (0.2 < RPearson < 0.4) with CO2

concentration (Table 2). These correlations, however, were too

weak (p > 0.05) to speculate about direct drivers of C pattern.

Only DOC, its aromaticity and total N concentration

demonstrated sizable (p < 0.05) links to CO2 concentration.

We believe that organic-rich bog water feeding the river can be

responsible for positive correlations of CO2 with DOC and

aromaticity, as reflected in its optical properties. A positive

correlation with dissolved N may be due to CO2 diffusion

from N-rich sediments to the water column, as it is known

for thermokarst lakes of the permafrost peatlands in this region

(Audry et al., 2011; Manasypov et al., 2022). Although the CH4

concentration pattern in both the main stem and tributaries was

less variable than that of CO2, there were positive correlations

with some nutrients such as nitrate and ammonia (p < 0.01) and

total phosphorus (p < 0.05). These correlations could reflect co-

mobilization of methane and these nutrients from river

sediments to the water column in some stagnant and shallow

zones of the river, its riparian zone, of partially flooded

floodplain.

Another important result of this study is a lack of diel FCO2

variation (Figure 3). This contrasts the report on diel variations of

CO2 emissions from low-DOC, shallow Arctic streams of N

Sweden (Rocher-Ros et al., 2019), where the primary

productivity/respiration cycles strongly override

photodegradation of DOC. Presumably, lack of substantial

productivity/mineralization processes in the water column of

the Taz River and tributaries is due to shallow photic layer of

organic-rich waters and essentially allochthonous nature of

DOM (high SUVA254) originated from surrounding peatlands.

Therefore, lack of measurable diel variations in CO2 pattern may

be consistent with negligible bio-and photo-degradability of

DOM in the Taz River. Although the DOC bio-and

photodegradation processes in large Arctic Rivers are strongly

understudied, the only case of quite similar river draining

permafrost peatlands, the Pechora River of NE Europe,

demonstrated a negligible (0%–5%) bio- and

photodegradation of DOC in the water column (Shirokova

et al., 2019). Other studies of surface waters in permafrost

peatlands also demonstrated that DOM photo- and bio-

degradation are low and cannot sizably contribute to observed

net CO2 evasion from humic waters (Payandi-Rolland et al.,

2020; Laurion et al., 2021).

Overall, the observed stable and temporal pattern in CO2

concentrations and emissions could not be attributed to any

specific environmental factor studied here, but may be explained

by a combination of land cover of the watershed and riverine

organic matter source. First, the Taz River catchment is

represented by essentially homogeneous landscapes, and

similar lithology and Quaternary deposits of the whole river

basin (50% forest, 30% wetlands). As a result, the variations in

land cover parameters among studied tributaries and at the

several sampling points of the main stem are rather minor.

Second, there is a strong dominance of allochthonous source

in both dissolved and particulate organic matter. This terrestrial

source could be either forest soil litter leachates or, more likely,

bog water at the end of spring flood when the river water is

substantially derived from adjacent bogs (i.e., Ala-aho et al.,

2018). The main argument for overall constant input of

terrestrial material is spatially-stable values of SUVA254 (from

4.4 to 5.1 L mg−1 m−1; Supplementary Figure S2; Table 1). Such

high values, together with stable and low variable humification,

aromaticity and normal molecular weight are indicative of

overwhelming terrestrial signal.

Therefore, rather than local processes in the water column

(respiration, primary productivity, photo- and bio-degradation

of DOM and POM), we hypothesize the dominance of external

input to the river water as the main governing factor of C

emission pattern. Such input may include a lateral influx from

the shores and shallow subsurface waters, sediment resuspension

and respiration. In particular, in small peatland streams, the

CO2-rich peat water is known to be the major source of aquatic

CO2 under low flow conditions (Dinsmore and Billett, 2008;

Dinsmore et al., 2013). At the same time, given essentially

permafrost context of the Taz River basin, the discharge of

deep underground, CO2-rich fluids in the river bed (hyporheic

zone) as it is known in other regions of the world (i.e., Duvert

et al., 2018) is less likely. Instead, a two-fold increase in the CO2

concentration and emission flux in the main stem and tributaries

between the low reaches in the north and the headwaters in the

south may reflect progressive increase in the feeding of the river

basin by DOC- and CO2-rich mire waters and an increase in the

proportion of forest at the watershed.

In the present study, in addition to direct chamber

measurements, we also calculated the CO2 emission fluxes

using KT value of the Ob River main stem, following the

approach to other large rivers of Siberia (4.46 m d−1; Karlsson

et al., 2021). Note that this value is close to that used for the boreal

and Arctic streams (Aufdenkampe et al., 2011), and it is at the

lower end of fluvial KT values, but at the high end of inland water

KT values in general (Dean et al., 2020). Thus calculated FCO2

values were typically 1.6–1.8 times higher than those measured

directly by chambers (Table 1). However, because of the smaller

size and shorter fetch of the Taz River and its tributaries, we

believe that lower values of KT are more pertinent to the studied

river basin. Given that the Taz River has very extensive

floodplain, this is consistent with observations in other

regions that in flooded land, a canopy of riparian vegetation

protects the water-air interface from wind stress thus rendering

the gas transfer velocity lower compared to open water such as

large river (i.e., Foster-Martinez and Variano, 2016; Ho et al.,

2018; Abril and Borges, 2019). It is worth noting that the range of

KT values measured by floating chambers in this study (2.0 ±

0.2 m d−1) are consistent with transfer coefficients for western

Siberia calculated by Liu et al. (2022) based on reach-slope and

flow velocity of the rivers of this region (i.e., ≤2 m d−1).
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We found that the range of CH4 concentrations in the Taz

tributaries and the main channel are several hundred times lower

than those of CO2. Given that, on a short-term scale (20 years),

the GWP of methane can be as high as 96 (Alvarez et al., 2018),

and the majority of methane is evaded from lakes, not assessed in

this study, the role of CH4 in climate regulation may become

comparable to that of the CO2. This has to be taken into account

for climate modeling of the region at the scale of the Taz River

basin.

4.2 Carbon evasion compared to lateral
export of riverine carbon and future
changes in C emission from the Taz River
basin

The chamber-measured emissions (>99.8% CO2) from the

Taz River main channel over 750 km distance (0.5–2.0 g C m−2

d−1, respectively) are comparable to the range of values reported

by Serikova et al. (2018) for the low reaches of the Taz and Pur

Rivers in summer and spring (1.2–1.6 g C m−2 d−1) and CO2 flux

in small rivers of continuous/discontinuous permafrost zone of

the WSL (2.2 ± 1.6 and 2.6 ± 0.6 g C m−2 d−1 in spring and

summer, respectively). The obtained fluxes are also in agreement

with CO2 evasion from the Kolyma River (0.35 g C m−2 d−1 in the

main stem; 2.1 g C m−2 d−1 for lotic waters of the basin, Denfeld

et al., 2013), the Ob River main channel (1.32 ± 0.14 g C m−2 d−1

in the permafrost-free zone, Karlsson et al., 2021) and the Lena

River along a 2,800 km profile (0.8–1.7 g C m−2 d−1, Vorobyev

et al., 2021). The CO2 emissions in Taz’s tributaries

(0.3–9 g C m−2 d−1) are within the range reported for small

rivers and streams of the continuous and discontinuous

permafrost zone of western Siberia (2.0–3.2 g C m−2 d−1;

Serikova et al., 2018), forest and wetland headwater streams of

northern Sweden (0.5–5 g C m−2 d−1, Gomez-Gener et al., 2021;

Rocher-Ros et al., 2019), and small boreal streams in Canada and

Alaska (0.8–5.2 g C m−2 d−1, Teodoru et al., 2009; Koprivnjak

et al., 2010; Crawford et al., 2013; Campeau et al., 2014). Total

watershed surface area-normalized C emissions from the water

surfaces of the Taz River basin assessed in this study (6.2 g C-CO2

m(land)
−2 y−1 assuming no emission under ice) are higher than those

of the average lotic waters of western Siberia (2–5 g C-CO2m(land)
−2

y−1, Karlsson et al., 2021), but comparable to the boreal portions

of the Yukon River (7–9 g C m−2 y−1; Striegl et al., 2012;

Stackpoole et al., 2017).

Taken together, our regional estimations are based on direct

chamber measurements and as such provide rigorous basis for

assessment of CO2 emissions from still understudied lotic waters

of permafrost-free zone of Western Siberia. The C evasion from

the Taz River basin assessed in the present work is sizably higher

than the total dissolved carbon (DOC + DIC) lateral export by

this river to the Arctic Ocean. The coverage of the Taz River

watershed by lakes is about the same as that of rivers (5,350 and

4,845 km2, respectively, as estimated from Global SDG database).

The areal CO2 evasion from lakes in the north of the WSL is

generally higher than that of rivers (Karlsson et al., 2021).

Therefore, accounting the C evasion from lakes can double

the total emissions from the Taz basin and thus increase the

C emission: C export ratio for this territory to as high as 3–5, still

a bit lower than the global average value of theWSL inland waters

(7–9, Karlsson et al., 2021). Together with available data on Ob

(Karlsson et al., 2021), Pur (Serikova et al., 2018), Kolyma

(Denfeld et al., 2013), and Lena River (Vorobyev et al., 2021),

results of the present study will help to upscale C emission and

export from Siberian rivers on the territory of several

million km2.

Taking advantage of the highly pristine character of the Taz

River (in contrast to the neighboring Pur River basin, strongly

impacted by gas and oil industry), the Taz catchment was used to

approximate the future changes in riverine C emissions linked to

on-going climate change and permafrost thaw. For this, we will use

a “substituting space for time” approach which postulates, in a

broad context, that spatial phenomena which are observed today

can be used to describe past and future events (Blois et al., 2013).

Such an approach has been successfully used in western Siberia

(Frey and Smith, 2005) to model the possible future changes in

small (Krickov et al., 2018) and medium-size (Pokrovsky et al.,

2022) rivers, lakes (Manasypov et al., 2022), soil waters (Raudina

et al., 2018) and permafrost ice (Lim et al., 2021). Indeed, with

permafrost boundary shift northward (Romanovsky et al., 2010)

and tundra greening over next decades as it is observed generally

through the Arctic and subarctic regions (Tape et al., 2006; Garcia

Criado et al., 2020; Mauclet et al., 2022), the northern part of the

Taz River (tundra and forest-tundra of continuous to discontinuous

permafrost) can be entirely transformed into southern part-like

territory of taiga and forest-tundra biome with discontinuous to

sporadic permafrost. Given that the CO2 flux in the upper

(southern) 400 km of the river main stem and tributaries is a

factor of 2–3 higher than that in the lower (northern) part of the

basin, one can expect a 2 to 3-fold increase in the CO2 emission

from the Taz River basin due to on-going climate warming and

permafrost thaw. These estimations are important because local

scale heterogeneity of CO2 emission across the south-north

gradient of the Taz River basin is not accounted for in most

recent global models of fluvial CO2 emissions (Liu et al., 2022).

In the latter study, a very broad range of CO2 emissions for this

region, not reflecting latitudinal heterogeneity, was reported

(0.2–2.0 g C-CO2 m−2 d−1), which is compatible with the values

of the present work but does not allow quantitative space for time

substitution scenario. For such an approach, local high resolution

studies of the whole riverine basin with main tributaries are needed,

as it was demonstrated in the present work. At the same time, our

estimations of possible CO2 emission increase in the northern part

of the Taz River basin are consistent with anticipated northward

shift in the maximum of C emissions from the WSL rivers as

inferred from recent study of small rivers (Serikova et al., 2018).

Frontiers in Environmental Science frontiersin.org12

Vorobyev et al. 10.3389/fenvs.2022.987596

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.987596


5 Conclusion

Via employing an unprecedented spatial coverage of C

pattern in a pristine permafrost-affected river and

combining discrete hydrochemical measurements with

continuous CO2 and floating chamber assessment of

fluxes, we tested the magnitude of riverine C fluxes in

relation to various hydrochemical, climatic (temperature,

permafrost) and landscape (type of biome) drivers. The

obtained results allowed quantifying rates and source

contribution of emission and downstream C export, and

how they change across different permafrost conditions

and landscape (vegetation) type. Among possible CO2

emission drivers, we identified some hydrochemical

parameters of the river water (DOC and its aromaticity)

whereas land cover features (watershed coverage by forest,

bogs, C stock in soil and climate parameters) did not

significantly correlate with CO2 concentrations and

emissions. The CH4 concentration positively correlated

with POC, all dissolved N forms, Ptot, and light coniferous

forest coverage.

Together with available data on other Siberian rivers,

results of the present study will help to upscale riverine C

emission and export from the territory of several million

km2. This should provide a better understanding of

permafrost response to climate warming in Siberia and

mechanisms of negative feedback of CO2 emissions from

inland waters to the rise of air temperature and vegetation

shift northward. Via substituting space for time approach,

and taking the advantage of gradients in temperature,

vegetation and permafrost across the Taz river main

stem and tributaries, we estimate a 2 to 3-fold increase

in CO2 emission from the Taz River basin over next

decades, linked to northward vegetation and permafrost

boundary shift.
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