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Evaluating the impact of environmental pollution charge system reform is

necessary to help formulate a suitable policy to achieve a goal of emission

control. The paper examines the relationship between policy adjustment of SO2

emissions charge standard (PSC) and urban growth of green total factor

productivity (GGTFP) using a natural experiment data of 280 cities in China.

The results indicated that the improvement of SO2 emissions charge standard

can reduce emission and promote the GGTFP. Furthermore, it reveals an “N”

relationship between the policy time period and theGGTFP, and an “Inverted-U”

relationship between policy intensity and the GGTFP. The results imply that

there is some policy room for policy makers to set a shadow price of pollution

charge to maximize policy effect, and it is also important to consider the policy

effect in the implementation time and intensity to maximize the policy effect

and resource efficiency for the GGTFP and sustainable development.
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1 Introduction

The global average temperature in 2021 (from January to September) is about 1.09°C

higher than that in 1850–1900 (the 26th UN Climate Change Conference). The

United Kingdom declared that they will continue to work with all parties to increase

climate action, build climate resilience and reduce carbon emissions (the 26th UN Climate

Change Conference, Glasgow, United Kingdom, November, 2021). And China has also

clearly put forward the goals of “carbon-peak” in 2030 and “carbon-neutralization” in

2060 for the climate change.

Limiting the discharge of pollutants, improving environmental quality and

building a green modern country have become a long-term goal of China’s

sustainable development. On the road of sustainable development, China has
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made great stride to improve energy structure (The ratio of

coal in China’s total energy consumption has been reduced to

59.0% in 2018 from 94.4% in 1953) and to accelerate adoption

of clean and low-carbon process (the corresponding ratio of

electric and other clean energy has increased from 1.8% to

14.3%). However, China is still facing serious problem of air

pollution (smoke discharge, waste-water, SO2, PM2.5 and

other emission) due to rapid development, energy

consumption, and natural resource limitations (Fang et al.,

2008; Ma et al., 2012; Wang et al., 2012; Li et al., 2011; Li et al.,

2017; Zhang et al., 2016). The serious air pollution problem

poses acute threat to public health and natural ecosystems

(Streets and Waldhoff, 2000; Lu et al., 2010; Chung et al., 2011;

Chen et al., 2012; Smith et al., 2011; Chen et al., 2012). The

ratio of coal in China’s total energy consumption has always

remained the highest (National Bureau of Statistics of China),

and coal is the dominant emitter of Sulfur Dioxide (SO2),

comprising 92% of total SO2 emissions (Su et al., 2011; Qian

et al., 2020). Awan et al., 2022a and Awan et al., 2022b analysis

the energy efficiency and CO2 emission, as well as the impact

of renewable energy, Internet use and foreign direct

investment on carbon dioxide emissions. Qian et al., 2020

estimated the reduction potential of SO2 emissions from coal

by 2050, and forecasted that SO2 emissions will be reduced

from 11.0 Mt in 2016 to 3.9–4.1 Mt in 2050 under four

scenarios (NPS, CPS, RES, B2S), and the SO2 emissions will

be reduced by 62%–64% in 2050 compared to 2016, if the share

of renewable energy in power generation is increased from

25% to 85%.

Scientists and scholars have pointed out that SO2 emissions

can be reduced by several measures, such as process treatment

during and after combustion (Wang et al., 2017; Cheng and

Zhang., 2018); adoption of SO2 emissions control technologies

for Flue-gas desulfurization (Streeter, 2016); the adoption of

renewable energy (Awan et al., 2022a; Lu et al., 2010; Zhao

et al., 2008; Arvesen and Hertwich, 2012; Nazari et al., 2010;

Zhang et al., 2007; Xie et al., 2018); Subway expansion (Shen

et al., 2016; Sun and Ouyang, 2014) and Intelligent

Transportation Systems (ITS) (Chen Y. et al., 2017; Ahmad

et al., 2017; Chen X. et al., 2017; Chen Z. et al., 2017; Ahmad

et al., 2017), or carbon emissions trading policy (Zhang and

Wang, 2021; Awan et al., 2022b). M Yang et al. (2018) have

evaluated the impact of urban traffic investment on SO2

emissions in China, and shown that urban traffic investment

can reduce SO2 emissions significantly.

In recent years, the emission permit system as market policy

instruments have gained increasing attention by policy makers

and regulators (Boutabba et al., 2012), such as United States SO2

trading program and carbon emission trading. Policy makers

could plan their strategy to benefit from the dynamic behavioral

response to the characteristics of the SO2 trading market by

exploiting the long-term relationship between SO2 permit price,

scrubbing costs, industrial production, and weather conditions

(Boutabba et al., 2012; Burtraw, 1996; Ellerman and Montero,

1998; Carlson et al., 2000), as well as the relationship between

electricity demand, regulation, technologies and SO2 permit price

(Schennach, 2000). In addition, the financial institutions (Godby

et al., 1997; Mestelman et al., 1999; Cason and Gangadharan,

2006), public regulations, and other state laws (Winebrake et al.,

1995; Fullerton et al., 1997; Arimura, 2002; Sotkiewicz and Holt,

2005) are also relevant factors to determine the SO2 market price.

There exists a variety of regulations and market

mechanisms on reducing SO2 emissions, hence it is

important to analyze and evaluate the effect of these

environmental policy measures and methods. Zhao and

Qiao, 2022 used a convex quantile regression method to

evaluate shadow prices of CO2, SO2, and NOx produced by

United States coal power plants from 2010 to 2017.

Mekaroonreung and Johnson (2012) estimated the shadow

prices of SO2 and NOx for United States coal power plants by a

convex nonparametric least squares approach. Kanada et al.

(2013) identified the effect of regional disparity and cost-

effective SO2 pollution control through the use of the

GAINS-China model (used for different SO2 emissions

scenarios) in five mega-cities in China. The results from

their study demonstrated a potential for large SO2

reduction, as well as a great disparity in SO2 reduction

across regions. Other researchers conducted the estimation

by using Data Envelopment Analysis (Zková, 2011; Charnes

et al., 1978) or other similar methods (Färe et al., 1993;

Coggins and Swinton, 1996; Boyd et al., 1996; Färe et al.,

2005); other studies include technical efficiency, shadow price

of carbon dioxide emissions, and substitutability for energy

(Lee and Zhang, 2012); technical efficiency, shadow price and

substitutability of Chinese industrial SO2 emissions (Xie et al.,

2015; Li et al., 2015); environmental efficiency, productivity,

and shadow price of carbon dioxide emissions (Deng and Du,

2020); and productivity change of United States coal power

plants (Yaisawarng and Klein, 1994; Tyteca, 1997).

According to the above literature, it can be seen that

limiting the discharge of pollutants (specially for SO2

emissions from coal) is important for environmental

quality, climate change and sustainable development. And

some scholars have analyzed the SO2 emissions from the

perspective of energy structure, reduction potential,

emission control, technical efficiency, emission trading,

shadow prices of SO2, and etc. (Awan et al., 2022a; Xie

et al., 2018; Zhang and Wang, 2021; Awan et al., 2022b;

Zhao and Qiao, 2022; Deng and Du, 2020; Qian et al.,

2020; Tiwari et al., 2022). However, there are fewer articles

to analysis the influence of policy and system on the SO2

emissions in China. Besides, evaluating the effect of policy on

the SO2 emissions is necessary to help formulate a suitable

policy to achieve a goal of emission control, and a

comprehensive evaluation of the impact of policy will

provide reference for the future policy making.
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Therefore, we choose an important environmental reform

event (Environmental pollution charge system reform) to

explore the policy effect of SO2 emissions charge standard

adjustment in China, as well as the relationship between policy

adjustment of SO2 emissions charge standard and

environmental resource efficiency (Huang et al., 2022;

Wang et al., 2020; Awan et al., 2022b; Liu and Luo, 2022),

which is a relatively less studied research area, in addition, it

also analyzed the policy effect of SO2 emissions in different

time period and in different intensity. Figure 1 is the analysis

ideas for the relationship between policy adjustment of

SO2 emissions charge standard (PSC) and the growth of

green total factor productivity (GGTFP).

The rest of the paper is organized as follows. Section 2

describes the policy background of SO2 emissions charge

standard adjustment. Section 3 introduces the methodology

and describes the data. Section 4 shows and discusses the

results. Section 5 presents the conclusions and

recommendations.

2 Policy backgroud

Pledging to achieve the 2030 vision (environmental issues

are handled in an inclusive, sustainable and coherent manner

through integrated policy and effective norms and institutions

at all levels of governance), UNEP is committed to help

countries to implement the environmental dimension of the

2030 Agenda, and will work to ensure that national and sector-

based laws, standards, policies and plans on chemicals, waste

management and air quality are fully grounded in the best-

available science and technology (MEDIUM TERM

STRATEGY 2018–2021, Published by United Nations

Environment Programme (UNEP), May 2016).

In cooperation with the UNEP 2030, China sets a long-term

goal of building a green and eco-friendly country, and has applied

the policy of saving resources and protecting the environment to be

a national policy mandate. The energy consumption per unit of

GDP (a binding index) has been written into the national

economic and social development plans consecutively from

the 11th 5-year plan to 13th 5-year plan. In addition, Chinese

government has also issued some planning and other special

documents, such as “the strategic action plan for energy

development (2014–2020)”, “the revolutionary strategy for

energy production and consumption (2016–2030)”, “the action

plan for energy technology revolution and innovation

(2016–2030)”, and “the 13th 5-year plan for renewable energy

development”.

To achieve the dual target of energy conservation and

emission reduction, and to induce the enterprises to reduce

pollutant emissions and protect the ecological environment,

the government has issued the relevant policy notifications

such as “adjusting the collection standard of sewage charges”

over time. In particular, the “Administrative measures for

collection standards of sewage charges” [(2003) No.31] was

promulgated on 28 February 2003 and took effect on 1 July

2003. It clarified the collection standard and set the calculation

method of waste gas discharge fee, according to the type and

quantity of pollutants discharged by the polluter. Specifically,

the standard of SO2 emissions charge was set at 0.6 yuan per

FIGURE 1
Analysis ideas for the relationship between policy adjustment of SO2 emissions charge standard (PSC) and the growth of green total factor
productivity (GGTFP).
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pollution equivalent from 1 July 2005. Hence, we choose

2006 as the starting point of the data for analysis. A decade

later, the policy of SO2 emissions charge standard was changed

into an environmental protection tax, and “Environmental

protection tax law of the People’s Republic of China” took effect

from 1 January 2018. Hence, we choose 2017 as the ending

point of the data for this study. Based on the document of

“Notice on adjusting the collection standard of sewage charges”

[(2014) No. 2008], different cities began to adjust the standard

of the SO2 emissions charge during the period of 2006–2017.

Since the cities were affected by policies in different time and

areas, it constituted a natural experiment to analyze the impact

of environmental charge system reform on urban environment

and resource efficiency. Specifically, the analysis involved how

the standard adjustment of the SO2 emissions charge affected

the enterprise production process and then affected the

GGTFP. The adjustment of SO2 emissions charge standards

in different provinces of China is described in Table 1, with the

implementation time point and corresponding specific

implementation standards indicated.

Data sources: The data of Table 1 are from official websites of

provincial governments, such as The provincial development and

Reform Commission, The provincial finance department (Finance

Bureau), The Provincial Ecological Environment Department

(Provincial Environmental Protection Department), The

provincial Price Bureau, the tax bureau, The provincial

economic and Trade Commission, and The general office of the

provincial government. The data are collected and complied by

authors.

3 Methodology and data

Since the policy adjustment of SO2 emission has happened

in different time and areas, it offered the natural experimental

evidence to analyze the impact of policy reform on

TABLE 1 The adjustment of SO2 emissions charge standards in different provinces of China. (The unit of data in Table 1: yuan/pollution equivalent,
0.63 yuan/kg = 0.60 yuan/pollution equivalent).

Province Standard before
adjustment

Cost
adjustment
time

Standard after
adjustment

Province Standard before
adjustment

Cost
adjustment
time

Standard after
adjustment

Anhui 0.60 2008.1.1 0.8 Heilongjiang 0.60 2012.7.1 1.20

2009.1.1 1.0 Beijing 0.60 2014.1.1 9.50

2010.1.1 1.20 Ningxia 0.60 2014.3.1 1.20

2015.7.1 1.20 Zhejiang 0.60 2014.4.1 1.20

Jiangsu 0.60 2007.1.1 1.20 Fujian 0.60 2015.1.1 1.20

2016.1.1 3.60 Chongqing 0.60 2015.2.1 1.20

2018.1.1 4.8 Shanxi 0.60 2015.6.1 1.20

Hebei 0.60 2008.7.1 0.96 Hunan 0.60 2015.6.30 1.20

2009.7.1 1.20 Sichuan 0.60 2015.7.1 1.20

2015.1.1 2.4 Hubei 0.60 2015.7.1 1.20

2017.1.1 4.8 Shanxi 0.60 2015.6.1 1.20

2020.1.1 6.0 Jilin 0.60 2015.7.1 1.20

Shandong 0.60 2008.7.1 1.20 Henan 0.60 2015.7.1 1.20

2015.10.1 3.0 Gansu 0.60 2015.7.1 1.20

2017.1.1 6.0 Qinghai 0.60 2015.7.1 1.20

Inner
Mongolia

0.60 2008.7.10 0.90 Hainan 0.60 2015.7.1 1.20

2009.1.1 1.20 Shaanxi 0.60 2015.7.1 1.20

Guangxi 0.60 2009.1.1 0.90 Jiangxi 0.60 2015.10.26 1.20

2010.1.1 1.20 Guizhou 0.60 2016.1.1 1.20

2015.7.1 1.20 Liaoning 0.60 2010.8.1 1.20

Shanghai 0.60 2009.1.1 1.20 2015.7.1 1.20

2018.1.1 6.65 Yunnan 0.60 2009.1.1 0.90

2019.1.1 7.60 2010.1.1 1.20

Guangdong 0.60 2010.4.1 1.20 2015.7.1 1.20

2016.1.1 1.20 Tianjin 0.60 2010.12.20 1.20

Xinjiang 0.60 2012.8.1 1.20 2014.7.1 6.00

2015.7.1 1.20
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environment and resource efficiency. Therefore, using panel

data of 280 cities in China from 2006 to 2017 and difference-

in-differences (DID) model (Jia et al., 2021; Zhang and Wang,

2021), we examine the policy adjustment effect of SO2

emissions charge standard on the GGTFP (Huang et al.,

2022; Wang et al., 2020; Liu and Luo, 2022). The

estimation model is set as follows:

GGTFPit � β0 + β1PSCit + βzZit + ui + πt + εit (1)

Where cities are indexed by i (i = 1,2,3 . . . , N.) and time

periods are indexed by t (t = 1,2,3 . . . , T.). The dependent

variable, GGTFPit is the growth rate of green total factor

productivity of city i in period t, indicating the change of

resource allocation efficiency (Huang et al., 2022; Wang et al.,

2020; Lee and Lee, 2022; Zhang, JX et al., 2021; Fang et al.,

2021; Pei L and Zhengmao L, 2022; Liu and Luo, 2022); PSCit

is the core explanatory variable, representing the policy

adjustment effect of SO2 emissions charge standard of city i

in period t, such that if city i adjusts the standard of the SO2

emissions charge in a certain t year for the first time, then the

PSCit = 1 in year t and later years, otherwise PSCit = 0. If the

policy becomes effective before July 1st, the current year will

be included in the policy implementation year; if the policy

occurs after July 1st, the current year will not be included, and

the next year and subsequent years will be included in the

policy implementation years. Zit is a vector of control

variables, which are shown in Table 2. ui , πt , εit
represented the unobserved city random effect, time

random effect and the i. i.d disturbance term, respectively.

And the Hausmann test analysis indicated that the individual

fixed effect model is more suitable than random effect model

for panel estimation here.

This paper uses the method of SBM directional distance

function and Luenberger function (Pei L and Zhengmao L,

2022; Fare et al., 1994; Fare et al., 2007; Fare and Grosskopf,

2010; Caves et al., 1982.) to measure and calculate the green

total factor productivity of 280 cities from 2006 to 2017 in

China. It is a factor input-output production function model

commonly used to measure the growth of green total factor

productivity (Lee and Lee, 2022; Zhang, JX et al., 2021; Fang

et al., 2021; Pei L and Zhengmao L, 2022), which is essentially

designed to capture the changes in resource efficiency (Huang

et al., 2022; Wang et al., 2020). The method is as follows.

In the model, it is assumed that city K uses N kinds of

elements as inputs X, X � (x1, x2, x3,/xN) ∈ R+
N, and produces

M kinds of “good” outputs Y, Y � (y1, y2, y3,/yM) ∈ R+
N, as

well as I types of “bad” outputs B, B � (b1, b2, b3,/bI) ∈ R+
N. The

input and output set of city K are (xt,k, yt,k, bt,k), when the

corresponding production possibility set meets the basic

assumptions. The DEA data envelopment method is used to

set the model as follows:

Pt(xt) � (yt, bt):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑K
k�1

ztky
t
km ≥yt

k
′
i
, ∀m

∑K
k�1

ztkx
t
kn ≥x

t

k
′
i
,∀n

∑K
k�1

ztkb
t
ki ≥ bt

k
′
i
,∀i

∑K
k�1

ztk � 1, ztk ≥ 0,∀k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

where ztk represents the weight of each cross-sectional

observation of the model. If ∑K
k�1ztk � 1 and ztk ≥ 0, this

means that the production technology is variable return

to scale (VRS). If ztk ≥ 0, this means constant return to

scale (CRS). This paper assumes VRS in the production

process.

In this paper, the global SBM directional distance function

and the Luenberger productivity index model (Pei L and

Zhengmao L, 2022; Yang et al., 2019) is used; the specific

method is as follows:

SGV(xt,k, yt,k, bt,k, gx, gy, gb)

� maxsxsysb

1
N∑N

n�1
sxn
gxn
+ 1

M+I(∑M
m�1

sym
gym

+ ∑I
i�1

sbi
gbi
)

2
(3)

TABLE 2 The description and measurement of control variables.

Variable name Variable
name and meaning

Industry The ratio of urban tertiary industry output value to secondary industry output value

ln_ Expenditure Ln of Expenditure on science and technology of the region (/Ten thousand yuan)

ln_ Density Ln of Urban population density (person/km2)

ln _Road Ln of Residential road area (m2/person)

ln_ GDP Ln of Urban per capita GDP (/yuan)

ln_ FDI Ln of foreign direct investment (/Ten thousand yuan)
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s.t.∑T
t�1
∑K
k�1

ztkx
t
kn + sxn � xt

k
′
n
,∀n; ∑T

t�1
∑K
k�1

ztky
t
km − sym � yt

k
′
m
, ∀m

s.t.∑T
t�1
∑K
k�1

ztkb
t
ki − sbi � bt

k
′
i
,∀i

s.t.∑K
k�1

ztk � 1, ztk ≥ 0,∀k; sxn ≥ 0,∀n; sym ≥ 0,∀m; sbi ≥ 0,∀i

GGTFPt+1
t � 1

2
{[StC(xt, yt, bt: g) − StC(xt+1, yt+1, bt+1: g)]
+ [St+1C (xt, yt, bt: g) − St+1C (xt+1, yt+1, bt+1: g)] }

(4)
In the above, xt,k, yt,k, and bt,k, respectively, represent the

input of resource elements, “good” output and “bad” output of

city K in T period. Then, gx, gy, and gb, respectively, represent

the direction vectors of input reduction, “good” output increase,

and “bad” output decrease. Finally, sxn , s
y
m, and sbi , respectively,

represent the slack vectors of input, “good” output and “bad”

output; that is, the quantities of excessive input, insufficient

“good” output and excessive “bad” output. If sxn , s
y
m, sbi are all

positive, this means that the actual input sxn is greater than the

boundary input, the actual good output sym is less than the

boundary output, and the actual bad output sbi is greater than

the boundary output (Wang et al., 2010; Yang et al., 2015; Yang

et al., 2019). Figure 2 is the measure method for the growth level

of green total factor productivity growth.

To calculate the growth of green total factor productivity, we

need to consider the “input factor” of production function and

the “good output and bad output”. In this paper, the “input

factor” covers four factors of production (capital, labor, energy,

land), and the “output factor” includes “the good output” (urban

GDP (/yuan)) and “the bad output” (industrial wastes: SO2

emissions, smoke emission, waste-water discharge) (Liu and

Luo, 2022). The specific indicators are as follows: 1) Capital

investment is represented by fixed assets investment in the city

(Ten thousand yuan); 2) Labor is represented by the number of

unit employees at the end of the year (Ten thousand people) in

the city; 3) Energy input is represented by the main energy

consumption in the city, which includes the urban liquefied

petroleum gas (LPG) (t), natural gas (m3), and electricity

consumption (kwh). We calculate the heat generated from

energy consumption according to the conversion coefficient to

obtain the heat data (kJ). The conversion coefficient: LPG

(50,179 kJ/kg, 1t = 1,000 kg), and Natural gas

(32,238–38931 kJ/m3). The average value of natural gas is

35,584.5 kJ/m3, electricity consumption (3600kj/kwh). The

energy conversion coefficient table is in China energy

statistical yearbook 2018; 4) the investment of land resources

elements is measured by urban construction area (km2).

The policy adjustment variable of SO2 emissions charge

standard is the core explanatory variable, the policy coefficient

β1 reflects the impact of policy adjustment of SO2 emissions

charge standard (PSC) on the GGTFP. By construction, if the

coefficient β1 > 0, the improvement of pollution charge

standard is conducive to boosting the GGTFP; if the

coefficient β1 < 0, the improvement of pollution charge

standard is not conducive to increasing the GGTFP. The

control variables and their specification are shown in

Table 2. The summary statistics of explanatory and control

variables are shown in Table 3.

Figure 3 displays the kernel density distribution of GGTFP

in experiment group and control group. The

GGTFP_psc1 stands for the kernel density estimation

of GGTFP in experiment group (The cities that the

policy of SO2 emissions charge standard had been adjusted,

then PCS = 1); the GGTFP_psc0 stands for the kernel density

estimation of control group (cities that the policy of SO2

emissions charge standard had not been adjusted, then

FIGURE 2
Measure method for the growth level of green total factor productivity.
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PSC = 0), and the GGTFP stands for the kernel

density estimation of total sample cities. It appears that

the skewness of GGTFP_psc1 is in the right of GGTFP and

GGTFP_psc0, and the Kurtosis of GGTFP_psc0 is

lower than other two curves. This suggests that the average

level of GGTFP in experiment group is higher than

control group due to the policy adjustment of

SO2 emissions charge standard, but the degree of

concentration around mean value of curve is higher in

control group.

4 Empirical results

Table 4 shows the impact of policy adjustment of SO2

emissions charge standard on GGTFP. Eqs (1–3) in Table 4 are

the baseline results without control variables, and Eq (4) in

Table 4 are the results that include control variables. The result

of Eq (6) in Table 4 showed that the policy adjustment of SO2

emissions charge standard has significant effects on the

GGTFP. Specifically, the coefficient of PSC in Eq (4) is

0.0356 and significant at 1% level, and the corresponding

coefficients in other columns also show similar influence.

Thus it can be concluded that the improvement of SO2

emissions charge standard can reduced SO2 emissions

(emission from the oil, coal, or other energy), and increased

the GGTFP of the city.

The lag period coefficient of PSC in Eqs (5–6) in Table 4 is

significant at 1% level (PSC_1 = 0.0428; PSC_2 = 0.0489,

respectively). The lag period policy coefficient can be regarded

as reflecting the time delayed impact of SO2 emissions charge

standard adjustment on the GGTFP. It indicated that the

environmental pollution charge may appear to have a positive

long-time effect on the GGTFP. The possible theoretical

mechanism and reasons for the results are as follows: The

increase of SO2 emissions charge standard raise the pollution

TABLE 3 Summary statistics of explanatory and control variables.

Sstats GGTFP Industry Ln_expenditure Ln_ density Ln _road Ln_ GDP Ln_ Fdi

Mean 0.0158 0.9882 9.6327 6.4664 2.2455 12.4726 9.0695

Observation 3,360 3,360 3,360 3,360 3,360 3,360 3,360

Max 0.7607 3.5280 13.8716 8.3733 3.5942 13.6348 13.715

Min −0.6764 0.1563 5.6937 3.6579 0.2390 11.0650 3.4965

Var 0.0399 0.3210 2.3057 0.8555 0.3436 0.2576 3.7573

Cv 12.6001 0.5733 0.1576 0.1430 0.2610 0.4006 0.2137

Note: To avoid the unduly influence of outliers, the data are processed by winsor2.

FIGURE 3
The kernel density distribution of GGTFP in experiment group and control group.
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emission cost and production cost for enterprises, prompting

the enterprises to carry out industrial restructuring,

technological innovation, and production facility

transformations in order to reduce the emission cost of SO2.

These actions and strategies taken by enterprises lead to

improvement of the environmental and economic efficiency,

and the increase in the GGTFP.

5 Robustness test

As mentioned above, the paper analyses the policy effect

using the DID method, which requires that the change trend of

the treatment group to be consistent with that of the control

group. Here we conduct the parallel trend test to check the

validity of this research methodology. The parallel trend test

involves advancing the policy implementation year by 1 year

(psc_1), 2 years (psc_2), 3 years (psc_3), etc. And delaying its

implementation year by 1 year (psc1), 2 years (psc2) and 3 years

(psc3), etc. Specifically, here we add 9 advance years (from

psc_1 to psc_9) and 9 delay years (from psc1 to psc9) into the

estimation equation to investigate the policy effect before and

after the implementation year. The counterfactual results based

on Eq (4) in Table 4 are presented in Figure 4.

Figure 4 shows that the change trend of the test group was

consistent with the control group before the year of policy

TABLE 4 The impact of environmental charge system reform on the GGTFP.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PSC 0.0404*** 0.0195 0.0327*** 0.0356*** 0.0183 0.0315*** 0.0259*

(5.74) (1.64) (3.27) (3.83) (1.46) (2.82) (1.92)

PSC_1 0.0322*** 0.0428*** 0.0318** 0.0116

(2.69) (4.35) (2.56) (0.74)

PSC_2 0.0404*** 0.0489*** 0.0412*** 0.0359***

(3.89) (4.55) (3.72) (2.71)

Control variables NO NO NO YES YES YES YES YES YES

Time fixed effect NO NO NO NO NO NO NO NO NO

Individual Fixed effect YES YES YES YES YES YES YES YES YES

Constant −0.0038 −0.0070 −0.0162** −0.0624 0.0843 0.0471 0.1459 0.2306 0.2416

(−0.84) (−1.33) (−2.56) (−0.31) (0.39) (0.19) (0.66) (0.91) (0.95)

Observations 3,360 3,080 2,800 3,360 3,080 2,800 3,080 2,800 2,800

R-squared 0.011 0.014 0.019 0.015 0.019 0.023 0.020 0.026 0.026

Number of dmu 280 280 280 280 280 280 280 280 280

Note: The Hausmann test found that the individual fixed effect model is suitable. t-statistics in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. The PSC_1 and the PSC_2 represent the lag

periods of policy variable. The results of control variables are not listed to save space.

FIGURE 4
The estimated coefficients in Parallel trend test.
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implementation from psc_1 to psc_9, and the estimated

coefficients of PSC fluctuate around the ordinate 0. This

indicates that there is no significant difference or systematic

error between the test group and the control group before

implementation of the policy. Hence, the equilibrium trend

condition is satisfied, the test group exhibits parallel trend

with the control group. But in the later years following policy

implementation, the estimated coefficients have a significant

upward trend, indicating that the policy can promote the

GGTFP.

The core idea of Propensity Score Matching estimation

(PSM) is to identify a group of cities that didn’t implement

the policy (S O 2 emissions charge standard had not been adjusted)

but have same propensity score with cities that implement the

policy (S O 2 emissions charge standard had been adjusted).

Because the two group share similar characteristics (the

characteristics of control variables in Table 1) except the policy

implementation, the difference on the GGTFP between the two

groups can be interpreted as the effect of the policy

implementation.

The methodology of propensity score matching (Zhang Y J

and Wang W,2021; Heckman et al., 1999) is set as follows:

GGTFP � DpGGTFP1 + (1 −D)pGGTFP0

P(X) � probit[D � 1 |X ] � E[D|X ] � φ(X) ; φ(X) is for

iidATT = E [ GGTFP1 − GGTFP0 |D � 1]

= { E[GGTFP1 − GGTFP0 |D � 1 , P(X)]} = E

{ E[GGTFP1|D � 1, P(X)] − E[GGTFP0|D � 0, P(X)] } As
shown above, if PSC = 1, then GGTFP � GGTFP1 ; if PSC = 0,

then. GGTFP � GGTFP0

And if PSC = 1, then D = 1; if PSC = 0, then D = 0.

Using PSM method and the nearest neighbors matching

method, each observation value in test group cities (The policy

of S O 2 emissions charge standard had been adjusted) (D = PSC =

1) was matched with the observation value with similar

propensity score in the control group cities (The policy of S O

2 emissions charge standard had not been adjusted) (D = PSC = 0).

P(X) (Propensity score) is the conditional probability of accepting
intervention under given conditions, as well as the probability of

the policy adjustment of SO2 emissions charge standard. The

result of propensity score matching was shown in Table 5, and

the estimation results of propensity score matching are shown in

Table 6.

The estimation results of propensity score matching in

Table 6 indicated that the coefficient difference of policy effect

between treated and control group on ATT is 0.0373 (t = 2.64,

The results are significant), which is similar to the results in Eq (4)

from Table 4 (where the coefficient of PSC is 0.0356). Table 7 is a

repeated test (500 iteration) of the PSM results, which converged

to the same results on ATT as before.

All of the above results support and reinforce reliability of

results, that is, the policy adjustment of SO2 emissions charge

standard can effectively promote the GGTFP. In order to check

the reliability for the PSM method, we also use the method of

bias-corrected matching estimator, the results are similar to PSM

method, so it is reliable.

6 The time period effect of policy

To explore the nonlinear relation between the time period of

policy implementation and the GGTFP, we modify the initial

TABLE 5 The results of propensity score matching.

psmatch2:
Treatment assignment

psmatch2: Common support Total

Off support On support

Untreated 84 1,638 1722

Treated 14 1,624 1,638

Total 98 3,262 3,360

TABLE 6 The results of propensity score matching estimation.

Variable Sample Treated Controls Difference S.E T-stat

GGTFP Unmatched 0.0304 0.0020 0.0284 0.0068 4.13

ATT 0.0318 −0.0054 0.0373 0.0141 2.64

ATU 0.0017 −0.0218 −0.0236 —— ——

ATE —— —— 0.0067 —— ——
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estimation equation (Eq (1) in 3.1 model specification). The

revised estimation equation is set as follows:

GGTFPit � β0 + β1PSC timeit + β2PSC time2it

+ β3PSC time3it + βzZit + ui + πt + εit (5)

And psc_time2 = psc_time*psc_time (square term);

And psc_time3 = psc_time*psc_time*psc_time (cubic term);

The psc_time stands for the time period effect of SO2

emissions charge standard adjustment on urban GGTFP. For

example, if the value of psc_time is 1, it stands for the first year

of policy implementation, and if the value of psc_time is 2, it

stands for the second year of policy implementation, and etc.

And the psc_time2 and psc_time3 represent the square and

cubic term of psc_time respectively. The other variables are

same as Eq (1) in 3.1 model specification.

The results in Table 8 indicated that the policy adjustment

of SO2 emissions charge standard had significant time period

effect on the GGTFP, with the estimated coefficients

significant at 1% level to confirm the presence of the

nonlinear relationship. As shown by the coefficients of

cubic function (0.0380, −0.0092, 0.0007) in Eq (3) of

Table 8, the short-term policy effect on total factor

productivity growth is positive, the intermediate effect turns

negative, and the effect at last turns positive again. In other

word, there was an “N” relationship between the policy time

period and the GGTFP.

The plausible theoretical mechanism and reasons of the

“N” relationship between the time period of policy

implementation and the GGTFP could be as follows. In the

initial year of the policy adjustment of SO2 emissions charge

standard, due to the higher emission cost and penalty from

SO2 emissions, enterprises actively carry out industrial

restructuring, and production facilities transformation,

which will effectively improve the growth level of green

total factor productivity. But in the later stage, the

enthusiasm and motivation for enterprise to enhance green

production is reduced due to the decline of policy restraint

ability, causing a slow decline on green total factor

productivity. At last stage, under the pressure of enterprise

survival, the enterprises will ultimately have to improve the

environmental and economic efficiency to meet the social new

requirements, thus forming an “N” relationship.

7 The intensity effect of policy

We investigated a possible nonlinear relation between the

intensity of SO2 emissions charge and the GGTFP. The

estimation equation is set as follows:

TABLE 7 Using self _help method to get standard error in propensity score matching/repeat 500 times.

Observed coef Bootstrap std.
Err

Z p > |Z| Normal-based [95%
conf. Interval]

r (ATT) 0.0373 0.0171 2.18 0.029 0.0037 0.0709

r (ATU) −0.0236 0.0128 −1.84 0.066 −0.0487 0.0015

r (ATE) 0.0067 0.0115 0.58 0.559 −0.0158 0.0293

TABLE 8 The time period effect of policy adjustment of SO2 emissions
charge standard.

(1) (2) (3)

psc_time 0.0103*** 0.0077* 0.0380***

(5.68) (1.84) (4.89)

psc_time2 0.0003 −0.0092***

(0.71) (−4.37)

psc_time3 0.0007***

(4.61)

Control variables YES YES YES

Time fixed effect NO NO NO

Individual Fixed effect YES YES YES

Observations 3,360 3,360 3,360

R-squared 0.021 0.021 0.028

Number of dmu 280 280 280

Note: The psc_time2 and psc_time3 represent the square and cubic terms of psc_time

respectively.

TABLE 9 The intensity effect of SO2 emissions charge.

(1) (2) (3)

psc_charge 0.0213*** 0.0667*** 0.0614**

(3.75) (4.32) (2.42)

psc_charge2 −0.0068*** −0.0049

(−3.16) (−0.65)

psc_charge3 −0.0002

(−0.26)

Control variables YES YES YES

Time fixed effect NO NO NO

Individual Fixed effect YES YES YES

Observations 3,360 3,360 3,360

R-squared 0.015 0.018 0.018

Number of dmu 280 280 280
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GGTFPit � β0 + β1PSC chargeit + β2PSC charge2it

+ β3PSC charge3it + βzZit + ui + πt + εit (6)

And psc_charge2 = psc_charge*psc_charge;

And psc_charge3 = psc_charge*psc_charge*psc_charge.

The psc_charge stands for the intensity effect of SO2

emissions charge, i.e. if the SO2 emissions charge standard

before adjustment in Table 1 is 0.60, then psc_charge = 0.60.;

if the standard after adjustment in Table 1 is 1.20, then

psc_charge = 1.20, using the difference of the emission charge

standard to show the intensity effect. And the psc_charge2 and

psc_charge3 represent the square and cubic terms of psc_charge

respectively. The others variables are same as in Eq (1) on

Table 9.

The result of Eq (3) on Table 9 showed that the intensity

effect of SO2 emissions charge has significant effects on the

growth of green total factor productivity, and there is a

nonlinear square term relationship between them, but

psc_charge3 is not significant. According to the coefficients of

square function (psc_charge = 0.0667, psc_charge2 = −0.0068) in

Eq (2) on Table 9, the short-term effect between the intensity of

SO2 emissions charge and total factor productivity growth is

positive, but the long-term effect is negative, so there may be an

“Inverted-U″ relationship between the intensity effect and the

GGTFP.

Initially, when facing a hike of SO2 emissions charge,

enterprises are pushed and motivated to carry out industrial

restructuring, production facilities transformation, and

technological innovation, which may enhance the GGTFP.

But if the level and intensity of SO2 emissions charge continue

to rise, it will make current operation not profitable or firms

was experiencing diminishing returns due to the increase of

cost in production, causing the reduction of

production efficiency, which will lead to an “Inverted-U″
relationship between emission charge intensity and

productivity growth (a positive prime effect firstly, negative

effect in later period).

8 Conclusion and policy implication

This paper uses the panel data of 280 cities in China from

2006 to 2017, and the DID model to examine the relationship

between the policy adjustment of SO2 emissions charge standard

and the GGTFP, and it also examined the time period effect of

policy implementation, and the intensity effect of SO2 emissions

charge on the GGTFP. The findings are as follows:

(1) The improvement of SO2 emissions charge standard has

significant effects on the GGTFP. It indicated that the

improvement of SO2 emissions charge standard can

reduce SO2 emissions in production process, and it can

induce the enterprises to embrace and act on the concept

of green development in production process, resulting in the

growth of green total factor productivity. (2) There appears

to be an “N” relationship between the policy time period of

policy implementation and the GGTFP. That is, the policy

adjustment of SO2 emissions charge standard firstly has a

positive effect on the growth of total factor productivity,

negative effect in a later time, and eventually exhibits a

positive effect again. (3) There also appears to be an

“Inverted-U″ relationship between the policy intensity of

SO2 emissions charge standard and green total factor

productivity growth. That is, the policy intensity has a

positive effect on productivity growth in a short-term but

negative effect in a long-term.

Based on the above findings, some policy implications and

recommendations are as follows:

Firstly, the evidence showed that the environmental pollution

charge reform is conducive to resource efficiency and the

GGTFP, which implies that there is room for market-oriented

policy measure for policy makers to adopt for the development of

high-quality economic and environmental protection. Instead of

imposing outright restrictions by laws and regulations, policy

maker can formulate a pricing strategy (such as an optional

shadow price of pollution charge) to elicit behavioral response by

enterprises for desirable environmental outcome, which may be

more effective in market than direct government action.

Secondly, the policy time period and policy intensity are

necessary factors to be considered in policy implementation and

effect evaluation. The “N” relationship pattern in the time and

“Inverted-U″ relationship in the intensity informed us that there

was a best policy time or policy intensity choose to make full use

of the policy effect, and the policy of pollution emission charge

should be timely adjusted according to the effect in different time

stage or in a different policy intensity.

Thirdly, with great regional differences, governments should

adopt suitable and differentiated pollution emission charge

measures in different area to maximize the policy effect and

the GGTFP level according to the characteristics of enterprises at

different stages of development. Besides, it is advised to consider

their specific local economic situation and industry structure in

different cities to set the differentiated emission charge standard,

which will ensure the process successfully for environmental

protection and sustainable development.

Recommendations for future study is that we need tomore focus

on the policy change of pollution emission charge, emission trading,

shadow prices of SO2 emission and so on in the background of

carbon peak and carbon neutralization, and we also need to analysis

the influence of these policy on the low-carbon and environmental-

friendly production, the transformation of industrial structure, eco-

economic efficiency, climate change, and the high-quality

development in the future from different perspective, so as to set

amore suitable policy pattern and policy intensity by the regional and

temporal differences. The limitation of our study is that it only pays
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attention to the urban level from the macro perspectives, and it lacks

the analysis of micro enterprises, because the enterprises of different

industries or sizes may show different reactions when the external

environment policy come to change.
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