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Optimizing the structure of land use is essential to the low-carbon sustainable

development of a region. This article takes Chengdu, a typical western China

city, as the case study. First, carbon emission coefficients of land use are used to

calculate the carbon emissions. Then, based on multi-objective linear

programming (MOP), economic development priority scenario (S1), low-

carbon economic development scenario (S2), and strengthening low-carbon

economic scenario (S3) are proposed. Finally, the future land use simulation

(FLUS) model is used to predict the spatial layout of land use under the three

scenarios. The result shows that from 1990 to 2020, the carbon emissions

increased by 7,617.61 thousand tons, with an annual growth rate of 3.75%. The

main difference among the three scenarios is the occupied degree of farmland

caused by the expansion of construction land, and the potential carbon

reduction is 969.72 (5.2%), 2414.31 (13.1%), and 3878.89 tons (21.0%) in S1,

S2, and S3, respectively. The FLUS model shows that conversion mainly occurs

around the urban built-up area of Chengdu. This research can provide planning

suggestions for the low-carbon development of Chengdu and a reference for

other regions.
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1 Introduction

The focus on global warming caused by carbon emissions from human activities is

growing (Wei et al., 2022). In response to climate change, in 2016, 197 countries signed

the “Paris agreement.” It aspires to drastically decrease global greenhouse gas emissions

and limit global temperature rise to less than 2°C this century, while pursuing further steps

to limit temperature rise to less than 1.5°C (United Nations 2015). At present, more than

75% of the earth’s land surface has been affected by human development because of the
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rapid development of urbanization (Ellis and Ramankutty 2008).

Among them, land use/cover changes (LUCCs) caused by human

activities are the most direct influencing factors of terrestrial and

atmospheric carbon cycles, and the impact of land use on carbon

storage in terrestrial ecosystems depends on changes in

ecosystem types and land use patterns (Chang et al., 2022).

The IPCC report states that from 2007–2016, land use and

related activities account for about 13% of CO2 emissions,

44% of methane (CH4) emissions, 81% of nitrous oxide (N2O)

emissions, and 23% of the total net anthropogenic GHG

emissions (IPCC 2019).

A low-carbon economic land use model is advocated to

achieve harmonious growth and a win–win situation for the

environment, society, and economy. (Dale 1997; Popp et al.,

2014). There are twomain relationships between land use and the

carbon cycle. Land use can be regarded as the carbon source or

carbon sink, depending on whether there is net carbon emission

or net carbon absorption (Mendelsohn and Dinar 2009; Kaplan

et al., 2012; Chang et al., 2022). The research on land use carbon

emissions and land use structure optimization has achieved

many remarkable research results, and relevant cases have also

proved that the transformation of land use can effectively achieve

carbon emission reduction (Han et al., 2019; Wei and Duan.

2021). However, there are still some limitation in relevant studies.

First, many previous studies focused on the analysis and

calculation of the effect of land carbon emissions and had

considered how to make optimized land use structure to meet

carbon emission reduction goals, but less to ensure the economic

benefits of land use. Second, in terms of introducing the concept

of low-carbon land to optimize the land use structure, the

majority of studies only adjust and optimize the quantitative

structure of land use in the study area for some time in the future,

and lack of discussion on the regional spatial layout of the

adjusted land use structure.

Therefore, according to the requirements of low-carbon

economic development, this article has two main objectives: 1)

To establish a multi-objective land use optimization model that

integrates carbon emission reduction and economic benefits. 2)

Using the land use simulation model to simulate the spatial

optimization of regional land use spatial layout (He Fei et al.,

2022) and then provide ideas and directions for the low-carbon

regulation of regional land use. This study has an important

theoretical and practical significance in exploring the potential of

carbon emission reduction in optimizing the quantitative

structure and spatial layout of regional land use.

2 Literature review

The effect of LUCC on carbon emissions was widely explored

(Mendelsohn and Dinar 2009; Kaplan et al., 2012; Popp et al.,

2014). Houghton and Hackler (1999) did a study on carbon

emissions from land use change in tropical Asia. They found that

approximately 75% of the region’s total carbon are from LUCC in

the 1980s. Forest and grassland are generally thought of as the

source of carbon sinks in a region (Yang Linchuan et al., 2021).

One of the evidence is from Asner et al., ( 2010). The authors

studied the carbon emissions and carbon absorption in Amazon

Rainforest and found that from 1999 to 2009, forest degradation

alone increased regional carbon emissions by 47%, with

secondary forest growth offsetting 18% of total emissions.

Grassland covers approximately 25% of the earth’s land

surface and contains roughly 12% of the terrestrial carbon

stocks. Unlike forests, grasslands are dominated by herbaceous

plants, and the carbon of aboveground vegetation accounts for

only a small part of the carbon pool of the whole ecosystem

(Adams et al., 1990; Ojima et al., 1993). While construction land

and farmland are regarded as the main carbon source of land use

(Sullivan 2010), carbon emission intensity of construction land is

hundreds of times that of farmland (Lai et al., 2016).

Previous research mainly focused on the impact of LUCC

on the carbon cycle. With the increasingly serious

environmental problems such as global warming, many

scholars have turned to optimizing the structural and

spatial layout of land use to achieve low-carbon land use.

For example, Han et al. (2019) predicted the optimization

structure of land use in Shenzhen in 2020 and 2025 under

different carbon emission goals, based on a multi-objective

linear programming (MOP) model. Mohammady et al.

(2018). predicted the low-carbon land use structure of the

Bagsariya Basin in Iran in 2030 based on the CLUE⁃S model.

In addition, some scholars conducted spatial structure

simulations of low-carbon land use based on other models

such as the GeoSUS-FLUS model (Cao et al., 2019), the

GEOMOD model (Pontius et al., 2001), and the AGENT

model (Millington et al., 2011).

China’s economy has grown significantly over the last

several decades, and it is now the world’s biggest developing

country and second-largest economy. (Wang and Cao 2021;

Dotsey et al., 2022). Environmental issues exacerbated by

China’s fast urbanization and industrialization have

garnered increasing attention (Zhang et al., 2020; Zhang

et al., 2022). China is attempting to strike a balance

between ecological environment protection and economic

expansion (Wang and Jiang 2019; Wu et al., 2019; Yang

et al., 2020a; Yang et al., 2020b). Recently, land use-related

carbon emissions has become a research hotspot. For large

developed cities in eastern China, such as Beijing, Shanghai,

and Shenzhen, as well as for particular economically

developed regions, such as the Beijing–Tianjin–Hebei, the

Pearl River Delta, and the Yangtze River Delta urban

agglomeration, many previous studies have examined

carbon emissions linked to LUCC, and the result shows

that optimizing land use structure is an effective means to

reduce carbon emissions (Li et al., 2013; Fang and Zhao 2018;

Han et al., 2019; Yu et al., 2021). However, there has been little
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study on western China’s developing and relatively

undeveloped cities and areas, where there are significant

differences from eastern cities and areas in terms of

landform, climate, and social and economic background

(Yang et al., 2019; Nie et al., 2021).

It is necessary to carry out more studies associated with the

carbon emissions of LUCC in these western cities (Nie et al.,

2021). This article takes Chengdu, the largest metropolis in

western China and the capital of Sichuan province, as a case

study. The city is in a period of fast industrialization and

urbanization, and the land use pattern is changing

substantially (Wei, X., Duan, L. 2021; Yang et al., 2022a;

Yang et al., 2022b). As the first proposed park city and a

low-carbon pilot city approved by the state, Chengdu is taking

the lead in laying out low-carbon industries and carrying out

carbon reduction actions in order to achieve the goal of carbon

peak and carbon neutrality. Therefore, this study focuses on

carbon emissions associated with LUCC in Chengdu to

optimize and regulate the structure and spatial layout of

low-carbon land use. This study is anticipated to offer

planning recommendations for Chengdu’s low-carbon

development that will support the achievement of carbon

peak and carbon neutrality, as well as a reference for the

low-carbon planning of other regions.

3 Methodology

3.1 Research area and data

3.1.1 Research area
As the provincial capital of Sichuan, Chengdu is situated in

southwest China’s lowlands of the Sichuan Basin, between

102°54′ and 104°53′E and 30°05′ and 31°26′N, as shown in

Figure 1. In the east and west, the terrain is high and low,

respectively. The city has an area of 14,335 square kilometers,

with a permanent population of 21.192 million. By 2021, about

79.48% of permanent populations live in 931.58 square

kilometers of urban built-up area (Zhang et al., 2020). In the

last decade, with the rapid economic and urbanization

development, Chengdu became the first in Sichuan province

and the seventh in China in terms of gross regional product

(GDP). In 2020, Chengdu achieved a GDP of 1,771.67 billion

Yuan, and the GDP per capita reached 94,622 Yuan.

However, with the rapid development of urbanization and

economy, carbon emissions in Chengdu increase promptly,

which is not beneficial to sustainable development (Chen

et al., 2020). Therefore, it is urgent for Chengdu to find a

reasonable balance between low-carbon land use and

economic development (Cui et al., 2022). Meanwhile, taking

FIGURE 1
Location of Chengdu.
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Chengdu as an example can not only provide a basis for

sustainable development and low-carbon city pilot in Sichuan

Province but also play a leading and demonstration role for other

cities in western China.

Figure 2 demonstrates the spatiotemporal change in land use

in Chengdu from 1990 to 2020. From Figure 2A, it can be seen

that farmland and construction land have an obvious change,

while other types of land use are relatively steady. The area of

farmland showed a continuous decline, whereas construction

land had constantly increased. In 1990, farmland accounted for

64.34% of the total land area and construction land accounted

8.26%. In 2020, farmland occupied a proportion of 55.30% and

construction land occupied 15.99%. Although farmland still has

the largest area among Chengdu’s land use types, construction

FIGURE 2
Spatiotemporal change of land use in Chengdu from 1990 to 2020.
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land is gradually encroaching on farmland. Figure 2B shows that

urban construction land mainly extends radially outward from

the central built-up area of Chengdu, and the surrounding

farmland is gradually occupied by the construction land.

Forest and grassland are mainly distributed in mountainous

areas with large elevation and fluctuation, and waterbody is

mainly distributed in the river network.

3.1.2 Data source
The land use data of this research are from the land use

database of Resource and Environment Sciences and Data Center

(RESDC 2022), and the classification of land use refers to (GB/T

21010-2017 2022). The socioeconomic data and energy

consumption data are extracted from the “Sichuan Statistical

Yearbook” (CBS 2022) and “China Energy Statistical Yearbook”

(NBS 2022). The carbon emission factors of fossil fuels come

from the IPCC Guidelines for National Greenhouse Gas

Inventories (Yona et al., 2020). Land use policies and

requirements refer to the Chengdu Land Use Master Plan

(2020–2035), issued by the Chengdu Municipal Bureau of

Planning and Natural Recourses (CMBPNR 2022).

3.2 Estimation of carbon emissions from
land use

Direct and indirect carbon emissions are both a part of the

carbon footprint of land use. Direct emissions refer to five

nonconstruction land’s individual direct carbon emissions

(farmland, forestland, grassland, waterbody, and unused land).

Indirect carbon emissions refer to the indirect carbon emission

generated by fossil fuel consumption on construction land. For

the convenience of calculation, this article adopts the carbon

emission coefficient of land use multiplied by the area of the

corresponding land use type to represent the carbon emissions of

the corresponding land uses. The carbon emission coefficient of

nonconstruction land can be obtained from the previous relevant

research carried out in a similar study area. The carbon emission

coefficient of construction land can be calculated by dividing the

total carbon emissions from fossil fuel consumption (natural gas,

diesel oil, kerosene oil, gasoline, fuel oil, crude oil, coke, and coal)

by the area of construction land. The calculation is described in

Eq 1,2, and the carbon emission coefficients for Chengdu’s six

different land use categories are listed in Table 1.

CT � ∑
6

i�1
Ai × Ei � Acon

i × Econ
i +∑

5

i�1
Anon

i × Enon
i , (1)

Econ
i � ∑8

j�1mj × βj × rj
Acon

i

, (2)

where CT is the total quantity of carbon emitted by land use;Ai is

the area of the land use type i; Ei is the carbon emission

coefficient of land use type i; Acon
i represents the area of the

construction land;Econ
i represents the carbon emission coefficient

of construction land; Anon
i represents the area of the

nonconstruction land use type i; Enon
i represents the carbon

emission coefficient of nonconstruction land use type i;

mj represents the consumption of fossil fuels; βj represents

the standard coal conversion coefficient; and rj represents the

carbon emission factor of fossil fuels.

3.3 Multi-objective linear programming

The optimization of land use structure is a process of

allocating the best proportion of each land type according to

the regional development goals (Dong and Wan 2019). This

article adopts multi-objective linear programming (MOP) as the

optimization model of land use structure. The principle of the

model is to set the objective function and constraints conditions,

and based on this, the optimal value of decision variables can be

calculated. In this article, six types of land use areas are used as

decision variables to build the model: farmland (X1), forest land

(X2), grassland (X3), water area (X4), construction land (X5),

and unused land (X6), and LINGO11.0, a software package for

solving mathematical problems or equations, is used to calculate

those optimal value of decision variables.

3.3.1 Objective functions
The optimization of land use structure under low-carbon

orientation should not only consider the realization of land

carbon emission reduction but also consider whether the land

use structure can meet the needs of social and economic

development. Therefore, this article sets up two objective

functions: minimizing land use emissions (Eq 3,4) and

maximizing land use economic benefits (Eq 5,6).

Minf (x)1 � ∑
6

i�1
EiXi, (3)

f (x)1 � 0.4595X1 − 0.5706 X2 − 0.0205X3 + 0.0253X4

+ 58.5423X5 − 0.005X6, (4)

where f(x)1 is the total carbon emission function, Xi is the

optimal area of land use type i, and Ei is the carbon emission

coefficient of land use type i, adopting the average value of

relevant studies.

Maxf (x)2 � ∑
6

i�1
PiXi, (5)

f (x)2 � 0.0538 + 0.055X2 + 0.3216X3 + 0.0848X4 + 7.3571X5

+ 0.0000X6,

(6)
where f(x)2 is the total economic output value; Xi is the optimal

area of land use type i; pi is the economic output coefficient of

land use type i; pi (100 Million Yuan/hm2) means the economic
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output per hectare value of the corresponding land use types i.

The economic output value of the farmland corresponds to

agriculture industry; the economic output value of the

grassland corresponds to animal husbandry; the economic

output value of the forest land corresponds to forestry; the

economic output value of the waterbody corresponds to the

fishery; and the construction land corresponds to the economic

output value of the secondary and tertiary industries.

The optimization of land use structure under low-carbon

orientation should not only consider the realization of land

carbon emission reduction but also consider whether the land

use structure can meet the needs of social and economic

development.

To comprehensively balance the carbon emission reduction

of regional economic development, this article sets up three

scenarios according to the land use decision variables:

economic development priority scenario (S1, α = 0.2), low-

carbon economic development (S2, α = 0.5), and

strengthening low-carbon economic scenario (S3, α = 0.8).

Xi � α(Xi

∣∣∣∣Minf (x)1) + (1 − α)(Xi

∣∣∣∣Maxf (x)2). (7)

3.3.2 Constraint conditions
The value of each constraint condition is determined

according to the current land use situation and future

development trend of Chengdu, as well as the requirements of

the overall land and space planning of Chengdu (2020–2035).

The restrictions of six land use types are summarized in Table 2,

and the constraint condition functions are listed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1 + X2 + X3 + X4 + X5 + X6 � 1433499.92
645074.96≤X1 ≤ 792565.92
325084.14≤X2 ≤ 377533.21
59504.31≤X3 ≤ 69104.73
22747.02≤X4 ≤ 26417.03
231905.82≤X5 ≤ 315369.98
0≤X6 ≤ 1692.71
X2 + X3 + X4 ≥ 473054.97

, (8)

where X1 is the optimal area of farmland,X2 is the optimal area of

forest land , X3 is the optimal area of grassland ,X4 is the optimal

area of waterbody , X5 is the optimal area of construction land ,

and X6 is the optimal area of unused land.

3.4 Future land use simulation model

Based on the improved CA model (Cellular automata), Liu

et al. (2017) and Cao et al. (2019) proposed the FLUS (future land

use simulation) model. The implementation of CA allocation in

the FLUS model is divided into two steps. First, artificial neural

networks (ANN) are used to train drivers such as topography,

population distribution, and road network, to assess the

probability of occurrence of land use on a specific grid cell

(Liang et al., 2018). Second, the designed adaptive inertia and

competition mechanism can reflect the competition and

interaction among various land use types, so it can simulate

transformation land uses (Liu et al., 2017). The model can better

solve the uncertainty and complexity problems caused by the

mutual transformation of land use types under the joint action of

natural and human activities and can more accurately meet the

actual simulation requirements and results (Cao et al., 2019).

3.4.1 Probability-of-occurrence estimation
using ANN

The ANN is used to predict the probability-of-occurrence

estimation in the FLUS model, which needs the land use data

and driving factors data (such as elevation, slope, aspect, soil erosion,

traffic map, urban distribution map, GDP, and population density)

for model training. After model training, the relationship between

the occurrence probability of different land types and the driving

factors is established, whichmeans that the probability of occurrence

of different land use type on each spatial grid cell can be predicted

according to the driving factors (Liu et al., 2017; Wang et al., 2021).

The calculation principle of ANN is shown in Figure 3 and the

following equations:

TABLE 1 Carbon emission coefficient of construction land in Chengdu.

Land use type Carbon emission
coefficient
(kg/hm2)

References Average value
(kg/hm2)

Farmland 0.422–0.497 (Zhou et al., 2017; Cai et al., 2005; Chinesestandard, 2022; Li et al., 2008; Su and
Zhang 2011)

0.4595

Forest −0.538~−0.644 (Wang et al., 2016; Zhang et al., 2020; Li et al., 2008; Su and Zhang 2011) −0.5706

Grassland −0.021~−0.0205 (Li et al., 2008; Su and Zhang 2011; Wang et al., 2016; Zhang et al., 2020) −0.0205

Waterbody −0.0248~−0.0253 Zhang et al. (2020) −0.0253

Unused land −0.005 Sun et al −0.005

Construction
land

52.603–64.731 Calculated from 1990–2020 58.5423
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netj(c, t) � ∑
i

wi,jxi(c, t), (9)

P(c, k, t) � ∑
j

wj,k
1

1 + e−netj(c,t)
, (10)

where netj(c, t) is the signal received by neuron j in the hidden

layer; wi,j is an adaptive weight between the input layer and the

hidden layer; xi(c, t) is the variable associated with the input

neuron i on grid cell c at training time t; wj,k is an adaptive weight

TABLE 2 Restrictions of six land use types.

Land use
type

Variables Land use planning
policy requirements

Upper
limit (hm2)

Lower
limit (hm2)

Farmland X1 The basic farmland shall be strictly protected, no less than 45% of the total area of the city 792565.92 645074.96

Forestland X2 Maintain the existing ecological pattern, give priority to protecting ecological space, no less
than 33% of the total area of the city

377533.21 325084.14

Grassland X3 69104.73 59504.31

Waterbody X4 26417.03 22747.02

Construction
land

X5 The reasonable intensity of development, no more than more than 22% of the total area of
the city

315369.98 231905.82

Unused land X6 1692.71

FIGURE 3
Basic structure of neural network in the FLUS model.

TABLE 3 Conversion cost of land use pairs.

Land use
type

Farmland Forestland Grassland Waterbody Construction land Unused land

Farmland 0 0.9 0.1 0.8 0.1 0.4

Forestland 0.7 0.7 0 0.3 0.99 0.8

Grassland 0.5 0.8 0 0.4 0.3 0.1

Waterbody 0.9 0.9 0.9 0 0.99 0.8

Urban land 1 1 1 1 0 1

Unused land 0.9 0.99 0.5 0.8 0.3 0
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between the hidden layer and the outer layer; and P(c, k, t) is the
probability-of-occurrence of land use type k on grid cell c at

training time t.

3.4.2 Self-adaptive inertia and competition
mechanism

In addition to the P (c,k, and t) (probability-of-

occurrence) of different land use types, the FLUS model

adds self-adaptive inertia and competition mechanism.

Specifically, it adds the neighborhood effect, inertia

coefficient, and conversion cost for land use in the model

(Liu et al., 2017; Liang et al., 2018; Wang et al., 2021). The total

probability (TProbtc,k) that grid cell c changes form the

original land use type j to the target type k at time t can be

expressed as

TProbtc,k � P(c, k, t) × Ωt
c,k × Intertiatk × (1 − SCj→k). (11)

1) Neighborhood effects:

Ωt
c,k �

∑N×Ncon(Ct−1
c � k)

NpN − 1
× wk . (12)

In this equation, ∑
N×N

con(Ct−1
c � k) indicates an N × N

window, counting the total number of grid cells occupied by

the land use type k at the last iteration time t −1. wk is the

variable weight among the different land use types. Because

the land use types in different regions have different

neighborhood effects due to climate, terrain, and other

factors, the neighborhood weight value of land use types in

this article is set with reference to the humid and hot regions

in southern China.

2) Inertia coefficient:

Intertiatk

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Intertiat−1k , if |Ck|≤ |Dk|
Intertiat−1k ×

Dk

Ck
, if Ck <Dk < 0

Intertiat−1k ×
Ck

Dk
, if 0<Dk <Ck

, (13)

where Intertiatk is the inertia coefficient of land use type k at

iteration time t, Intertiat−1k is the inertia coefficient of land use

type k at iteration time t-1, Dt−2
k Dk is the macro demand of land

use type k; and Ck is the current allocation amount of land use

type k.

3) Conversion cost:

Conversion cost SCj→k refers to the difficulty of converting

the existing land use type j to the target land type k. In this study,

the conversion cost of each land use pair refers to the research

results of Professor Li Xia and Professor Liu Xiaoping of Sun Yat-

sen University and their team on the FLUS model (Liu et al.,

2017), as shown in Table 3.

4 Result

4.1 Optimization of the structure of low-
carbon land use

4.1.1 Low-carbon land use structure
According to objective function and constraints, the optimal

solution for the corresponding land use area can be obtained, and

then the results are compared with the existing land use structure

and the land use structure set in the land use planning (Table 4

and Figure 4A). In general, the area of farmland and unused land

in the three scenarios is lower than the base year of 2020, but

higher than the planning scheme of 2020–2035. The construction

land presents an opposite tendency that is higher than the base

year of 2020 but lowers the planning scheme of 2020–2035.

While the area of forest (3775,33 km2), grassland (691.05 km2),

and waterbody (264.17 km2) is the same as 2020–2035 planning

scheme which is higher than the base year of 2020. The main

changes in land use in the three scenarios are demonstrated as

follows.

1) Economic development priority scenario (α = 0.2)

The area of farmland in the economic development priority

scenario is 6,614.29 km2, about 1,311.37 km2 less than the base

year of 2020 but 166.93 km2 higher than the planning scheme of

2020–2035. The area of the construction land is 2,986.77km2,

667.71 km2 more than the 2020 base year but 166.93 km2 lower

than the 2020–2035 planning scheme.

2) Low-carbon economic development scenario (α = 0.5)

The area of farmland in low-carbon economic development

scenario (6859.61 km2) was reduced by 1,066.06 km2, about

408.86 km2 higher than the 2020–2035 planning scheme. The

area of the construction land is 2,736.38, 417.32 km2 more than

the 2020 base year and 417.32 km2 higher than the

2020–2035 planning scheme.

3) Strengthening low-carbon economic scenario (α = 0.8)

Compared to 2020 base year, the area of farmland

(7,104.92 km2) in the strengthening low-carbon economic

scenario was reduced by 820.74 km2, which is 635.25 km2

higher than the 2020–2035 planning scheme. The area of the

construction land (2485.99) increased by 166.93, 660.71 km2

lower than the 2020–2035 planning scheme.

4.1.2 The potential carbon emission reduction of
land use

Due to carbon emissions and carbon sink of each land use

type being different, the potential carbon emission reduction of

the three scenarios is different. Although there are no significant

Frontiers in Environmental Science frontiersin.org08

Wu et al. 10.3389/fenvs.2022.989747

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.989747


variations in the area of forest, grassland, waterbody, and unused

land, the area of farmland and construction land has changed a

lot in the three scenarios. Therefore, there are differences in

carbon emissions under the three scenarios.

The carbon emission of land use in the three scenarios and

the 2020–2035 planning scheme are shown in Figure 4B. Overall,

total carbon emissions from the three scenarios are less than the

2020–2035 planning scheme. In the economic development

priority scenario, the carbon emission is 17,571.67 tons, which

is 969.39 tons (5.2%) less than the 2020–2035 planning scheme.

In the low-carbon economic development scenario, the carbon

emission is 16,117.08 tons, which is 2,428.39 tons (13.1%) less

than the 2020–2035 planning scheme. In strengthening the low-

carbon economic development scenario, the carbon emission is

14,662.50 tons, which is 3,879.39 tons (21.3%) less than the

2020–2035 planning scheme.

4.2 Optimization of the spatial layout of
low-carbon land use

Multi-objective linear programming can optimize the

structure of low-carbon land use, but it cannot provide an

optimal spatial layout scheme. In this article, the FLUS model

was introduced to simulate and forecast the optimal layout of

land use structures predicted by multi-objective linear

programming. This article first takes the 2005 land use data of

Chengdu as the initial research data to simulate the spatial layout

of regional land use in 2020. Then, the simulation accuracy of the

model is verified by comparing the actual land use data in 2020.

Finally, the FLUS model is used to stimulate the spatial layout of

land use in Chengdu in 2035 under the three scenarios.

4.2.1 Model verification
Although the FLUS model has been successfully applied

widely, it is still necessary to tune the parameters and verify the

simulation result in different study areas. Only after verification is

successful, the model can be used to simulate and predict future

land use change. Comprehensively considering the characteristics

of the spatial layout of land use in Chengdu and the accuracy and

accessibility of spatial data, this article selected 11 driving factors

(elevation, slope, slope aspect, distance from the nearest river,

distance from the nearest highway, distance from the nearest

railway, distance from the nearest subway, distance from the

nearest main road, population density, per capita GDP, and

night-time light), as shown in Figure 5, which are used in ANN

module training of the FLUS model.

1) ANN-based suitability probability calculation and evaluation

Using the land use data of Chengdu in 2005 and the 11 driving

factors affecting land use change for ANN training, the spatial

occurrence probability map of various land use types in Chengdu

can be generated (Figure 6). The root mean square error (RMSE) of

model training is 0.236203, which indicates that the training

accuracy is high. However, the accuracy of the occurrence

probability of each land use type generated by the ANN training

needs to be further evaluated. Furthermore, the generated

occurrence probability maps and the binary attribute data of land

use are randomly sampled using ArcGIS. Then, those data are input

into the ROC (receiver operating characteristic) curve tool under the

analyze module of SPSS software for AUC (area under the curve)

calculation. In Figure 7, the ROC curve and AUC value of each land

use occurrence probability and corresponding actual land use types

in 2005 are compared. The closer the curve is to the top left corner

TABLE 4 Optimization results of land use structure.

Economic
development
priority scenario
(α = 0.2)

Low-carbon
economic
development
(α = 0.5)

Strengthening low-
carbon economic
scenario (α = 0.8)

2020 base year 2020–2035 planning
scheme

Area
(km2)

Carbon
emission
(thousand
ton)

Area
(km2)

Carbon
emission
(thousand
ton)

Area
(km2)

Carbon
emission
(thousand
ton)

Area
(km2)

Carbon
emission
(thousand
ton)

Area
(hm2)

Carbon
emission
(thousand
ton)

Farmland 6614.29 303.93 6859.61 315.20 7,104.92 326.47 7,925.66 364.18 6450.75 296.41

Forest 3775.33 −215.42 3775.33 −215.42 3775.33 −215.42 3250.84 −185.49 3775.33 −215.42

Grassland 691.05 −1.42 691.05 −1.42 691.05 −1.42 595.04 −1.22 691.05 −1.42

Waterbody 264.17 −0.67 264.17 −0.67 264.17 −0.67 227.47 −0.58 264.17 −0.67

Construction
land

2986.77 17485.25 2736.38 16019.39 2485.99 14553.54 2319.06 13576.30 3153.70 18462.48

Unused land 3.39 0.00 8.46 0.00 13.54 -0.01 16.93 -0.01 0.00 0.00

Total 14335.00 17571.67 14335.00 16117.08 14335.00 14662.50 14335.00 13753.19 14335.00 18541.39
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(the smaller the X, the larger the Y), the greater the prediction

accuracy. The ROC curve represents the relationship between

sensitivity and specificity. The area under the curve (AUC) is a

measure of the prediction accuracy. The greater the AUC number,

the more accurate the forecast.

The results show that the ROC curve of the construction land

and farmland is closer to the left (higher accuracy), and the

following is forest, grassland, and waterbody (medium accuracy).

The ROC curve of the unused land is closer to diagonal (lower

accuracy). Also, the AUC values also confirmed the result, that is,

except for the unused land, the AUC values of all land use types

are greater than 0.6. In general, the selected driving factors have

the good explanatory ability for all land use types except the

unused land. But the proportion of the unused land area is very

small (0.023%), and it has small impact on the overall prediction

accuracy of the model, so this deviation can be ignored.

2) Parameter setting and model accuracy verification

In this article, the basic data required for the cellular automatic

simulation of adaptive inertia mechanism mainly include the land

use data of the initial year and the input suitability probability data.

After many experiments and referring to relevant research, the

specific parameter settings of simulation are shown in Table 5. The

actual area of six land types in 2020 is set as the area simulation

target of land uses. Then, the basic data and model parameters are

input into the model for simulation, and the simulated spatial land

use distribution map in 2020 can be obtained, as shown in Figure 8.

FIGURE 4
Optimize the land use structure and carbon emission reduction potential of the scenarios.
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After the cellular automatic simulation based on the adaptive

inertia mechanism is completed, random sampling and uniform

sampling provided by the Precision Validation module in the

FLUS model are used to conduct accuracy tests on simulation

results. It was found that the Kappa index of the two test methods

was greater than 0.82, and the simulation effect was ideal, which

met the test standard. The results indicate that the FLUS model

can be used to simulate the future land use change in Chengdu

and can be used to simulate the future land use change in

Chengdu city under different land use scenarios.

4.2.2 Model application
Taking the land use data in 2020 as the base period and

setting the six land use types demand of the three scenarios

calculated from the multi-objective linear programming, the

verified FLUS model is used to optimize the land use spatial

distribution of the three scenarios. The spatial optimization

results are shown in Figure 9. As expected, in the three

scenarios, the spatial patterns of forest land, grassland, and

water body are basically consistent and relatively stable, while

the spatial distribution of farmland and construction land is quite

different. Specifically, in the economic development priority

scenario, the growth trend of the construction land is the

most obvious. The construction land spreads outward along

the existing scope, constantly eroding the surrounding

cultivated land, so the cultivated land is evidently reduced. In

the low-carbon economic development scenario, especially in the

strengthening low-carbon economic scenario, the expansion

range of the construction land is smaller and restricted. The

extended scope of the construction land is mainly concentrated

around the main urban area of Chengdu due to convenient

transportation and flat terrain and sufficient water resources.

Furthermore, the main transfer distribution of land use types

under the three scenarios is compared with the land use situation

of Chengdu in 2020 as a reference. The results are shown in

Figure 10. The transfer of land use types mainly include

conversion of farmland to construction land, conversion of

farmland to woodland, conversion of farmland to grassland,

conversion of farmland to water body, conversion of forest to

farmland, and conversion of construction land to farmland.

Among them, in terms of the degree of conversing farmland

to construction land, the economic development priority

scenario is higher than the low-carbon economic development

scenario and higher than the strengthening low-carbon economic

scenario. While the degree of converting farmland into forest,

grassland, and water body present the opposite result, that is, the

strengthening low-carbon economic scenario is higher than the

low-carbon economic development scenario, and higher than the

economic development priority scenario. In addition, the

conversion of forests to farmland mainly occurs in the flat

FIGURE 5
Driving factor for ANN-based Probability-of-occurrence estimation.
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areas in the southeast of the country, and the places where

construction land is converted to cultivated land are scattered

and far away from the existing cities and towns. In addition, the

conversion of forests to farmland mainly occurs in the flat areas

in the southeast of Chengdu, and the conversion of construction

land to farmlandmainly occurs in the scattered construction land

areas that are far away from the existing large cities and towns.

5 Discussion

The carbon emission coefficient used in this article refers to

the report of IPCC and relevant research results. Although the

current accounting technical standards of carbon emissions have

been preliminarily agreed upon, there is no unified

understanding of the carbon emission coefficient of land use

FIGURE 6
Occurrence probability map of land use.

FIGURE 7
ROC curve and AUC value of land use after the ANN training.
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(Rong et al., 2020). The majority of the existing carbon emission

coefficient of land use is the estimated results by studying a wide

range of research areas, such as a state, a country, and a climate

zone (Li et al., 2013; Fang and Zhao 2018; Han et al., 2019; Yu

et al., 2021). But in fact, the carbon emission coefficient of land

use is affected by climate, vegetation, soil, and other factors,

TABLE 5 Parameter settings in the CA module.

No. Configuration items Parameter setting

1 Initial data Land use in 2005

Validated data Land use in 2020

2 ANN-based probability-of-occurrence
estimation

P (c, k, t)

3 Interactions 300

4 Cellular neighborhood size 3 × 3

6 Weight of neighborhood Farmland = 0.7, grassland = 0.5, forest = 0.3, waterbody = 0.2, construction land = 1, unused land = 1

7 Cost matrix Natural development scenario

8 Accelerated factor 0.1

9 Land use demand Economic development priority scenario (α = 0.2) Low-carbon economic development scenario (α = 0.5)
Strengthening low-carbon economic scenario (α = 0.8)

FIGURE 8
Actual land use map and simulated land use map of Chengdu in 2020.

FIGURE 9
Simulated distribution of land use types under three scenarios.
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which differ from region to region (Chen et al., 2020; Wei, X.,

Duan, L. 2021). This article adopts the average value from the

existing studies in similar locations, although the actual carbon

emissions of various types of land may not be estimated

accurately. The results in this article are basically consistent

with the relevant studies on the net change trend of carbon

emissions, and the research results still have a certain reference

value. This study found that carbon emissions from land use in

Chengdu continue to increase from 1990 to 2020, because the

growth rate of carbon sources was much faster than that of

carbon sinks. Forest land, grassland, and garden land, as the main

force of carbon sink in the ecosystem, and their carbon sink

capacity has not changed significantly in the last 30 years. The

construction land, as a major contributor to carbon sources, has

been expanding in the past 30 years, resulting in a continuous

increase in total carbon emissions.

Based on the multi-objective linear programming and FLUS

model, this article simulates the land use structure, spatial

distribution pattern, and transfer of land use of Chengdu

under three scenarios, taking the land use planning scheme as

constraint conditions. It is worth noting that when using the

FLUS model, due to the limitations of available data in the

selected research area and some model parameters set

subjectively, the simulated future land use distribution may be

biased (Liu et al., 2017; Cao et al., 2019; He F. et al., 2022).

Therefore, considering the driving factors and setting model

parameters more objectively to improve the accuracy of

prediction still needs further exploration.

The main differences in land use patterns in the three

scenarios proposed in this article are reflected in the

differences between farmland and construction land. By

comparing and analyzing these three scenarios, it can be

found that there are two main strategies to realize low-carbon

land use in Chengdu. One is to reasonably control urban

expansion by limiting the erosion of construction land on

farmland. The other is, within the red line of farmland, to

transform as much farmland as possible into other land use

types with a stronger carbon sink effect, such as forest land,

grassland, and water body. However, such low-carbon land use

may have a negative impact on the economic development. For

the sustainable development of Chengdu in the future, efforts can

be devoted to the following aspects.

First of all, it is necessary to increase the economic output

value of the construction land per unit rather than blindly

increasing the amount of construction land. Adjusting the

industrial structure by increasing the proportion of high-tech

industries and service industries is beneficial to a sustainable

green economy because those industries has high economic

benefits but low pollution (Sun et al., 2015). Second,

improving energy efficiency and increasing the usage of new

and clean energy is vital to reduce the intensity of carbon

emissions from the construction land (Sullivan 2010; Zhou,

Y., He, Z., Ma, Li., Yang, Y., Zhang, T., Chen, L. 2017; Zhang

et al., 2019). Third, for the nonconstruction land, such as forest,

grassland, and water body, exploring new development models

for the combination of forestry, husbandry, fishing, and tourism

will enhance the economic added value of those kinds of land use,

which is conducive to the win–win of economic and ecological

benefits (Dale 1997; Rong et al., 2020; Yang et al., 2021). Finally,

adopting more modern and advanced agricultural technology on

farmland to increase the total grain output and ensure that more

farmland can be returned to forests (West 2003; Schulp et al.,

2008).

6 Conclusion

This article studies the change characteristics of carbon

emissions from land use in Chengdu from 1990 to 2020, and

uses the MOPmodel to propose the optimal structure of land use

under three scenarios: economic development priority scenario,

low-carbon economic development scenario, and strengthening

low-carbon economic scenario. Then, a FLUS model is adopted

to simulate the spatial layout of land use under three scenarios in

Chengdu in 2035. The research results of this article are expected

to provide suggestions for the future optimization of land use

structure in Chengdu and provide a reference for the

construction and sustainable development of low-carbon cities

FIGURE 10
Distribution of main transfer in land use types under three scenarios.
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in Chengdu. The specific research results are summarized as

follows:

From 1990 to 2020, the net carbon emissions from land use in

Chengdu showed an overall increasing trend, and the carbon

source increased by 7,617.603 thousand tons, with an average

annual increase of 243.901 thousand tons (with an annual growth

rate of 3.75%), of which construction land contributes the most

to carbon sources, followed by farmland. Forest land contributes

the most to carbon sink, followed by grassland and water area.

The high carbon emissions are mainly concentrated in the plain

areas in the center of Chengdu, and low-carbon emissions are

mainly distributed in the northwest and southwest mountainous

areas of Chengdu.

In the three scenarios of land structure optimization based on

the MOP model, the areas of forests (3775,33 km2), grasslands

(691.05 km2), and water bodies (264.17 km2) are consistent with

the targets set in the planning scheme for 2020–2035 in Chengdu.

However, construction land has different degrees of erosion from

farmland, so these two show opposite trend in these three

scenarios. In terms of the degree of farmland erosion caused

by construction land, the economic development priority

scenario (667.71 km2) is stronger than the low-carbon

economic development scenario (417.32 km2) and stronger

than the strengthening low-carbon economic scenario

(166.93 km2). Compared with the planning scheme of

2020–2035 in Chengdu, the carbon emission of the economic

development priority scenario was reduced by 969.72 tons

(5.2%), the economic development priority scenario reduced

carbon emissions by 2,414.31 tons (13.1%), and stronger than

strengthening low-carbon economic scenario reduced carbon

emissions by 3,878.89 tons (21.0%).

The spatial optimization results of land use predicted by the

FLUS model under the three scenarios show that the pattern of

the forest, grassland, and water body is basically consistent and

relatively stable, while the spatial distribution of farmland and

construction land changes greatly. The construction land mainly

occupied the farmland area that was originally around the built-

up area of Chengdu with sufficient water resources, convenient

transportation, and flat terrain. In the stronger low-carbon

economic development scenario, especially the strengthening

low-carbon economic scenario, the continuous expansion of

construction land was significantly restrained.

As the park city and the national approval of low-carbon

pilot city, Chengdu is playing an increasingly prominent role

in the field of “carbon neutrality and carbon peak”, especially

in western China. This article, considering the economic

benefits carbon reducing potential, takes Chengdu as a case

study to demonstrate how to realize the low carbonization of

land use by optimizing and regulating the structure and spatial

layout of land use. This research fills the gap in western China.

The research can provide planning suggestions for the low-

carbon development of Chengdu and other regions in western

China. More importantly, the research method proposed in

this article can provide a reference for similar research in

other cities.
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