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Heavy metal (HM) contamination is a serious concern across the globe, and

in recent times, HMs’ intensity has significantly increased, posing a serious

threat to crop growth and productivity. Heavy metals pose serious health

issues in humans by entering the human food chains. Therefore, it is direly

needed to reduce the effects of HMs on plants and humans by adapting

appropriate practices. In this context, application of micronutrients can be

an essential practice to mitigate the toxic effects of HMs. Zinc (Zn) is a crucial

nutrient needed for plant growth, and Zn application reduced the HM-

induced toxicity in plants. This review highlights Zn’s role in mitigating

the HMs toxicity in plants. We have systematically described the potential

mechanisms mediated by Zn to mitigate HMs in plants. Zinc application

reduced the HMs uptake and translocation plants, which is considered an

essential mechanism of HM stress tolerance. Zn application also improves

membrane stability, plant water relationship, nutrient uptake,

photosynthetic performance, osmolytes accumulation, anti-oxidant

activities, and gene expression. In addition to this, the Zn application

substantially improves photosynthesis by enhancing the synthesis of

photosynthetic pigments, photosystem activities, enzymatic activities, and

maintaining photosynthetic apparatus structure, ensuring better growth

under HM stress. Therefore, Zn nutrition could improve the plant

performance under HM stress by modulating the plant’s physiological and

biochemical functioning, anti-oxidant activities, osmolytes accumulation,

and gene expression.
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Introduction

Abiotic stresses, including cold, heat, drought, heavy metals,

and salinity stress, are significant threats to crop growth and

productivity (Kim et al., 2021). Heavy metal (HM) stress is severe

stress that negatively affects crop production and human health.

Its intensity is continuously soaring due to anthropogenic

activities (Umer Chattha et al., 2021; Zainab et al., 2021;

Alghrably et al., 2019). Heavy metals are naturally occurring

elements with atomic weight and density at least times greater

than water (Tchounwou et al., 2012). Different activities,

including mining, smelting, application of sewage sludge,

fertilizers, and pesticides, are significant sources of HM entry

into soil, contaminating Earth (Li et al., 2014; Mapodzeke et al.,

2021). Moreover, foundries and leaching of HMs from diverse

sources, including landfills, livestock excretion, chicken manure,

runoffs, automobiles, and road works, are also significant sources

of HMs entry into the environment (Briffa et al., 2020). Heavy

metals such as cadmium (Cd), chromium (Cr), mercury (Hg),

lead (Pb), arsenic (As), and nickel (Ni) coexist in contaminated

soils. Their mobility and bioavailability are a significant concern

globally owing to plant uptake and increased human exposure to

these HMs by eating contaminated foods (Mapodzeke et al.,

2021). Recently, the risks of HMs have significantly increased,

and it has created turmoil in the agriculture sector by HMs

accumulation in soils and their uptake by plants (Xiao et al.,

2017).

HM pollution is a severe problem, and it needs an urgent and

practical solution to reduce its hazards to soils and crops

(Alengebawy et al., 2021), owing to the fact that these HMs

disturb plant’s physiological and biochemical processes and

deteriorate soil health and cause adverse impacts on plant

growth (Hasanuzzaman et al., 2019; Abdel Salam et al., 2022;

Poulson et al., 2021). Moreover, HMs also inhibits plant growth

and biomass production, cause chlorosis, water and nutrients

imbalance, protein and enzymes denaturation, and produce

reactive oxygen species (ROS), which can cause plant death

(Raza, 2020; Sultan et al., 2021; Batool et al., 2022). An

apparent effect of HM stress is the production of ROS, which

causes damage to plant DNA, lipids, and protein. These effects

result in a substantial reduction in growth and lead to plant death

(Singh et al., 2016; Hasanuzzaman et al., 2020a; Sanjosé et al.,

2021). However, plants possess an excellent enzymatic and non-

enzymatic anti-oxidant system to counter the effects of these

HMs (Hasanuzzaman et al., 2019). These HMs also cause threats

to human health by entering the human food chain, a primary

global concern (Feng et al., 2021).

Therefore, serious measures must be taken to reduce the

impacts of HMs on plants and soils and reduce their health

hazards. Developing appropriate technologies and management

practices can help reduce the HMs’ uptake by plants in

contaminated soils. Using chemical approaches, particularly

micronutrients, has become a practical approach globally to

mitigate the toxic effects of HMs (Farooq et al., 2020). Zinc

(Zn) is a vital micronutrient needed for plant growth (Chattha

et al., 2017). Zinc can also significantly increase the tolerance

against HMs by increasing the accumulation of potential

osmolytes and reducing ROS production (Faran et al., 2019)

and HMs uptake and their translocation (Hart et al., 2002;

Eckhoff, 2010; Javed et al., 2016; Qaswar et al., 2017;

Sharfalddin et al., 2021; Abdelrahman et al., 2021). Zn also

maintains membrane integrity and restricts the formation of

ROS that cause damage to plant cells (Cakmak, 2000). Moreover,

Zn also increases the accumulation of osmolytes (proline) and

anti-oxidant activities (APX, ascorbate peroxidase; CAT,

catalase; POD, peroxidase; and SOD, superoxide dismutase)

and restricts HM uptake. Zinc reduces the HM translocation

within plant body, resultantly increasing the plant tolerance

against HMs (Rizwan et al., 2019; Li et al., 2020). In addition,

Zn triggers the anti-oxidant system and expression of stress-

responsive genes, reducing HM-induced oxidative stress in

plants (Thounaojam et al., 2014; Zhou et al., 2020).

The excessive concentration of Zn in the plant causes

chlorosis and inhibits biomass production, cell division,

nutrient uptake, and enzymes, resulting in significant yield

loss (Ul-Hassan et al., 2017). However, the toxicity of Zn

depends on many factors, including exposure time, plant

species, and growth medium. Thus, appropriate studies are

needed to optimize the Zn application dose for attaining

tolerance against HMs. Therefore, in this review, we have

discussed the potential of Zn to mitigate HM stress in plants.

We have systematically presented information on mechanisms

for Zn-induced HM tolerance in plants. We have also shed light

on strategies associated with increasing the Zn accumulation in

plants and future research directions to make it an essential

practice against HMs.

Heavy metals essentially toxicity

HMs can be classified into non-essential and toxic metals

(Cd, Pb, Hg, Cr, As, and Ag) and essential micronutrients (Co,

cobalt; Cu, copper; Fe, iron; Mo, molybdenum; and Zn, zinc),

which are needed for growth and development (Kalaivanan and

Ganeshamurthy, 2016). The essential metals are involved in

many physiological and biological processes and enzymatic

activities (Bhat et al., 2019). However, deficiency of crucial

nutrients causes a substantial growth reduction and leads to
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plant death under extreme deficiency. Moreover, both essential

and non-essential metals at higher concentrations cause a

decrease in growth and development by disrupting plant’s

function and altering the structure (Ali et al., 2011). The high

concentration of HMs also varies the uptake, accretion, and

translocation of essential nutrients that cause significant

growth and yield loss (Zia-Ur-Rehman et al., 2015). In

addition, toxic metals also inhibit growth and photosynthesis.

HMs cause chlorosis, disturbing water and nutrient relationship,

which resultantly cause death of plants (Ali et al., 2011; Imran K.

et al., 2021).

Plant’s responses to heavy metals

HM contamination of agricultural soils is a major concern

globally, owing to their unfavorable ecological impacts. The soils

used for crop production have been polluted with excess of HMs

in different parts of the world, posing a serious threat to crops,

humans, and food security (Bhat et al., 2019). Soil polluted with

HMs adversely affect plant growth (Table 1), different

metabolisms, soil microbial activities, soil fertility and

productivity, and health of humans and animals (Foucault

et al., 2013; Imran M. et al., 2021). These toxic metals

substantially reduce germination and plant growth (Figure 1)

and induce several morphological modifications in a plant

(Aamer et al., 2018; Ghori et al., 2019). For example, increase

in Hg concentration (5–80 mg/L) substantially decreased root

and shoot growth and leaves per plant in Jatropha curcas

(Marrugo-Negrete et al., 2016). Nickel toxicity significantly

reduced seed germination in sunflower, owing to reduction in

activities of α amylase and protease (Ashraf et al., 2011).

Furthermore, Cd stress adversely affected the leaf area and

caused a decrease in root growth and increased root dieback

(Rucińska-Sobkowiak, 2016; Aamer et al., 2018), disrupting the

structural integrity of membranes which induced undesirable

effects including reduced water and nutrient supply (Janicka-

Russak et al., 2012).

HMs toxicity also induces deleterious impacts on plant

physiological characteristics, including (Figure 1) chlorophyll

contents, photosynthetic rate (Pn), transpiration rate (Tr), and

conductance of stomata (gs) and intercellular CO2

concentrations (Ci). For example, Cd and Pb stress

significantly inhibited the synthesis of chlorophyll contents in

Davidia involucrate (Yang et al., 2020). HMs also damage

photosynthetic apparatus, disrupt chlorophyll synthesis and

Pn, and significantly reduce assimilate production (Schmidt

et al., 2020). Metal toxicity also decreased the leaf water

potential of B. oleracea plants grown in Cd-contaminated soils

(Shah et al., 2020). Moreover, Cd toxicity, combined with Fe

TABLE 1 Effect of different heavy metals on growth and physio-biochemical process of various crops

Crop
species

Metal stress and dose Effects Reference

Potato Fe stress (0.2, 0.5, 1.0 and 2.0 mM) for
110 days

Fe stress induced chlorosis in young leaves, reduced chlorophyl content starch and sugar
concentration

Chatterjee et al. (2006)

Cotton Cd stress (1 and 5 μM) for 36 days Cd stress decreased plant height, root and shoot length, number of leaves, fresh and dry
weights of leaf, and enhanced MDA and H2O2 accumulation.

Farooq et al. (2016)

Barley Co stress (25, 50, 75, and 100 μM) for
20 days

Co stress significantly inhibited plant growth, reduced chlorophyll contents, and
increased ROS.

Wa Lwalaba et al.
(2017)

Basil Ni stress (100 and 210 mg/kg) for 33
days

Increased cellular damage and -oxidative stress, and reduced chlorophyll contents, and
caused necrosis.

Georgiadou et al. (2018)

Maize Hg stress (5 and 10 mg/L) for 6 days Reduced growth, photosynthesis, and caused chlorosis and necrosis. Hou et al. (2019)

Soybean As stress (10 and 20 μM) for 60 days AS stress decreased the shoot length, root length, stomatal conductance and
photosynthesis rate and increased ROS, MDA accumulation.

Tomato Cr stress (300 μM) for 25 days Cd stress decreased root and shoot length, their dry weight and chlorophyll contents,
while increased methylglyoxal contents.

Alam et al. (2021)

Wheat Cu stress (5, 10 mg/kg) for 15 days Cu stress decreased germination, shoot and root length, seed vigor, yield and chlorophyll
contents

Thakur et al. (2021)

Rice Cd stress (16.31 mg/kg) for 30 days Reduced chlorophyll contents, shoot and root length and increased ROS. Ahmed et al. (2021)

Brocoli Ni stress (100 μM) for 30 days Reduced chlorophyll contents, stem and root length, soluble protein concentration, and
plant biomass.

BARIŞ and Muammer
(2021)

Mungbean Cd stress (5, 10 and 15 mg/kg) for 90
days

Cd stress reduced the plant growth, soluble proteins, free amino acides, RCW,
chlorophyll content and increased H2O2, MDA and EL and Cd accumulation in plant
parts.

Khan et al. (2022)

Cotton Hg stress (1, 10, 50 and 100 μM) for 3
days

Hg stress suppressed shoot elongation, darkened seeds and condensed germination and
overall growth

Mei et al. (2021)

Maize Co stress (5, 25, 65, 125, and 185 mg/
kg) for 60 days

Co stress reduced the growth and nutrient uptake. Bidast et al. (2022)
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deficiency, affects electron transportation and causes a reduction

in CO2 fixation and the efficiency of PS II and Chl synthesis (Le¡

ková et al., 2017). HMs also decrease CO2 fixation by down-

regulating the activity of RuBisCO due to damaged chloroplast

and condensation of grana and lamella under Cd stress (Guo

et al., 2016; Paunov et al., 2018).

HMs also decrease nutrient and water uptake due to

altered stomata activity and transpiration rate, causing a

significant reduction in growth ((Hussain et al., 2013;

Wang et al., 2017). Moreover, HMs reduce transpiration

rate (Chandra and Kang, 2016), reduce stomatal activity,

and cause significant growth loss (Tavallali, 2017). The

functionality of the xylem and phloem is also affected due

to HMs. For instance, Cd toxicity causes a significant

reduction in the root xylem area of Salix caprea (Vaculík

et al., 2012). HMs also competes with nutrient and their

translocation within the plant body (Rucińska-Sobkowiak,

2016). Likewise, Cd competes with calcium (Ca), Fe, and

magnesium (Mg) and cause a significant reduction in

growth and biomass production (Raza, 2020). Toxic metals

compete with essential nutrients at enzyme-binding sites,

render them denatured, and inhibit their activities (Ghori

et al., 2019). The response of Cr stress was studied on Vigna

radiata and noted that Cr stress reduced chlorophyll (Chl),

protein, and starch contents (Rath et al., 2019).

Pb stress caused a significant reduction in Pn and

membrane stability (Figure 1) and increased osmotic

adjustment with increased proline accumulation in

ornamental plants (Song et al., 2020). Cu stress damaged

plant root and shoot growth due to an increase in

electrolyte leakage, malondialdehyde (MDA), and hydrogen

peroxide (H2O2) accumulation in kenaf plants. Significant

increase in anti-oxidant activities was observed with

increasing Cu concentration in gthe rowing medium

(Saleem et al., 2020). Fe toxicity in cowpea caused a

considerable increase in MDA contents (Ifie et al., 2020).

FIGURE 1
Effect of HMs toxicity on plants. The metals toxicity disturbs plant water relations, membrane stability, reduced nutrient water uptake, stomata
functioning, xylem and phloem functioning, CO2 fixation, efficiency of PS II, RuBisCO activities, damage chloroplast, and condense grana and
lamella, thereby causing significant reduction in growth and development.
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In contrast, in other studies, Cu stress showed a significant

increase in MDA contents in Sesuvium portulacastrum

(Lokhande et al., 2020). Nitrogen metabolism is critical in

plant growth and development under HM stress. HMs

significantly reduced nitrate and ammonia assimilation

enzymes in Cyamopsis tetragonoloba by increasing their

destruction due to increased protease activity (Sangwan

et al., 2014). HMs also inhibit meristem mitosis and reduce

root elongation, which causes a reduction in nutrient and

water uptake (Pavlova, 2017). In another study, it was noted

that Cr inhibits the mitotic cell divisions by delaying and

extending the cell cycle in rice crop (Sundaramoorthy et al.,

2010). Plants possess excellent enzymatic and non-enzymatic

anti-oxidant oxidants to prevent the deleterious impacts of

oxidative stress (Gill and Tuteja, 2010; Kaur et al., 2019). Plant

cells’ anti-oxidant defense system and ROS accumulation

uphold a steady-state balance. Therefore, maintaining

optimum ROS levels in the cell enables proper redox

reactions and regulation of diverse processes needed for

plant growth and development (Mittler, 2017). This

optimum level can be maintained by balance amid ROS

production and ROS scavenging (Hasanuzzaman et al.,

2019). Nonetheless, during stress, overproduction of ROS

disturbs this balance and causes cellular damage and cell

death (Raja et al., 2017). Despite their deleterious impacts,

ROS are also known as signaling molecules. ROS transport the

signals to redox reactions using the mitogen-activated protein

kinase (MAPK) pathway in different cellular mechanisms for

increasing plant tolerance against various stresses (Singh et al.,

2016).

Methylglyoxal (MG) possesses high cytotoxicity and

generates as a result of an imbalance in anti-oxidant cell

homeostasis and resultantly leads to oxidation of protein,

DNA, and leakage of ions (Syed et al., 2016). The anti-

oxidants work to search, neutralize, and remove the ROS

(Hasanuzzaman et al., 2020b), and their activities also

increase under stress conditions. For instance, alfalfa and

spinach plants exposed to Cu and Cd stress increased APX,

CAT, and SOD activities (Cota-Ruiz et al., 2020). Populus

trichocarpa metal tolerance protein (PtrMTP) gene plays a

crucial role in managing HMs through different mechanisms,

including homeostasis and detoxification (Gao et al., 2020).

Plants also produce diverse binding structures, chelates, and

ligands as defense mechanisms against HMs (Raza, 2020).

MicroRNAs play an appreciable role in metal tolerance by

regulating plant’s anti-oxidant responses, chelations, and

auxin and cytokinin signaling (Ding et al., 2020). For

example, Casarrubia et al. (2020) noted that microRNA in

combination with mycorrhizal plays a significant role in

Vaccinium myrtillus in response to Cd stress. MicroRNA

expression in the perspective of biosynthesis of secondary

metabolites significantly improved the aluminum (Al) and Cd

tolerance in tobacco (Cedillo-Jimenez et al., 2020). The quality

attributes of the rice crop, including moisture protein content,

brown rice rate, and milling degree, were significantly

decreased. In contrast, kernel chalkiness increased

dramatically in response to Cd (100 mg/kg) stress (Imran

K. et al., 2021).

Zinc: A multifaceted nutrient to alleviate
heavy metal toxicity

Zinc plays a significant role in the tolerance of HMs, and the

beneficial role of Zn in the detoxification of HMs. Zn is linked

with changes in plant responses and soil processes. Zn appears to

be a suitable choice to reduce the HMs toxicity, which improves

the plant tolerance against HMs (Khan et al., 2019; Wu C. et al.,

2020). Zn reduces metal accumulation by restricting its uptake

and transportation within the plant body (Hart et al., 2002). Zn

application improves plant growth by reducing oxidative stress

(Wu C. et al., 2020). Zn also improves photosynthetic efficiency

(Liu et al., 2015; Zhou et al., 2019), nutrient uptake, and

osmolytes accumulation (Rizwan et al., 2017) under HMs. The

relationships between Zn and HMs significantly affect plant

metal uptake and accumulation (Venkatachalam et al., 2017).

The foliar application of Zn mitigates Cr uptake and improves

the growth and Zn bio-fortification of Oryza sativa and S.

oleracea ((Hussain et al., 2018a; Zaheer et al., 2019).

Zinc application maintains membrane
stability and improves plant water
relationships under heavy metal stress

The most common effect of HMs is the production of ROS

that damages cell membranes and causes electrolyte leakage

(Srivastava et al., 2014; Noman et al., 2018). Higher lipid

peroxidation under HM stress increases the MDA contents

(Medina et al., 2017). Exogenous Zn supplementation

decreases MDA and H2O2 contents (Table 2) and protects the

membrane integrity under metal stress (Zhou et al., 2020). The

reduction in MDA and H2O2 (Figure 3) accumulation following

Zn application (Figure 2) is linked with the increase in membrane

stability. Zn decrease metal accumulation and increases anti-

oxidant activities (Hussain et al., 2018a; Rizwan et al., 2019).

Zaheer et al. (2019) noted that Zn chelated with amino acids

significantly reduced electrolyte leakage (EL), MDA, and H2O2

accumulation. Zn reduced the ROS production through

enhanced anti-oxidant activities (APX, CAT, POD, and SOD).

The application of Zn also improved the plant water uptake and

relative water content (RWC) in plants grown under metal stress.

For instance, Zaheer et al. (2022) reported that the combined

application of Zn (10 mg/L) and Fe (5 mg/L) chelated with amino

acids significantly improved water use efficiency by 31% under

Cr stress. Leaf RWC was decreased by 37% and 48% under As
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stress (10 and 20 μM). Zn application in from of nanoparticles

(50 mg/L) appreciably improved the leaf RWC by 17% and 26%

under As stress (10 and 20 μM). In contrast, Zn application

(100 mg/L) increased the RWC by almost 8% and 28% under As

stress (10 and 20 μM) (Ahmad et al., 2020).

Zinc application improves nutrient uptake
under heavy metal stress

Many authors conducted studies to determine the impact of

Zn application on nutrient uptake under different HM stresses.

Most studies indicated that Zn application improved the uptake

of essential nutrients upon exposure to HM stress. The combined

application of Zn and Fe chelated with amino acids improved the

uptake of both Zn and Fe. Zn and Fe reduced the Cr uptake

owing to the fact that amino acids form complexes with HMs and

immobilize these metals and cause a reduction in uptake of these

metals by plants (Rizwan et al., 2017). The application of Zn also

improved the accumulation of Zn in different plants, such as

wheat, rice, and spinach (Rizwan et al., 2017; Zaheer et al., 2019).

Zaheer et al. (2020) studied the impact of the combined

application of Zn and Fe on B. napus grown under Cr stress.

They reported that application Fe and Zn increased the shoot Fe

and Zn contents by 31% and 33%, whereas root Fe and Zn

contents were increased by 28% and 32%, respectively (Zaheer

et al., 2020). The combined application of Zn (10 μM) and Si

(15 μM) significantly increased the K and Fe contents in roots of

rice cultivar Xiushui-110 grown in Cd stress (15 μM)

(Mapodzeke et al., 2021).

In contrast, these authors noted a reverse trend in sources of

cultivar HIPJ-1 grown under Cd stress (Mapodzeke et al., 2021).

In another study, it was observed that Zn supply (50 mg/L)

appreciably improved the uptake of nutrients in roots and shoots

of rice plants grown under Cd stress (0.8 mM) (Faizan et al.,

2021b). In addition, Cao et al. (2013) reported that Zn and

glutathione (GSH) application on Cr toxicity. These applications

significantly increased the accumulation of Mn, Zn, and Fe by

22%, 14.5%, and 44%, respectively, in rice plants grown under Cr

stress (20 μM). All the aforementioned studies show the positive

impact of Zn on nutrient uptake under HM stress. More studies

are needed to underpin the mechanism involved in Zn-mediated

improvement in nutrient uptake under HMs.

Zinc improves plant photosynthetic
performance under heavy metals

Heavy metals significantly reduced photosynthetic pigments

and photosynthetic efficiency, reducing plant growth and yield.

However, Zn possesses an excellent potential to improve plant

photosynthetic performance (Figure 2) upon exposure to metal

stress (Kolenčík et al., 2019). The application of Zn repairs

photosystem II (PS II) and improves the gas exchange

parameters. Photosynthetic performance increased under metal

stress (Rajiv et al., 2018; Salama et al., 2019). Zn application

increased Chl contents, which improved photosynthesis and

subsequent plant growth (Altaf et al., 2020; Faizan et al., 2020).

The improvement in photosynthetic pigments and stabilization of

the photosynthetic apparatus by Zn application under Cd stress is

linked with Zn-induced ROS reduction (Rizwan et al., 2019). The

application of chelated Fe and Zn increased the Chl contents and gas

exchange parameters (Pn, Tr, and gs) in wheat and rice plants

grown under Cd (Rizwan et al., 2017; Bashir et al., 2018).

Zaheer et al. (2020) noted that the application of Zn (10 mg/

L) improved Chl, Tr, Gs, Pn, and water use efficiency (WUE) by

37%, 36%, 6%, 40%, 6%, and 126%, respectively, in B. napus

plants grown under Cr stress (Zaheer et al., 2020). An exogenous

TABLE 2 Effect of Zn on anti-oxidant activities and oxidative stress indicators of different crops under metal stress

Crop Metal stress Dose
of Zn

Mode of Zn
application

Effects of anti-oxidant activities References

Rice Cd stress (5 μM) 1 μM Foliar spray Zn enhanced activities of CAT, SOD, APX and reduced the H2O2 and MDA
accumulation.

Hassan et al.
(2005)

Rapeseed Cr stress (66%) 10 mg/L Foliar spray Increased CAT, POD and SOD activities and reduced MDA, H2O2 and
MDA accumulation and EL.

Zaheer et al.
(2020)

Wheat Cr stress (200
mg/kg)

200 mg/L Foliar spray The application Zn increased APX, CAT, POD and SOD activities reduced
MDA, H2O2 and MDA accumulation and EL.

Ahmad et al.
(2020)

Cotton Pb stress (250
mg/L)

200 mg/L Applied in hydroponic
culture

Zn application increased activities, APX, CAT, POD and SOD Priyanka et al.
(2021)

Cotton Cd stress (15
mg/kg)

200 mg/L Applied in hydroponic
culture

Zn application increased activities, APX, CAT, POD and SOD Priyanka et al.
(2021)

Chili Cd stress
(200 μM)

10 mg/L foliar spray Zn application increased CAT, APX, POD, Karmous et al.
(2022)

Rice Cd stress (20
mg/kg)

25 mM Foliar spray Zn increased APX, CAT, POD and SOD activities reduced MDA, H2O2 and
MDA accumulation and EL.

Ali et al. (2022)
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supply of Zn has been shown to improve the WUE and nutrient

uptake, improving plant growth by governing the process of

photosynthesis and transpiration (Hussain et al., 2018a). The

combined application of Zn and Si improved the Chl and Pn

compared to control in rice plants grown under Cd stress

(Mapodzeke et al., 2021). The application of Zn stabilizes the

redox homeostasis and improves the photosynthetic

performance under HM stress (Mapodzeke et al., 2021).

Moreover, Zn, in combination with Si, reduces internal CO2

concentration by utilizing CO2 at a higher rate to counter the

effects of Cd-induced reduction in Pn and improves plant stress

tolerance (Mapodzeke et al., 2018). The increase in Tr following

Zn and Si application is linked with higher transpiration and

nutrient uptake (Mapodzeke et al., 2021).

The combined application of Zn and Co improved the plant

photosynthetic efficiency and the Fv/Fm ratio (Hussain et al.,

2013; Salam et al., 2022). Interestingly, Zn improved the Chl

contents and gas exchange parameters, and Zn increased Chl

contents by increasing Chl synthesis (Sadak and Bakry, 2020; Del

Buono et al., 2021). The excess of Zn ameliorated the

photochemistry of PS II by enhancing the fraction of energy

utilized for the photochemistry of PS II and restoring the PS II

redox state. It also fixed the chloroplast ultra-structure under Cd

stress, improving the plant photosynthetic efficiency (Sperdouli

et al., 2022).

Zinc strengthens anti-oxidant activities
under heavy metals stress

Heavy metals induce the production of ROS in plants;

however, plants activate an excellent defense system

FIGURE 2
Mechanisms of Zn-induced heavymetals toxicity in plants. The application of Zn cause HMs chelation and immobilization in soil and, therefore,
reduce their uptake. Zn supply also modifies root architecture, maintain viability of root cells, and regulate the stress-responsive genes to counter
HMs toxicity. Moreover, Zn also maintains membrane stability, improve plant water status, osmolytes accumulation, stomata activities, and ionic
homeostasis to counter HMs toxicity.
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comprising different anti-oxidant enzymes (APX, CAT, POD,

and SOD: Table 2) (Afridi et al., 2019). SOD works as the first

defense line against the oxidative stress created by ROS (Dos

Santos et al., 2017). Zn supplementations enhanced the anti-

oxidant activities (Figure 3) and reduced the HMs-induced

oxidative damages in maize (Salam et al., 2022). Hussain et al.

(2018b) studied the impact of different levels of chelated Zn (0,

10, 20, and 30 mg/L) on growth performance and anti-oxidant

activities of rice plants grown under Cd stress (0, 100, and

500 mg/kg). Applying all the Zn levels significantly improved

APX, CAT, POD, and SOD (Table 2) and reduced Cr-induced

oxidative stress. In another study, Zaheer et al. (2020) also found

a substantial increase in gas exchange characteristics with Zn

application under Cr stress (50, 100, and 200 mg/kg).

Faizan et al. (2021b) tested the impact of ZnO application

(50 mg/L) on rice plants grown under Cd stress (0.8 mM). The

application of Zn increased the activities of CAT (52%), SOD

(59%), and proline accumulation (17%), which in turn

appreciably improved the growth of rice by mitigating Cd-

induced oxidative stress. In addition, another group of authors

noted that Zn application (15 µM) significantly reduced the

MDA accumulation while enhancing the photosynthetic

performance and activities of CAT and SOD (Mapodzeke

et al., 2021). Salam et al. (2022) studied the impact of ZnO

application (500 mg/L) on maize plants exposed to Co stress

(300 µM). They found that ZnO application appreciably

improved the activities of APX, CAT, and SOD by 15%, 16%,

and 56%, respectively, and improved the growth and

photosynthetic performance under Co stress. Cao et al. (2013)

texted the impact of Zn (20 µM) on rice crops grown in

hydroponic systems developed under Cr (20 µM) and Cd

stresses (20 µM). They noted that Zn application improved

the photosynthetic pigments and anti-oxidant activities (APX,

CAT, and SOD) under both Cd and Cr stresses.

Calgaroto et al. (2011) exposed P. glomerata plants to Hg

stress (50 µM) and supplemented them with Zn application

(50 µM). Applying Zn alone or combined with Hg

significantly increased shoot APX, CAT. and SOD activities.

Soybean plants are treated with diverse As stress levels (0, 10,

and 20 uM) under ZnO application (0, 50, and 100 mg/L).

Applying Zn (50 µM) increased activities of APX and GR by

37.17% and 16.27%, respectively, under 20-µMAs stress (Ahmad

et al., 2020). Wu F. et al. (2020) demonstrated that rice seeds

primed with Zn (200 mg/L) showed an increase in SOD (22.8%)

and CAT (60.705) activities, whereas the reduction in MDA

accumulation (30.80%) under As stress (2 mg/L) was observed

(Wu F. et al., 2020). Moreover, Yan et al. (2021) also noted an

appreciable increase in CAT and SOD activities of rice shoots

with Zn application grown under As stress (2 mg/L). Khan et al.

(2022) studied the impact of ZnO and PGPR bio-fertilizers on

FIGURE 3
Zinc application increases the activities of anti-oxidant activities and osmolytes accumulation that reduces MDA, H2O2, and EL accumulation
and improves cell water potential and water use efficiency, thereby improving plant tolerance against HM stress.
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maize plants grown under As stress (50 and 100 ppm). The

application of ZnO in combination with plant-growth-

promoting rhizobacteria (PGPR) up-regulated the anti-oxidant

activities (APX, CAT, POD, and SOD). Anti-oxidants which

oxidized the ROS produced in response to As stress (Khan et al.,

2022). The glyoxalase cycle consists of glyoxalase I and glyoxalase

II (Gly I and Gly II), which remove the methyl glyoxalate (MG)

produced during stress conditions (Yadav et al., 2005). The

supplementation of ZnO under As stress increased the

activities of Gly I and Gly II, reducing

MG production and As-induced oxidative stress (Ahmad

et al., 2020).

Zinc favors osmolytes accumulation under
heavy metals stress

Osmolytes play an imperative role against HMs toxicity in

plants, and their accumulation under HM stress improved the

anti-oxidant activities and reduced the HMs-induced oxidative

stress. For instance, proline (Pro) accumulation has a positive

correlation with total anti-oxidant activities (Farooq et al.,

2020), and Pro helps in membrane stabilization, removes

excessive ROS, and regulates growth under stressful

conditions (Torabian et al., 2018). The application of Zn

appreciably improved the Pro contents under Cd stress,

improving the anti-oxidant activities and plant performance

under Cd stress (Farooq et al., 2020). Similarly, Faizan et al.

(2021b) noted that ZnO supply increased the Pro contents by

increasing the expression of Pro synthesis genes under Cd

stress. Moreover, other authors also noted a substantial

increase in Pro accumulation with the application of Zn

(Helaly et al., 2014; Faizan et al., 2020). Metal toxicity

decreases the accumulation of proteins, associated with

reduced protein synthesis, and increased protease activity

that destroys the protein structure and activity (Balestrasse

et al., 2003). Nonetheless, Zn application reduced protein

degradation and increased nitrogen uptake, increasing

protein accumulation (Laware and Raskar, 2014; Faizan

et al., 2021a). Ahmad et al. (2020) exposed the soybean

plants to As stress (10 and 20 µM) grown under different

levels of ZnO (50 and 100 mg/L). They noted that ZnO

application (50 and 100 mg/L) significantly improved the

Pro contents by 14.28% and 38.09%, respectively, under As

stress (10 and 20 µM). Moreover, these authors also noted that

Zn application (100 mg/L) increased the glycine betaine (GB)

accumulation by 11.08% and 28.66%, respectively, in rice plants

exposed to 10 and 20 μMAs stress (Ahmad et al., 2020). These

are the limited information available in literature about the

effect of Zn application on osmolyte accumulation under HM

stress. Therefore, it would be fascinating to conduct more

studies on this aspect which will open new window about

the role of Zn against HMs toxicity.

Zinc brought ultra-structural changes in
plants to induce tolerance against heavy
metals

Zn application also brought ultra-structural changes in the

plant to induce tolerance against HMs. Metal toxicity (Cd)

significantly reduced the viability of cells in plant root tissues;

however, the application of ZnO significantly prevented the

losses of cell viability in root tissues (Faizan et al., 2021b).

The improved photosynthetic efficiency in plants is liked with

improved stomatal properties. Co-stress induced damages to

guard cells and stomata aperture and significantly reduced

plant photosynthetic efficiency. The damage to stomatal

aperture and guard cells are the direct effect.

Nonetheless, ZnO application (500 mg/L) significantly

protects the guard cells and stomata from damaging impacts of

metal stress and improves the plant photosynthetic efficiency

(Salam et al., 2022). Moreover, the ZnO application also

recovered the chloroplast shape and enhanced the size of grain

starch of maize plants grown in metal toxicity (Salam et al., 2022).

Zn supply also alleviated the Cd-induced impacts on chloroplast

and ensured that the grain starch contents and thylakoid

membranes were less dilated (Sperdouli et al., 2022). Metal

toxicity also alters the meristematic root cells and induces

cellular deformation and thinning of cell walls (Mapodzeke

et al., 2021). Zinc application in combination with Si improves

the formation of root tip cells, chlorophyll formation, and starch

granule formation. Zn improved the photosynthetic performance

in crops (Mapodzeke et al., 2021).

Zinc reduces heavy metals uptake and
causes immobilization and chelation of
heavy metals

Zinc application reduced the HMs uptake (Figure 2), an

essential mechanism in plant metal toxicity. Zn application

improves Zn accumulation in plants and prevents Cd uptake

through the roots and xylem-to-phloem transfer. Zn available in

the growth medium has antagonistic effects on Cd uptake and

transport (Zhou et al., 2019). Furthermore, Zn also reduced Cd

toxicity by decreasing uptake of Cd and promoting biomass

production, therefore diluting the metal concentration in plants,

also known as the dilution effect (Ur Rehman et al., 2019). Zn

supplementation also changes the metal fragmentation in soils and

blocks the metal migration toward plant roots (Khan et al., 2019;

Zhou et al., 2020). Moreover, Zn application also decreased soil pH,

significantly reducing the bioavailability of Cd fractions in soil. Zn

application reduced the Cd uptake and subsequent accumulation

and its damaging impacts on plants (Khan et al., 2019; Zhou et al.,

2020). Likewise, many other authors also noted that Zn application

reduced the Cd uptake, its translocation to shoots, and its

accumulation in wheat and tomato (Faizan et al., 2020).

Frontiers in Environmental Science frontiersin.org09

Hassan et al. 10.3389/fenvs.2022.990223

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.990223


ZnO application reduces the absorption and transportation

of metals in root–shoot directions, and Zn also functions as a

physical barrier to restrict metal uptake by the plant (Faizan et al.,

2021a). Zn transporters are assumed to be involved in Hg uptake,

and their numbers are significantly affected by Zn presence. The

presence of more Zn would occupy more Zn transporters and

result in less transport for Hg, reducing the Hg uptake by plants

(Liu et al., 2021). In addition, Zn also depicts the anti-oxidant

characteristics by diverse pathways, including the

metallothionein formation and participates in forming lower

molecular weight metallothionein-like proteins (Lane et al.,

1987). This MTLP is rich in cysteine, which is famous for

binding Hg ions; hence, Zn application alleviates the Hg

toxicity by forming the MTLP (Liu et al., 2021). Applying

chelated Zn and Fe with amino acids reduced the Cr uptake

because amino acids form complexes and reduce their uptake by

plants (Rizwan et al., 2017; Zaheer et al., 2022). In another study,

it was noted that Zn application reduced the Cd contents in root,

stem, and leaf except for grains and substantially reduced the Cd-

induced toxicity in wheat plants (Zhou et al., 2020).

Zinc modulates stress-responsive genes
under heavy metals stress

The regulation of genes is considered an essential mechanism

by which Zn improves plant metal toxicity (Qiao et al., 2019).

Natural resistance-associated macrophage protein (Nramp5) is a

crucial transporter of Cd and Mn in roots. It is also responsible

for the uptake of Cd from the soil (Wu C. et al., 2020). Knockout

or knockdown of Nramp5 leads to a significant reduction in Mn

and almost complete loss of Cd uptake in roots and shoots

(Sasaki et al., 2012). Zinc application significantly reduced the

expression of TaNramp5, reducing the Cd influx from soil to

plant seeds (Zhou et al., 2020).

Moreover, the knockdown of OsLCT1 by Zn application also

decreased the phloem-mediated Cd translocation, whereas it had

no impact on xylem-mediated Cd transportation in rice plants

(Uraguchi et al., 2011). Zn application also reduced the

expression of TaLCT1 in wheat roots, resulting in a significant

reduction in Cd accumulation in wheat roots (Zhou et al., 2020).

Triticum aestivum transmembrane 20 (TaTM20) is an

imperative Cd transporter (Kim et al., 2008). Thus, Zn

supplementation increased the expression of TaTM20 and

TaHMA3 and decreased the Cd accumulation in roots and

leaves, indicating both these genes’ role in Cd efflux (Zhou

et al., 2020). HMA2 works as a pump and effluxes Cd and Zn

out of the cell. This protein is localized to tonoplast and involves

transporting Cd to the xylem (Yang et al., 2020). The foliar

application of Zn down-regulated the TaHMA2 expression and

reduced the Cd translocation from root to shoots.

Moreover, foliar applied Zn also up-regulated the expression

TaHMA3, which enhanced the Cd sequestration in roots’

vacuoles, significantly reducing Cd concentration in plant

shoots (Begum et al., 2019; Zhou et al., 2020). These are the

limited information available about the role of Zn in increasing

the expression of different genes for reducing the effects of HMs.

Therefore, a better understanding of gene expression involved in

Zn-mediated HMs toxicity is crucial to decipher molecular

mechanism behind this phenomenon properly.

Zinc regulates plant growth and yields
under heavy metals stress

Plants exposed to HMs significantly reduce growth and

development (Table 3). Zn application significantly reduced

the HMs toxicity and improved the plant growth and

development by triggering anti-oxidant activities and reducing

metal accumulation (Table 3). The positive effect of Zn

application on plant growth has been confirmed in many

studies, which indicate that Zn application significantly

improved the increase in metal-contaminated soils (Abbas

et al., 2017). The application of Zn significantly improved the

biomass of the wheat crop (Khan et al., 2015), which could be

attributed to its beneficial role as an essential micronutrient

(Shalaby et al., 2017). The time of Zn application is crucial to

improve the growth and grain Zn concentration. For instance,

Zhou et al. (2020) demonstrated that Zn applied at elongation

and heading stages markedly improved wheat crop growth and

grain Zn contents. Maize seeds primed with ZnO showed larger

plants with more biomass production, linked with reduced metal

uptake and translocation from the roots to aerial plant parts

(Salam et al., 2022).

Faizan et al. (2021b) studied the impact of ZnO application

(50 mg/L) on the growth of rice plants grown under Cd stress

(0.8 mM). The application of Zn increased the shoot length

(SL; 34%), fresh root weight (RFW; 30%), root dry weight

(RDW; 12%), and shoot dry weight (SDW; 23%) as compared

to the control. Applying Zn increases the chlorophyll

contents, and an increase in Chl contents improves

photosynthetic activity and plant growth (Altaf et al.,

2020). Zaheer et al. (2020) reported that Zn application

(10 mg/L) significantly enhanced the growth and reduced

the Cr uptake and accumulation by B. napus plants. Ali

et al. (2022) designed a study to determine the impact of

Zn–lysine (12.5 and 25 mM) on rice and wheat plants grown

under Cd stress (10 and 20 mg/kg). Applying Zn significantly

improved crops’ growth and physiological processes under Cd

stress (Ali et al., 2022). A thirty-day-old P. glomerata plants

exposed to Hg stress (50 μM) showed a significant increase in

fresh shoot weight (71%) and new root weight (51%) following

the application of Zn (50 μM) (Calgaroto et al., 2011).

Applying Zn in combination with Si improved the root

and shoot length, biomass production, tiller formation, and

panicles of rice crop in Cd stress (Mapodzeke et al., 2018). The

Frontiers in Environmental Science frontiersin.org10

Hassan et al. 10.3389/fenvs.2022.990223

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.990223


higher Zn contents alleviated the Cu-induced toxic effects and

improved rice plants’ growth and biomass production

(Aravind and Prasad, 2005). Moreover, Zn application also

helps the Cd-induced oxidative stress and enhances the

growth and biomass production by inhibiting the Cd

uptake (Akay and Koleli, 2007). The application of Zn

(10 mg/kg) significantly reduced the Cd-induced (5 and

10 mg/kg) damages and considerably increased the grain

weight, tillers, and grain yield of the wheat crop (Abbas

et al., 2017). Javed et al. (2016) applied Zn as a foliar spray

(0.05%) to the different stages of wheat crops grown under Cd

stress. They noted Zn application at booting and heading

stages significantly improved the plant height and biomass

production, tillers production (30%), leaves dry weight (19%),

and grain production (12%) under Cd stress as compared to

Zn applied at tillering and jointing stages (Javed et al., 2016).

Moreover, Sarwar et al. (2014) determined the impact of foliar

Zn application (0.3% and 0.6%) on wheat plants grown under

Cd stress (13 mg/kg). The application of Zn (0.6%)

significantly increased the plant height, tillers, grain weight,

and grain yield of wheat crop (Sarwar et al., 2014).

Strategies to improve Zinc accumulation
in crops

The beneficial impacts of Zn for mitigating HM-induced

toxicity are linked with a higher accumulation of Zn in plant

parts (Figure 4). The collection of Zn in plants largely depends

on Zn availability in soils and plants’ ability to accumulate Zn.

The level of Zn in soils can be improved by modifying the soil

properties. In contrast, genetic modification and application

of Zn fertilizers can enhance plants’ capacity to accumulate

more Zn (Figure 4).

Genetic approaches

Bio-fortification is a vital global strategy to improve grain

nutrient concentration (Miller and Welch, 2013). This approach

used breeding and agronomic practices to enhance the

accumulation of nutrients in crop plants. The breeding

techniques are considered costly and time-consuming, whereas

agronomic practice (fertilizers application) is a quick solution to

tackle this problem (Bouis et al., 2011; Shahzad et al., 2021). The

breeding techniques involve exploring the natural variations

amid genotypes for nutrient concentration and changing their

genetic makeup to improve the bioavailability and quantity of

nutrients (Pfeiffer and McClafferty, 2007). The increase in

nutrient (Zn) accumulation in plants substantially improved

the plant tolerance against HMs (Farooq et al., 2020). The

desired genes are identified from the gene pool of plants and

inserted in plants to develop the plants with a more vital ability to

accumulate nutrients (Shahzad et al., 2021). Transgenic breeding

is an imperative and economical approach to enhancing plant

nutrient contents. This technique involves the introduction of

genes that increase nutrient availability and decreases anti-

nutrient compounds (Shahzad et al., 2021). The increase in

grain Zn contents following breeding and agronomic

approaches (Shahzad et al., 2021) improved the plant

tolerance against Cd and Cr stresses (Ahmad et al., 2020;

Faizan et al., 2021b).

TABLE 3 Effect of Zn on growth and physiological functions different of crops under metal stress

Crop Metal stress Dose
of Zn

Mode of Zn
application

Effects References

Rice Cd stress (5 μM) 1 μM Applied in hydroponic
culture

Zn application enhanced growth, biomass production, chlorophyll contents
and photosynthesis.

Hassan et al.
(2005)

Wheat Cd stress (2.86
mg/kg)

30 mg/kg Foliar spray Zn application improved the growth, biomass production and
photosynthesis and decreased Cd accumulation.

Rizwan et al.
(2017)

Rice Cr stress (500
mg/kg)

30 mg/L Foliar spray Foliar spray of Zn reduced oxidative stress, and Cr concentration and
improved growth and photosynthesis in rice.

Hussain et al.
(2018a)

Sunflower Ni stress (2.1
mg/kg)

4 mg/kg Soil application Zn treatment improved quality traits, minerals concentration, seed weight
and biomass production.

Turan et al. (2018)

Wheat Cd stress (0.2
mg/kg)

100 mg/L Foliar spray Zn improved root and shoot growth and biomass production and
photosynthesis.

Rizwan et al.
(2019)

Soybean As stress
(20 μM)

100 mg/kg Soil application Zn application enhanced the shoot and root length, photosynthesis,
stomatal conductance and photochemical activity

Tomato Cu stress (100
mg/kg)

50 mg/L Foliar spray Zn application improved photosynthetic, stomatal conductance, growth
and cell viability.

Faizan et al.
(2021c)

Rice As stress
(500 μM)

1000 mg/L Foliar spray Zn application alleviated As toxicity, improved chlorophyll contents,
growth and photosynthesis.

Faizan et al.
(2021d)

Maize Co stress
(300μM)

500 mg/L Applied in hydroponic
culture

Zn improved root and shoot growth, photosynthesis and chlorophyll
contents.

Salam et al. (2022)
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Selecting suitable quantitative trait loci (QTLs) linked with

higher Zn uptake can also be an essential approach for producing

genetically modified crops with higher Zn contents (Dong et al.,

2006). The combination of QTL analysis and molecular genetics

can help breed improved crop varieties with better efficiency in

nutrient use (Verma et al., 2021). Recently, a genome-wide

association study (GWAS) has emerged as an essential tool

involved in sequencing methods. Bioinformatic tools identify

the QTLs and natural variations to characterize the genetic loci

controlling the diverse agronomic traits (Huang et al., 2010).

Likewise, GWAS is also an effective strategy for identifying QTLs

that possess the Zn nutrition trait and is also an efficient way to

improve Zn uptake and Zn efficiency in crops (Verma et al.,

2021). The transgenic approaches also identified many Zn

transporters linked with cations, such as ZRT-IRT-like

proteins (ZIP) and cation diffusion facilitator (CDF) families.

These play an essential role in the uptake and translocation of Zn

in plants (Verma et al., 2021). For example, over-expression of

AtZIP1 and HvZIP7 in barley plants has increased the grain Zn

contents (Tiong et al., 2014).

Moreover, ligands synthesis gene expression could also be a

refreshing approach to Zn solubility , thereby Zn level in crops

(Verma et al., 2021). CRISPR/Cas9 has recently become an

essential tool for improving crop performance and nutritional

quality (Liu et al., 2021). Using CRISPR/Cas9 can substantially

increase the concentration of micronutrients in plants. For

instance, in rice plants, CRISPR/Cas9-mediated knockdown of

vacuolar iron transporter (VIT) genes (OsVIT2) substantially

increased the grain Fe contents (Che et al., 2021). Similarly,

CRISPR/Cas9-induced disruption of inositol pentakisphosphate

2-kinase 1 (TaIPK1) appreciably improved the grain Zn contents

in wheat crop (Ibrahim et al., 2022).

The sequence-specific nucleases (SSNs) can also be used to

improve crop nutrient accumulation and bioavailability. This

practice involves the modification of desired genes to produce

transgenic plants, resulting in a substantial increase in the

collection of nutrients in plants (Shahzad et al., 2021).

Increasing the breeding bio-fortification of Fe and Zn is

complex in plants because the concentrations of nutrients in

grains depend on diverse physiological processes (Garcia-

Oliveira et al., 2018). Recently a significant genetic variability

for these minerals has been reported in six major cereal crops

including barley, maize, rice, sorghum, and pearl millet (Teklić

et al., 2013; Goudia and Hash, 2015; Gregory et al., 2017). The

more precise and reliable phenotyping is also a preference of

breeders. However, an extensive study of literature linked with

FIGURE 4
Different approaches that can be used to improve Zn accumulation in plants to induce HM stress tolerance.
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variably Fe and Zn concentrations in cereals suggested that

accurate measurement of these nutrients is challenging

(Gregory et al., 2017).

Phytic acid (PA) is an essential chelator of Zn, and it affects

the Zn availability in plants (Ali et al., 2010). Different mutants of

maize, rice, and wheat with low PA have been identified, which

can help reduce the PA accumulation in plants to improve Zn

availability (Liu et al., 2007). Moreover, proteins significantly

increased the nutrient uptake and translocation in plant cells. For

instance, ferritin genes transferred from soybean to markedly

enhanced grain Zn and Fe contents of rice (Qu et al., 2005). Using

molecular markers is also critical. For example, many QTLs

associated with Zn have been identified in cereals that can

help develop genotypes with higher nutrient accumulation to

ensure metal tolerance (Xie et al., 2019; Faizan et al., 2021a).

Breeding practices are a sustainable way to develop grains

enriched with Zn contents. However, these techniques are

costly and need significant resources and time to establish the

Zn-enriched grains (Cakmak, 2008). In addition, the success of

newly developed genotypes also depends on the Zn pool in soils.

Higher Zn protein soil must be maintained to get desired results.

In conclusion, developing genotypes with a more dynamic ability

to accumulate Zn in grain and other plant parts can help reduce

the harmful impacts of HMs on plants and humans.

Zinc fertilization

Fertilizer application is considered a quick and excellent

approach (Figure 4) for improving grain Zn concentration and

Zn availability in plants. This strategy improves the Zn

availability in plants and substantially enhances growth and

yield (Yadav et al., 2011). The fertilizer application

substantially increased the Zn availability and influences the

amount of Zn available to plants (Zaheer et al., 2019). Globally

different methods of Zn application are used for improving

grain Zn concentration and Zn availability in soil and plants.

The Zn application method significantly impacts the grain Zn

concentration; therefore, the Zn application method must be

economical and farmer friendly (Hussain et al., 2010). Seed

priming (SP) is an essential method of Zn application that

increases crop production and Zn uptake by plant seeds. This

economical and environmentally friendly method appreciably

improved grain productivity and grain Zn concentration in

plants (Farooq et al., 2012). This method also plays a crucial to

improve the HMs tolerance by increasing the Zn

concentration in plants. For instance, wheat seeds primed

with ZnO showed an appreciable tolerance against Co

stress. Results showed a substantial increase in

Zn uptake and its translocation to plant plants (Salam

et al., 2022).

Soil application of Zn is also an important method used

across the globe; however, this method is considered costly

because a large quantity of Zn is used in this method (Zaheer

et al., 2019). The application of soil-applied Zn effectively

increased the grain yield; however, this method is less effective

in increasing grain Zn contents (Cakmak et al., 2010). Zn’s soil

and foliar application is an efficient approach to improve grain

Zn, grain yield, and Zn availability in soil and subsequently to

plants (Chattha et al., 2017). This method is also effective in

reducing the HMs toxicity in plants. The soil application of Zn

effectively increased the Zn concentration in plant parts (root,

stem, and leaf). It also reduced the Cd uptake and accumulation,

thereby reducing the Cd-induced deleterious impacts on the

wheat crop (Farooq et al., 2020; Zhou et al., 2020). Foliar

application is another method of Zn application that

maintains a higher Zn pool and significantly improves the Zn

concentration in grains and other plant parts (Cakmak et al.,

2010). This method is considered economical compared to soil

application because, in this method, a small quantity of Zn is

used. The foliar spray of Zn is also an important method to

reduce the harmful impacts of HMs on plants. Many studies

indicated that foliar spray of Zn application considerably

increased Zn concentration in plant parts and Zn uptake by

plants. Zn application also reduced the deleterious impacts of Cd,

Cr, and As by restricting their uptake and accumulation in plants

(Ahmad et al., 2020; Zaheer et al., 2020; Faizan et al., 2021b).

Therefore, in light of the aforementioned findings, agronomic

practice (fertilizer application) is an effective and economical

approach to improving plant tolerance against HMs.

Modification of soil properties

The concentration of Zn in soil solution is significantly affected

by different factors, including soil pH, soil organic matter (SOM),

moisture contents, clay minerals, clay minerals, and carbonates

(Wang et al., 2017). The carbonates and Fe oxides play a critical role

in the dynamics of Zn in soil, affecting Zn availability to plants

(Komárek et al., 2018; Moreno-Lora and Delgado, 2020). Therefore,

modifying soil Fe oxides by adding organic matter can improve the

Zn availability in soil and plants. SOM significantly affects the Zn

solubility and its transportation to roots and upper plant parts

(Cakmak, 2008). Therefore, applying carbon-enriched substances

can substantially increase the soil Zn contents (Chen et al., 2017). Zn

contents can help to reduce the HMs’ toxicity in plants (Bashir et al.,

2020). Soil pH is an important parameter that significantly affects

the Zn availability from the soil solution. The soils with higher

pH have lower Zn availability and vice versa (Sadeghzadeh, 2013).

However, adding different substances, including sulfuric acid and

sulfur, can help reduce soil pH, significantly improving Zn

availability and ensuring better tolerance against HMs. Modern

agricultural practices have considerably enhanced crop production;

however, these practices imposed many disadvantages, such as soil

compaction due to the use of heavymachinery. The soil compaction

reduced the root’s growth and root penetration and, therefore,
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reduced the Zn uptake that negatively affects crops’ growth, yield

and quality (Parlak and Parlak, 2011). Therefore, minimization of

soil compaction and deep tillage practices used intermittently can

reduce the soil compaction to ensure better nutrient availability. The

higher soil phosphorus (P) contents and application of heavy doses

of P fertilizers reduces the Zn availability to plants because Zn co-

precipitate with P as ZnO3 (PO4)2, reduces the soil Zn contents. The

reduced soil Zn concentration reduced the Zn uptake by plants and

resulted in less Zn accumulation in plant parts (Yang et al., 2011).

Therefore, a dose of P fertilizers must be chosen precisely to ensure

better Zn availability to plants from soil solution to counter the

effects of HM stress.

Conclusion and prospects

Anthropogenic activities have significantly increased the

concentration of toxic metals in agriculture soils. HMs

negatively affects crop growth, development, and yield and pose

a severe threat to human health by entering the food chain. The

effects of HMs on the environment, agriculture, and humans are

critical; therefore, it is direly needed to develop remedial strategies

to counter the effects of HMs. In this context, Zn application has

become an essential practice to reduce plant metal toxicity.

Applying Zn improves membrane stability, plant water uptake,

and nutrient uptake. Zn application also maintains photosynthetic

performance by improving gas exchange characteristics and

photosystem efficiency. Zn supplementation improves

osmolytes accumulation and expression of stress-responsive

genes and brings ultra-structure changes in the plant body to

counter the effects of HMs. At the same time, Zn triggers the anti-

oxidant defense system and reduces the ROS that counters HM-

induced oxidative stresses. In addition, Zn reduced the HMs

uptake and caused chelation and immobilization of HMs in

soil, restricting their uptake and entry into the plant body.

However, the role of Zn under HMs toxicity is not fully

explored, and many questions need to be answered in future

studies. It is a dire need to optimize the rates of Zn application for

different crops under different climatic conditions and cropping

systems before it is recommended for the farming community.

Most studies are conducted in control conditions; limited field

studies are available about the role of Zn under HMs toxicity.

Therefore, it is a dire need to conduct long-term studies in soils

affected by HMs to explore the potential of Zn in mitigating the

harmful impacts of HMs. Moreover, the rate of Zn application

must also be optimized by conducting long-term studies keeping

the soil and climatic conditions in mind. The crosstalk of Zn with

osmolytes and different hormones is poorly studied. Most

authors studied the crosstalk of Zn with proline and glycine

betaine under HMs. Therefore, more studies are needed to

explore the crosstalk of Zn with abscisic acid, auxin,

cytokinin, ethylene, and gibberellins under HMs, as these

hormones play a significant role in tolerance against HMs.

In addition, the effect of Zn application on the

accumulation of metabolites, plant nutrients, and other

osmolytes needs more studies. The role of Zn in gene

expression under HMs is also poorly studied; therefore, it is

needed to explore the role of Zn in gene expression under

different HMs. The molecular mechanism of Zn-induced HMs

tolerance is poorly studied. In-depth studies are direly needed

to explore molecular mechanisms of Zn-induced HMs toxicity

in plants. The role of Zn is studied well with only a few HMs

(Cd, Cr, As, and Hg). Hence, more studies are needed to explore

the role of Zn against lead, nickel, cobalt, and copper stresses.

Enhancing the plant’s genetic potential to uptake Zn would also

be a promising avenue to improve plant tolerance against HMs.

Recent development in genomics, computational biology,

genetic engineering, and high-throughput phenotyping can

facilitate to understand the basis of Zn accumulation in

plants. These findings increase the development of high Zn

accumulating plant species. All these efforts will undoubtedly

increase our understanding about the zinc role in mitigating the

harmful impacts of HMs in plants.
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