
Environmental fate of
cefquinome: Adsorption and
degradation

Jicheng Qiu1,2, Yuxin Yang1,2, Jingyuan Kong1,2, Yuying Cao1,2,
Yu Liu1,2, Feifei Sun3* and Xingyuan Cao1,2,4*
1College of Veterinary Medicine, China Agricultural University, Beijing, China, 2Laboratory of Quality
and Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture
and Rural Affairs, Beijing, China, 3College of Aminal Science and Technology, Anhui Agricultural
University, Hefei, China, 4Laboratory of Detection for Veterinary Drug Residues and Illegal Additives,
Ministry of Agriculture and Rural Affairs, Beijing, China

Cefquinome (CEQ), the fourth generation of cephalosporins, has been widely

used in practice for the treatment of bacterial infections due to its broad

antimicrobial spectrum, stability, and stronger antibacterial activity. However,

thewide use of CEQ can cause an environmental risk via animal excretion. In the

current study, the environmental fate of CEQ was investigated. The migration

rate of CEQ from soil to the aquatic environment was approximately 60%. The

half-life (T1/2) of CEQ degradation in the water ranged from 0.96 to 13.75 d. Our

results showed that the temperature, illumination, and pH had an effect on the

degradation rate, and the rate of CEQ degradation was significantly accelerated

under high temperatures. CEQ was more stable in acidic environments than in

alkaline. E-isomer of CEQ and △3-isomer of CEQ were the major degradation

metabolites identified by UPLC-Q-Orbitrap MS. The product ion m/z

293.041 was the typical fragment ion for E-isomer of CEQ, and m/z

201.044 and m/z 152.016 were the typical fragment ion for △3-isomer of

CEQ. The degradation metabolites exhibited lower antibacterial activity,

simultaneously, the toxicity of the E-isomer of CEQ should pay more

attention to.
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Introduction

Since antibiotics were invented, they are crucial in human healthcare, animal

husbandry, and plant protection because of their significant effects on pathogenic

infections. Over 250 different substances are registered as antibiotics for human or

animal health (Kümmerer and Henninger, 2003). However, it has been extensively

reported that antibiotics as well as their metabolites were excreted into the effluent

and reached the soil and water, posing a great risk to human health. The concentrations of

antibiotics in drinking water, seawater, surface waters, and groundwater were higher than

0.01 μg/L (Batt and Aga, 2005; Peng et al., 2008; Watkinson et al., 2009; Zhang et al.,

2013a), even, high up to 1,000 mg/L in some Asian countries (Larsson et al., 2007; Review
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on Antimicrobial, 2015). The emissions from production plants

(Larsson et al., 2007; Li et al., 2008; Šimatović et al., 2020), human

medicine usage (Wang et al., 2018; Aydin et al., 2019; Khan et al.,

2019), livestock and poultry breeding (Zhang et al., 2015; Quaik

et al., 2020), aquaculture (Pham et al., 2015; Pham et al., 2018),

and plant agriculture are the main sources of antibiotics in the

environment.

The persistence, diffusion, and metabolism of antibiotics in

the environment is an issue of global concern. Antibiotics from

the environmental compartments can be transferred to drinking

water sources, threatening human health. With the longtime

exposure to antibiotics in water and soil, a negative shift greatly

was observed in the structure and function of aquatic ecosystems

(Sarmah et al., 2006; Marti et al., 2013). More important, the

aquatic environment is a global reservoir for bacteria to acquire

and disseminate antibiotic resistance, antibiotic-resistant

bacteria (ARB), and antibiotic-resistant genes (ARGs) (Khare

et al., 2020).

The β-lactam antibiotics are preeminent in the treatment of

bacterial infection due to their excellent clinical efficacy and

safety, accounting for more than half of the world’s antibiotic

market (Testero et al., 2003; Meliá et al., 2015). Cefquinome

(CEQ), the fourth generation of cephalosporins only used in

animals with a C-3 bicyclic pyridinium group, is stable and

effective against chromosomal and plasmid-encoded β-
lactamases (Chin et al., 1992; Ahmad et al., 2015). Therefore,

CEQ has a broad antimicrobial spectrum in vitro or in vivo

compared with the second and third-generation cephalosporins

(Chin et al., 1992; Guerin Faublee et al., 2003; Smiet et al., 2012;

Ahmad et al., 2015). It has been used for the treatment of many

diseases including calf septicemia, respiratory tract diseases,

metritis-mastitis-agalactia syndrome in sows, acute mastitis

and foot rot, foal septicemia, and respiratory diseases in

horses (Shan et al., 2014; Xiao et al., 2021). Only a small

amount of CEQ in animal bodies was transformed into

metabolites after administration, most of them were excreted

by kidney in urine in parent form which may be released into the

environment. The degradation of cephalosporin in the

environment will be affected by many factors. According to

reported studies, initial concentration, microorganisms, and

light will affect the degradation of cephalosporin in the

environment. Generally, cephalosporins present low

octanol-water partition coefficient (Kow) values (Mrestani

and Neubert, 2000). Therefore, they will be hardly

eliminated through biotransformation and soil sorption

(Alexy et al., 2004). At the same time, different

cephalosporins present different degradation rates at the

same pH condition. Those drugs may be positively or

negatively charged, as well as be a zwitterion because the

structures of cephalosporins generally have two or more

ionization centers (Ribeiro and Schmidt, 2017). Most

previous studies have reported the removal efficiency of

cephalosporins, but lack the study on the possible

degradation mechanism of cephalosporins degradation in

the environment through UPLC-MS/MS analysis.

The objective of this study was to study the absorption,

degradation kinetics and mechanisms of CEQ in the

environment, and to evaluate the influence of incubation

conditions, including concentration, temperature, pH, and

light concentrations, on the degradation rate of CEQ. The

results of this study will help to predict the fate and

degradation of CEQ under different environmental conditions

and provide a reference for the risk assessment of CEQ in the

water.

Materials and methods

Reagent and chemicals

The standard of Cefquinome sulfate (purity, 96.3%) was

purchased from Dr. Ehrenstorfer (Augsburg, Germany).

Acetonitrile (LC-MS grade) and formic acid (LC-MS grade)

were obtained from Fisher Scientific (Fair Lawn, NJ,

United States), and the water was purified by the Milli-Q

system (Darmstadt, Germany). All other chemicals were of

analytical grade obtained from Sinopharm Group Chemical

Reagent (Shanghai, China).

Soil adsorption experiments

The experiment was carried out according to the

classification of Organization for Economic Co-operation and

Development (OECD) Test Guideline 106 (von Oepen et al.,

1991; Drillia et al., 2005). The soil samples were collected from

the agricultural fields of China Agricultural University (Beijing,

China) by using the multipoint sampling method. The soil

samples were air-dried and sieved (2 mm) for the adsorption

and degradation experiments. The organic matter content (OM)

was determined using the potassium dichromate external heating

method, and the cation exchange capacity (CEC) was determined

using the ammonium acetate method, which results were shown

in Supplementary Table S1. The operation was as follows: 10.0 g

of dry soil was weighed and placed in a 50 ml centrifuge tube,

followed by the addition of 25 ml 0.01 mol/L CaCl2 solution with

the CEQ concentration of 20 μg/ml. The samples were vortexed

at 25°C with a speed of 250 rpm. Then, the samples were collected

after 8, 15, 30, 45 min, 1, 3, 6, 9, 12, and 24 h respectively, and

centrifugated at the speed of 12,000 rpm for 20 min at −4°C. The

supernatant was analyzed by ultra-performance liquid

chromatography (UPLC).

Method validation was carried out. A standard curve of CEQ

in water was constructed (10, 50, 100, 500 1,000, 5,000, 10,000 μg/

L), and the correlation coefficient was greater than 0.99. The

precision and accuracy were also examined, and the intra-relative
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standard deviation (RSD) and average recovery were measured in

triplicate at each concentration level. The intra-relative standard

deviation was calculated repeatedly over 3 days. The mean

recoveries of CEQ were in the range of 76.68%–100.60% and

the intra-RSD was less than 9.57% and inter-RSD was less than

8.00%, the results were listed in Supplementary Table S2. The

limit of quantitation (LOQ) was the concentration when S/N ≥
10, and the LOQ was 10 μg/L.

Degradation experiments

The control variable method was adopted to study the

degradation kinetics of CEQ in water. The degradation

experiment was designed with the following conditions: 1)

three initial concentrations (2.5, 5, and 10 μg/ml), 2) three

incubator temperatures (25, 35, and 45°C), 3) different

pH condition (pH = 5, 7, and 9), 5) light. Sodium hydroxide

and sulfuric acid were used to adjust the initial pH.

The procedure was as follows. Firstly, the 20 ml of water was

put into a 50 ml tube, and 100 µl of different concentrations of

CEQ solution were added in to tube to obtain an initial

concentration sample. Then, the sample was set in different

conditions and collected at 0, 12, 24, 48, 72, 96, and 120 h.

Finally, the collected samples were analyzed by up UPLC and

UPLC-Q-Orbitrap MS after being centrifugated at −4°C, with the

speed of 12,000 rpm for 20 min. In order to avoid the influence of

light, the tinfoil was wrapped on the surface of the tube. On the

contrary, in order to study the influence of light on the

degradation of CEQ, the natural light condition was simulated

in the test, giving 12 h of light and 12 h of darkness until the end

of the experiment.

Ultra-performance liquid
chromatography and UPLC-Q-Orbitrap
MS analysis

The UPLC (Agilent 1,290, Agilent Crop, United States) was

used for the determination of Cefquinome in samples, and the

CEQ was quantified by ultraviolet detector (Agilent 1,290,

Agilent Crop, United States) with the wavelengths of 270 nm.

Separation was performed using an Agilent C18 column

(50 mm × 2.1 mm i.d; particle size, 1.8 μm; Agilent Crop,

United States), and the constant proportion of mobile phase is

composed of 10% ACN and 90% water containing 0.1% Formic

acid. The flow rate and the injection volume were 0.3 ml/min and

20 μl, respectively.

The UPLC-Q-Orbitrap MS equipped with an electrospray

ionization source (quadrupole-Orbitrap™ Q Exactive™ Plus,

Thermo, Milford, MA) was used to identify the degradation

products of CEQ. The scan type was full scan with the range from

150.0 to 2000.0 m/z; the electrospray condition was spray voltage

3800 V in positive mode; capillary temperature at 320°C; and

auxiliary gas flow rate of 10 arb at 350°C; sweep gas flow rate was

40 arb. A BEH C18 column (100 mm × 2.1 mm i. d; particle size,

1.7 μm; Waters Crop, United States) was used to separate the

products with the flow rate of 0.3 ml/min at 35°C; the mobile

phase A was water containing 0.1% formic acid and mobile phase

B was acetonitrile containing 0.1% formic acid. The gradient

elution program was as follows: 5% B (0–2 min), 5–20% B

(2–10 min), 20%–40% B (10–12 min), 40%–70%B

(12–15 min), 70%–100% B (15–16 min), 100% B (16–17 min),

100–5% B (17–17.5 min), 5%B (17.5–19 min).

Results and discussion

Adsorption of cefquinome in soil

The adsorption kinetic curve of CEQ in soil was shown in

Figure 1A. The adsorption of CEQ in soil can be divided into two

stages: the first stage is the rapid adsorption stage, and the second

stage is the dynamic equilibrium stage of adsorption and

desorption. In the second stage, the speed of adsorption of

CEQ turned slow down gradually. The average adsorption of

CEQ in soil was 39.92% ± 0.57 after 24 h, and CEQ has a weak

adsorption capacity in soil. Most of the CEQ will enter the water

environment after being excreted by animals, and a

corresponding conclusion was drawn for drugs with similar

chemical structures (Rath et al., 2019; An et al., 2021).

Degradation kinetics of cefquinome in
water

Most of studies shown that the kinetics of hydrolysis or

degradation of antibiotics in the water environment conforms to

the first-order kinetics model (Wang et al., 2006a; Zaranyika et al.,

2015; Biošić et al., 2017). Therefore, the first-order kineticmodel was

used to describe the degradation kinetics of CEQ in water: lnC = -Kt

+ lnC0, C0 (μmol/L) is the initial concentration of CEQ, C (μmol/L)

is the concentration of CEQ at time t, and the K is the rate constant

of hydrolysis and total degradation. Consequently, the half-life of

CEQ can be calculated as follows: T1/2=(ln2)/k.

To simulate the in-field situation closely, three

concentrations were selected in this study. As seen in

Figure 1B and Table 1, no obvious impact of different initial

concentrations was observed on the degradation of CEQ, and the

T1/2 values of CEQ at three different initial concentrations in

water were 9.63, 9.32, and 9.32 days. Similar results have been

reported for other β-lactam drugs, there was few differences

between the degradations of ceftiofur in agricultural soils at

different concentrations, and the T1/2 is about 3 days (An

et al., 2021). The composition of soil is more complex than

water, which may speed up drug degradation in the environment.
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The CEQ was degraded in acidic, alkaline, and neutral water

bodies as shown in Figure 1B and Table 1. When the solution

pH is 5, the degradation rate of CEQ was relatively slow. When

the solution pH is 7, the degradation rate of the target substance

increases, and the degradation rate of the target compound

increases greatly when pH is 9. At the same time, the

elimination half-life of the CEQ in the water gradually

decreases as the pH value increases. Some other β-lactam
drugs, including Ceftiofur, Cefpodoxime, and Cefotaxime

sodium (Sunkara et al., 1999; An et al., 2021), were verified to

be degraded rapidly in an alkaline condition. β-lactam drugs

contain a four-membered β-lactam ring, which is unstable and

easy to be broken (Deshpande et al., 2004). At the same time, the

β-lactam ring undergoes nucleophilic attack, followed by

protonation of the N atom and carbon-nitrogen bond cleavage

and a fast degradation (Hou and Poole, 1971; Meliá et al., 2015).

Because a methoxyimino group was introduced into the

7-position side chain of β-lactam ring, making CEQ was not

suitable to be destroyed due to steric hindrance.

The degradation curves of CEQ were performed at 25°C,

35°C, and 45°C, respectively. As shown in Figure 1B and Table 1,

the CEQ was degraded at various temperatures, the degradation

rate was faster and the half-life was shortened significantly as the

temperature goes higher. After 120 h, more than 90% of CEQwas

degraded at 45°C. A similar effect of temperature on the

degradation of β-lactam drugs has been reported including

Ceftiofur, Ceftazidim, Cefotaxim, and Cefuroxim (Sunkara

et al., 1999; An et al., 2021). The reason for this effect is that

the hydrolysis reaction is endothermic, and the endothermic

reaction requires energy, which mainly comes from the collision

between molecules. The collision between molecules becomes

more intense when the temperature was higher and more energy

can be generated, thereby accelerating the hydrolysis reaction.

The same conclusion about the impact of light on

degradation was observed for drugs with similar structures

including Cefradine, Ceftriaxone, and Cefepime (Jiang et al.,

2010). the degradation rate of CEQ would be accelerated with

light in the water body. The degradation curves of CEQ were

FIGURE 1
The adsorption and degradation curve of CEQ in environment (A) The kinetic adsorption curve of CEQ in soil; (B) The kinetic degradation curve
of CEQ in water).

TABLE 1 The degradation kinetic equation and its parameters of CEQ in the water.

Condition First-order kinetic equation R2 K (1/h) T1/2 (d)

2.5 mg/ml, pH = 7, 25°C.no light y = 0.003x + 4.5814 0.968 0.003 9.63

5 mg/ml, pH = 7, 25°C.no light y = 0.0031x-4.5805 0.976 0.0031 9.32

10 mg/ml, pH = 7, 25°C.no light y = 0.0031x-4.5899 0.987 0.0031 9.32

2.5 mg/ml, pH = 5, 25°C.no light Y = 0.0024x-4.5851 0.922 0.0021 13.75

2.5 mg/ml, pH = 9, 25°C.no light y = 0.0035x-4.5394 0.926 0.0035 8.25

2.5 mg/ml, pH = 7, 35°C.no light y = 0.0091x-4.5788 0.987 0.0091 3.17

2.5 mg/ml, pH = 7, 45°C.no light y = 0.03x-4.4569 0.980 0.03 0.96

2.5 mg/ml, pH = 7, 25°C. light y = 0.0079x-4.6893 0.969 0.0079 4.58
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performed with light or not were shown in Figure 1B and the

degradation kinetic parameters as shown in Table 1.

Degradation mechanism and pathway

To clarify the main degradation pathway of CEQ in different

water bodies, the samples under different conditions were

analyzed by UPLC-Q-OrbitrapMS. The peak of the parent

compound CEQ, with a retention time (RT) of 6.78 min

(Figure 2A), was confirmed by molecular ions of [M + H] at

m/z 529.132. At the same time, two major degradation products

were found in all different treatments, and the retention time

(RT) was 5.62 min (D1) and 8.00 min (D2) respectively

(Figure 2A). After further study of their molecular ion peak,

both of two had the same molecular ions at m/z 529.132 which

was same as CEQ, which indicated that two major degradation

products were isomers of CEQ.

To verify the relationship between CEQ and two degradation

products, the information of product ion was analyzed. The first

step in the collision-induced dissociation (CID) of CEQ is the

cleavage of the side chain on position 3, resulting in the

generation of m/z 134.096 (side chain) and m/z

396.042 product ions, Meanwhile, the ion at m/z

396.042 could then lose a molecule of carbon dioxide to form

the ion at m/z 352.053, and lose a molecule of carbon monoxide

to generate m/z 368.047. Further the fragmentation of m/z

352.053 and m/z 368.047 could generate product ion m/z

324.058. Eventually, product ion m/z 277.020 and

167.027 could be generated from product ion m/z 324.058.

Figure 2C revealed that [M + H] of CEQ appeared in the full

scan of ESI, and the proposed fragmentation pathways of CEQ in

the positive ion mode were shown in Figure 3B.

For D1, CID produced product ions m/z 396.042, m/z

134.097, and m/z 352.053 were same as CEQ, whereas, m/z

277.020, m/z 368.048, and m/z 167.027 were not found, and

were replaced bym/z 201.044, m/z 152.016, m/z 197.048 andm/z

166.031. As reported, m/z 201 and m/z 152 were the typical

fragment ion for△3-isomer of cephalosporin which double bond

of carbon is translocated from the 2-position to the 3-position at

high pH or when heated which was found to have less or no

microbiological activity (Zhao et al., 2005; Albishri, 2012; Wang

et al., 2013; Wang et al., 2016). For △3-isomer of CEQ, the

conjugation was formed between the double bond and S, because

the double bond is located between dihydrothiazide C3 and C4,

resulting in a change in the electron density of the six-membered

ring and preventing Retro Diels–Alder reaction (RDA) cracking.

So,m/z 277.020, m/z 368.048, m/z 167.027 were not found in this

FIGURE 2
The degradation pathway of CEQwas performed onUPLC-OrbitrapMS (Accurate extracted ion chromatograms (EICs) ofmolecular ions of [M+
H] at m/z 529.132 (A) Positive ion ESI-MS/MS spectra of Cefquinome (C), Δ3-isomer of Cefquinome (B), and E-isomer of Cefquinome (D).
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degradation product. At the same time, product ionm/z 201.044,

m/z 197.048, m/z 166.031 and m/z152.016 could be generated

from product ion m/z 352.053 after McLafferty rearrangement.

Figure 2B revealed that [M + H] of △3-isomer of CEQ appeared

in the full scan of ESI, and the proposed fragmentation pathways

of △3-isomer of CEQ in the positive ion mode were depicted in

Figure 3A. Based on the above reason, the D1 was identified as

△3-isomer of CEQ.

For D2, CID produced product ions m/z 396.058, m/z

134.096, m/z 368.048, m/z 352.053, and m/z 324.058, which

were similar to those of CEQ, butm/z 167.027 was not found,m/z

293.041 and 276.015 were found instead. Overwhelming studies

have indicated that m/z 293.041 was the typical fragment ion for

the E-isomer of cephalosporin with lower antibacterial activities

(Hu et al., 2005; Wang et al., 2006b; Yu et al., 2017). For the

E-isomer of cephalosporin, the methoxy group of the oxime

function was easy to lose, because it is difficult to form an N-O

hydrogen bond with amines which is far away, resulting in the

generation of m/z 293.041. On the other hand, the methoxy

group of the oxime in CEQ was more closely to amine which

result in the formation of N-O hydrogen bonding, therefore the

m/z 277.045 was generated, Figure 2D revealed that [M + H] of

E-isomer of CEQ appeared in the full scan of ESI and the

proposed fragmentation pathways of E-isomer of CEQ in the

positive ion mode were depicted in Figure 3C. According to the

abovementioned study, we believed that the D2 was the E-isomer

of CEQ.

For the toxicity and biological activity of metabolites, studies

reported that the C-7 and C-3 substituents of cephalosporins are

toxic and antibacterial activity sites, and the structure change of

cephalosporin stereoisomers leads to a change in toxicity and

antibacterial activity (Zhang et al., 2013b; Qian et al., 2018; Han

et al., 2019). According to Figure 2A, the RT of E-isomers is larger

than that of CEQ, indicating that CEQ is more polar than

E-isomers. Due to 2-amino-5-thiazolyl residues at CEQ, there

are two intramolecular hydrogen bonds formed in E-isomer of

CEQ. The distal amine group of the C-7 side chain formed a

hydrogen bond with the carboxylic group on the six-member

ring. At the same time, the amide nitrogen of the C-7 side chain

formed a bond with the nitrogen atom in the thiazole ring. Those

hydrogen bonds forced the E-isomers to adopt a more folded

conformation, resulting in a decrease the polarity and an increase

the passive absorption, which is more likely to give rise to

toxicity. Lots of studies have proved a similar result that the

E-isomer has stronger strength of teratogenicity and

embryotoxicity but lower antibacterial activity (Monguzzi

et al., 1985; Zhang et al., 2013b; Qian et al., 2018; Han et al.,

2019). For Δ3-isomer of CEQ, there is no change at C-7 and C-3

substituents, meanwhile, it has higher polarity than CEQ based

on the RT in reversed-phase liquid chromatography. We guessed

FIGURE 3
The proposed fragmentation pathways of Cefquinome (B), Δ3-isomer of Cefquinome (A), and E-isomer of Cefquinome (C) in the positive ion
mode.
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that the toxicity of Δ3-isomer of CEQ is similar to or lower

than CEQ.

Conclusion

The adsorption of CEQ in agricultural soil and the degradation

kinetics and degradation mechanism under different water

conditions were studied. The average adsorption of CEQ in soil

was 39.92% ± 0.57%. The kinetics of degradation of CEQ was

successfully fitted to the first-order kinetics model. Temperature,

illumination, and pH significantly affected the degradation of CEQ

in the water, and the E-isomer of CEQ and△3-isomer of CEQ were

the major degradation metabolites. These results are helpful to

evaluate the fate and risk of CEQ in the environment.
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