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Mapping the crop type can provide a basis for extracting information on crop

planting structure, and area and yield estimation. Obtaining large-scale crop-

type mapping by field investigation is inefficient and expensive. Traditional

classification methods have low classification accuracy due to the

fragmentation and heterogeneity of crop planting. However, the deep

learning algorithm has a strong feature extraction ability and can effectively

identify and classify crop types. This study uses GF-1 high-resolution remote

sensing images as the data source for the Shuangcheng district, Harbin city,

Heilongjiang Province, China. Two spectral feature data sets are constructed

through field sampling and employed for training and verification, combined

with basic survey data of grain production functional areas at the plot scale.

Traditional machine learning algorithms, such as random forest (RF) and

support vector machine (SVM), and a popular deep learning algorithm,

convolution neural network have been utilized. The results show that the

fusion of multi-spectral information and vegetation index features helps

improve classification accuracy. The deep learning algorithm is superior to

themachine learning algorithm in both classification accuracy and classification

effect. The highest classification accuracy of Crop Segmentation Network

(CSNet) based on fine-tuning Resnet-50 is 91.2%, kappa coefficient is 0.882,

and mean intersection over union is 0.834. The classification accuracy is 13.3%

and 9.5% points higher than RF and SVM, respectively, and the best classification

performance is obtained. The classification accuracy and execution efficiency

of themodel are suitable for a wide range of crop classification tasks and exhibit

good transferability.
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1 Introduction

After years of development, remote sensing technology has

significantly progressed in spatial and temporal resolution.

Advanced space remote sensing technology provides a large

amount of macro- and strong-currency data for monitoring

global and regional environmental changes (Ming et al.,

2005). During 1998–2014, France launched a SPOT remote

sensing satellite with high spatial resolution. Between

2010 and 2017, Sentinel-1A/B and Sentinel-2A/B of the

European Space Agency’s Copernicus program and the

United States Landsat program Landsat-8 will provide free

high-resolution remote sensing images worldwide. China’s

“Gaofen Special Program” launched seven high-resolution

remote sensing satellites from 2013 to 2019 with free access to

data, providing unprecedented opportunities for us to carry out a

wide range of operational applications and research in the field of

environment and agriculture (Kussul et al., 2017). The global

climate crisis will lead to an increase in the frequency and

intensity of extreme weather events, which will have a

negative impact on agriculture and food security (Hasegawa

et al., 2021). The timely acquisition of planting structure

information, estimation of crop planting area, and estimation

of food yield are of great significance to food security (Jin et al.,

2017).

The spatial pattern of crops reflects the planting structure

and characteristics of crops. It is an important basis for

understanding the utilization of production resources,

estimating the potential social and economic impact, and

adjusting the agricultural structure (Xia et al., 2016). A timely

and accurate understanding of crop planting structure,

adjustment, and optimization based on scientific theories and

technologies is of great significance for promoting rational

allocation and sustainable utilization of resources (Hu et al.,

2015). High-resolution remote sensing images have been widely

used for crop classification (Wei et al., 2019; Wang et al., 2020).

Traditional crop classification methods based on machine

learning (such as KNN, RF, and SVM) often require

predesigned features, and the classification results require

further processing (Ünsalan and Boyer, 2011; Yang et al.,

2020). The classification process is complex, the classification

accuracy is generally low, and the complex temporal and spatial

information of high-resolution remote sensing images has not

been effectively utilized (Conrad et al., 2014).

Machine learning is a subset of artificial intelligence, and

deep learning is a new field of machine learning research. Deep

learning uses a multi-layer artificial neural network to perform a

series of tasks, including computer vision and natural language

processing. This is a powerful representation-learning algorithm.

Deep learning obtains multilevel feature representations using

nonlinear modules (LeCun et al., 2015). Compared with

traditional support vector machine (Suykens and Vandewalle,

1999), random forests (Breiman, 2001), and other methods, deep

and abstract features can be extracted. In recent years, a number

of scholars have applied deep learning algorithms to high-

resolution and hyperspectral remote sensing image

classification tasks. Mono-temporal remote sensing image

classification based on convolutional neural network and time

series classification based on recurrent neural network are

currently popular methods. Convolutional neural networks

(CNN) are a type of deep neural network that are specially

used to process two-dimensional shape changes and have made

breakthroughs in image processing, video, speech, and audio

(LeCun et al., 2015). Owing to their ability to discover contextual

features in image classification automatically, CNN has been

widely applied to target detection and semantic segmentation

tasks of high-resolution images (Maggiori et al., 2017). Zhang

et al. (2017a) conducted exploratory research on feature

extraction and classification of medium and high resolution

remote sensing images by deep convolutional neural network.

The 16 m spatial resolution multi-spectral images of GF-1 were

used as experimental data, and the pre-trained AlexNet deep

convolutional neural network model was used for feature

extraction, and SVM was used as classifier (Zhang et al.,

2017a). Marmanis et al. (2018) proposed an end-to-end

trainable deep convolutional neural network (DCNN) model

and performed semantic segmentation tasks on several publicly

available high-resolution aerial image datasets. Jiang and Wang

(2019) constructed a convolutional neural network model for

woodland classification to explore the development potential of

CNN in the field of pixel-level classification of remote sensing

images, and used Tensorflow to construct four different image

patch sizes (m = 5, 7, 9, 11) were used as the input, and the

traditional neural network model—multi-layer perceptron

(MLP) was used as the benchmark to compare the

classification effect and classification accuracy of CNN

classification maps under different image patch sizes. Taking

some small farms in Ghana and South Sudan as study areas,

Rustowicz et al. (2019) established a small-scale agricultural

semantic segmentation data set including peanuts, corn, rice,

soybeans and other crops, and a large-scale agricultural semantic

segmentation data set including peanuts, corn, rice, sorghum and

other crops in Germany, and trained 2D U-net + CLSTM

network model and 3D U-net network model respectively.

Despite the small training set, satisfactory classification

accuracy is still achieved (Rustowicz et al., 2019). Feng et al.

(2022) extracted the spectral features and texture features of

multi-temporal Sentinel-1 radar and Sentinel-2 optical remote

sensing images, designed a classification algorithm of farmland

plastic cover based on multi-core active learning, and realized the

accurate classification of agricultural plastic greenhouse and

plastic film. Belenguer-Plomer et al. (2021) constructed a data

set composed of Sentinel-1 radar data and Sentinel-2 optical data

in the study on extraction of forest fire area. The data set is

composed of 10 study areas with different land cover categories,

and trained a convolution neural network model on this data set.
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FIGURE 1
Sketch map of Sample plot in the study area.
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Finally, a thematic map of the fire area is generated (Belenguer-

Plomer et al., 2021).

Our goal was to design a CNN to perform semantic

segmentation and output crop classification maps using high-

resolution remote sensing satellite images. The remainder of this

article is organized as follows: Section 2 of the study area is

introduced and used to train the model of two datasets; Section 3

explains the traditional classification algorithm based on

machine learning; Section 4 describes the composition of the

CNN unit as well as the methods for the development of CNN

architecture; Section 5 gives the CNN’s training process and

image classification results, at the same time, the performances of

several different classifiers. Finally, the feasibility of using CNN

as a crop classification model is discussed. Section 6 summarizes

the study.

2 Study area and experimental data

2.1 Overview of the study area

The research area was located in Shuangcheng District,

Harbin City, Heilongjiang Province, China (Figure 1). This

area is located in the hinterland of the Songnen Plain and has

a mid-temperate continental monsoon climate. The region is flat,

located 120–210 m above sea level with the geographical

coordinates, 125°41′–126°42′E and 45°08′–45°43′N, covering a

total area of 3,112.3 square kilometers. Autumn harvest crops are

single-season crops, mainly corn, rice, and soybean, among

which the planting area of corn accounts for approximately

90% of the total planting area. Globally, corn is mainly grown

between 50°N and 40°S, and the vicinity of 45°N latitude is the

golden zone for corn cultivation. Shuangcheng District is the

main grain-producing area of corn and is an important

commodity grain production base in China.

2.2 Remote sensing satellite images

The data were obtained from GF-1 multi-spectral remote

sensing image data, the first satellite in China’s Gaofen satellite

series. Satellites have the advantages of combining multiple

resolutions with large widths and short revisit cycles, and

simultaneously realizing the combination of high resolution

and large width on a single satellite, with a 2 m resolution

greater than 60 km and a 16 m resolution greater than

800 km, making it one of the main data sources for

agricultural remote sensing monitoring in China (Li et al.,

2015). In this paper, the 2 m spatial resolution sensor carried

by GF-1 satellite is used as the data source, and three scenes of

multispectral remote sensing surface reflectance data with time

nodes of 10/07/2020, 22/07/2020, and 26/07/2020 are selected as

the test data of the model. The three scenes of data have been

subjected to rapid atmospheric correction (QUAC) and

geometric correction.

2.3 Ground truth

In order to obtain a larger training data set, this study

adopted a practical field investigation combined with a visual

interpretation method; considering the spatial distribution of

crops, transportation is convenient. After the farm plot size

factors, such as the design of four sample plots, the survey

area involves the dual urban 12 towns and 30 villages; these

sampling points of the crop planting structure are relatively

stable. During the field survey, the coordinates of sample

points and crop types were recorded. The visual interpretation

process refers to field survey data and permanent prime farmland

plot data in 2018. Quadrat data and label data were completed in

ArcGIS and ENVI. The data were divided into corn, rice,

soybean, and other ground object types (including buildings,

roads, rivers, wetlands, etc.). Finally, 428 plot-level quadrats were

obtained, and the distribution of pixel numbers and plot

numbers of various types are shown in Table 1.

2.4 Data set

The spectral range of multi-spectral remote sensing

images in the dataset is blue (0.45–0.52 μm), green

(0.52–0.59 μm), red (0.63–0.69 μm) and near-infrared

(0.77–0.89 μm). Two datasets were constructed using the

same data source. In the first dataset, the near-infrared

bands of the GF-1 remote sensing images are removed, and

the remaining three bands (RGB) are normalized, which can

accelerate the convergence speed of the model. The

Normalized Difference Vegetation Index (NDVI) was

extracted from the second dataset and combined with the

first dataset to generate 4-channel samples.

In addition to using the field-measured data of tag data

referring to the information of permanent basic farmland plot

planting crops, in theory, the different crop plot types are

relatively independent, but in practice, the condition of the

same plot to sow crops, with the field-measured data, found a

total of 19 major plots this phenomenon exists. ENVI and

ArcGIS were used to complete the sample plot clipping,

sample plot digitization, and label assignment, and four

sample plots were obtained. Figure 1 shows the locations

and distributions of the ground sample plots. Plots were

randomly selected from four plots, and the data of the

plots were divided into a training set, verification set, and

test set at a ratio of 7:2:1. The data from the training set were

used to train the model, the verification set was used to adjust

the hyperparameters, and the test set was used to evaluate the

classification results.
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3 Traditional machine learning
algorithms

In supervised machine learning methods, we used support

vector machine (SVM) and random forest (RF) as benchmark

models to compare performance with deep learning algorithms.

3.1 Support vector machine

Support vector machine (SVM), first proposed by Corinna

Cortes and Vapnik (1995), is a statistical theory specifically for

small samples. Its unique advantage lies in dealing with small

samples, nonlinear, and high-dimensional data problems, and

many scholars have applied it to remote sensing image

classification tasks. It has proven superior to most other

image classification algorithms in terms of classification

accuracy. SVM is the maximum interval linear classifier

defined in the feature space; however, it can solve the

nonlinear classification problem by mapping the samples to

the high-dimensional feature space. Its decision boundary is

the maximum margin hyperplane solved for the learning

samples (Kotsiantis et al., 2006).

For binary classification problem, suppose there are n

training samples xi, the learning target of the training samples

is yi, and the input data is T = {(x1, y1), (x2, y2),. . ., (xn, yn)}, where

xi ∈ RN is the input variable, and yi ∈ Y = {−1, 1} is the output. If

there is a hyperplane for the decision boundary in the feature

space of the input T (Chandra and Bedi, 2021), then

wTx + b � 0 (1)

In the formula, w is the normal vector, b is the bias, and two

parallel hyperplanes are constructed as the interval boundary at

the decision boundary to determine the category of samples:

wTxi + b≥ 1 , y � 1 (2)
wTxi + b≤ 1 , y � −1 (3)

The positive class is above the upper interval boundary and

the negative class is below the lower interval boundary.

The classification performance of SVM largely depends on

the form and parameter selection of the kernel functions.

Common kernel functions include linear, polynomial, radial

basis function, and sigmoid functions. New kernel functions

can be obtained by using a combination of kernel functions.

3.2 Random forest

The essence of the random forest algorithm is the

combination of multiple decision tree classifiers (Breiman,

2001). Multiple samples are extracted from the original

samples using the bootstrap resampling method. Decision tree

modeling is conducted for each bootstrap sample, and then the

prediction of multiple decision trees is combined to obtain the

final result through voting (Wu et al., 2011). For classification

problem, let the training set be T, first, the Gini index of T is

calculated based on the feature. For the possible value a of feature

A, test the result of A = a. according to the test result, T is divided

into T1 and T2. The Gini index is defined as follows:

Gini(T) � 1 −∑c
i

p2
i (4)

In the formula, c represents the number of categories, and pi
represents the proportion of the number of category i samples to

the total number of samples. It can be seen from the formula that

the smaller the Gini index, the higher the sample purity. When

there is only one category of samples, the Gini index is 0. In

feature a and all possible cut points a, select the feature with the

smallest Gini index and its corresponding cut point as the

optimal feature and cut point, split the current node into two

sub nodes, divide T into two nodes according to the obtained

optimal feature, recursively call the two sub nodes until the stop

condition is met, and finally generate a decision tree (Liaw and

Wiener, 2002).

Random forest adopts an integration algorithm with high

accuracy and can maintain accuracy even if there is a large

amount of missing data. Overfitting does not occur easily owing

to randomly selected samples’ characteristics and some features’

random extraction in the training process (Cutler et al., 2004).

Extensive studies have been conducted on the land cover

classification of synthetic aperture radar (SAR) and multi-

spectral remote sensing data using the random forest

algorithm (Loosvelt et al., 2012; Berhane et al., 2018). Under

limited real ground data, random forest exhibit excellent

TABLE 1 Number of instances of each crop class counted at polygon- and pixel-level.

Crop category Training samples Validation samples Test samples Number of parcels

Corn 4889570 1397020 698510 323

Rice 1004049 286871 143435 83

Soybean 266833 76238 38119 22

Others 3299634 942752 471376 —
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performance in crop classification and usually provide high

classification accuracy with fast calculation speed (Nitze et al.,

2012; Ustuner et al., 2019).

4 Convolutional neural network

4.1 Convolutional neural network
architecture

A convolutional neural network (CNN) is a feedforward neural

network constructed by imitating biological visual perception

mechanisms, widely used in computer vision (LeCun et al.,

2015). Since Lecun proposed the first truly meaningful

convolutional neural network in 1989 (LeCun et al., 1989), the

structure of a CNN is constantly changing, which is reflected in the

network depth on the one hand. Some deeper networks appeared

successively, such as VGG-16 and VGG-19 (Simonyan and

Zisserman, 2014). However, expanding the network width

enhances the convolutional function without increasing the

network parameters, such as Inception (Mordvintsev et al., 2015)

and Xception (Chollet, 2017). A typical convolutional neural

network comprises an input, convolution, pooling, and dense layer.

4.1.1 Input layer
The input layer is the gateway to the network, and it preserves the

original image structure. The original imagemust be pre-processed to

ensure the convergence speed of the network and the training

duration to map the target data to the activation function range.

Common pre-processing methods include de-mean, normalization,

standardization, and PCA dimensionality reduction. Augmentation

of sample numbers with preset transformation rules when training

samples are limited is called data augmentation, which can effectively

prevent overfitting and enhance the network generalization

capability. Traditional data augmentation techniques are realized

by geometric transformation and color transformation of single

samples and other operations. Currently, the popular variety of

data strengthening techniques selects discrete samples in the

training data to fit the distribution of real samples. Methods

SMOTE (Chawla et al., 2002), SamplePairing (Simonyan and

Zisserman, 2014) and Mixup (Inoue, 2018). Data enhancement is

an implicit normalization method that does not reduce the network

capacity, increasing the computational complexity, and adjusting the

hyperparameter engineering quantity.

4.1.2 Convolutional layer
The convolutional layer is the core layer of the network and is

used for feature extraction. It contains multiple feature maps,

each composed of multiple neurons. The convolutional layer is

input with several feature maps, and each neuron is locally

connected to its input (Local Connectivity) (Zhang et al.,

2017b). After the convolution operation, n feature graphs are

output, where n is the number of convolution kernels in the

convolution layer. Local connection and Weights Sharing

(Waibel et al., 1989) are the main features of the

convolutional layer, which can reduce the number of network

parameters and increase the learning rate. Local connections

represent partial connections between output neurons and input

neurons on a single channel of the image, which are only used to

learn local features but represent full connections in the image

depth. Weights of sharing refers to when calculating the neurons

of the same depth slices using convolution kernels is shared, low-

level features are often generalization, have translation

invariance, and the same feature may appear in different

locations in the image. The same convolution kernels can be

used to extract the features and train the sharing weights to

reduce the network number, thus training a larger network

capacity. As shown in Figure 2A is a Multi-layer Perceptron

(MLP) containing three hidden layers (L1, L2, L3). Owing to the

use of the global sensory field, the neurons between layers are all

connected, and each connection has a weight. Figure 2B is a

convolutional neural network, which is composed of

convolutional layers C1, C2 and a fully connected layer F1. C1

has nine neurons (x1, x2... x9), C2 has seven neurons (y1, y2... y7),

F1 outputs four neurons. Due to the use of local sensory fields,

each neuron in layer C2 is only connected with part of neurons in

layer C1, rather than with all neurons, which greatly reduces the

number of network parameters. At the same time, the method of

sharing weights is used between C1 layer and C2 layer, there are

only three different weights (w1, w2, w3), and the weight

parameters of the same set of convolutional operations are the

same, and the number of parameters is further reduced, which

suppresses overfitting to a certain extent.

The number, size, stride, and padding are

hyperparameters of the convolution layer, and the

convolution kernel size usually increases with an increase

in the number of convolution layers (Thoma, 2017). The

stride is the number of rows and columns in which the

convolution kernel slides on the input image. The stride

controls how the convolution kernel convolves the image

and affects the extraction accuracy (Deshpande, 2017). It is

necessary to add the input image to solve the problem of image

edge information loss in the convolution process. Zero

padding is used to fill the “0” value on the boundary of the

matrix to increase the size. The relation between the input and

output of the convolution layer is

O � ⌊ Iw−2pP + Kw

S
+ 1⌋ p ⌊ Ih−2pP + Kh

S
+ 1⌋ (5)

Where, Iw and Ih are the width and height of the input image

respectively, Kw and Kh are the width and height of the convolution

kernel respectively, P is the fill, S is the stride, O is the new image

generated after the convolution operation of the input image I and

the convolution kernel K. Convolution is a linear operation of

multiplying the input image and the convolution kernel element

by element and summation, then:
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O[m, n] � ∑
j

∑
i

I[i, j]K[m, n] (6)

Figure 3 illustrates this process.

The convolutional layer extracts different input features

via a convolution operation. It first extracts low-level features

such as dark and bright areas and then extracts more complex

features such as edges, lines, and angles. With an increase in

network depth, more abstract high-level features are

constructed.

4.1.3 Pooling layer
The pooling layer (the down-sampling layer) uses the

convolutional layer as the input layer to continue feature

extraction. Each neuron in the pooling layer is connected

FIGURE 2
Different number of parameters generated by full connection and local connection.

FIGURE 3
Result of Convolutional with a kernel of size 3 × 3 × 1 with stride = 1 to an image of size 7 × 7 with a single channel.

FIGURE 4
2 × 2 max pooling applied to a feature map of size 4 × 4 with
stride 2.
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to some neurons in the previous layer to reduce the dimension

of the input feature graph while retaining important feature

information. Filter size (F) and stride (S) are the

hyperparameters of pooling, where S∈N>1, F = 2, and S =

2 are commonly used options, and the pooling of large

receptive fields is destructive (CNNs/ConvNets, 2014).

Commonly used methods include max pooling, average

pooling, spatial pyramid pooling, and stochastic pooling

(Zeiler and Fergus, 2013). Maximum pooling has been proven

to be the most effective method. Figure 4 shows an example of

maximum pooling for a feature graph with a depth of one using a

2 × 2 filter.

For the input feature graph Iw × Ih × D, where Iw is the width

of the feature graph, Ih is the height of the feature graph, D is the

depth, the dimension of the output feature graph is Ow × Oh × D,

F is the filter, and S is the stride, then: Ow = (Iw–F)/S + 1, Oh =

(Ih–F)/S + 1, it is not common to use zero fill input for maximum

pooling.

The pooling layer is often inserted between continuous

convolutional layers, and its function is to gradually reduce

the dimensions of the input feature graph (Thoma, 2017). The

pooling layer is important for the entire network.

• Reduce the number of network parameters and

computations to prevent overfitting.

• The output and input feature graphs are almost the same

proportion.

• Enable the network to extract certain characteristics.

• Compress features but retain some invariant features such

as translation or distortion.

4.1.4 Dropout
Dropout is a regularization method that can effectively

prevent network overfitting for the following reasons (Hinton

et al., 2012):

• Do not change the depth or width of the network.

• In iteration, some neurons are randomly inactivated with

probability p (p is usually set to 0.5), and the remaining

(1—p) ×m neurons are used to train the network, wherem

is the total number of neurons, to reduce feature

redundancy.

• The random selection of neurons makes the updating of

weights no longer depend on the joint action of implicit

nodes with fixed relationships, which weakens the joint

adaptability between neuron nodes and alleviates

overfitting.

The dropout method makes the drop probability of

neurons follow the Bernoulli distribution of probability p.

Dropout is short for the standard dropout proposed by Hinton

et al. (2010). There are many variations in the dropout

methods. DropConnect, proposed by Wan et al. (2013),

applies the dropout strategy to weights and biases, forcing

the network to adapt to different connections during each

training while giving up dropout on neurons. Ba and Frey

designed another standard dropout method, Standout (Ba and

Frey, 2013). The probability p of neuron inactivation is not

constant but adaptive according to the weight. Wu and Gu

proposed the Pooling Dropout, and directly applied the

Bernoulli mask to the kernel of the largest Pooling layer

FIGURE 5
When p = 0.5, the Standard Dropout activates only 50% of the neurons, and DropConnect sets 50% of the weights to zero.
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before the Pooling operation. Figure 5 compares the Without

Dropout, Standard Dropout and DropConnect.

4.1.5 Activation functions
The activation function is introduced to provide the

network with the learning ability of nonlinear mapping to

solve the nonlinear classification problem. The learning ability

of a linear function is limited, and the nonlinear relationship

between the input and output cannot be fully represented in

the face of complex data types such as images and videos. As

the convolution operation is linear, a neural network without

an activation function is equivalent to a multi-layer

perceptron (MLP). A neural network with an activation

function can better solve the complex classification

problem. Common activation functions are listed in Table 2.

s(x) is the output of the sigmoid function, s(x) ∈ (0, 1), and
s(x) is symmetric, with s(x) = 0.5. It is often used in

dichotomous problems and is prone to gradient explosion

or gradient disappearance in deep neural networks. The tanh

function is a variant of a sigmoid function. With 0 as the

center, tanh(x) ∈ [−1, 1]. Tanh also suffers from the problem

of gradient disappearance. When x≤ 0, ReLU outputs 0; when

x > 0, ReLU outputs x. ReLU can prevent gradient

disappearance and accelerate network training, which is

suitable for image-classification tasks. The softmax output

is the discrete probability of the object being classified into

different categories. The sum of all probabilities is 1, m is the

number of categories, k ∈ (0,m], i represents a certain category

in k, and gi represents the probability of this category.

There are:

Pi � egi

∑m
k e

gk
(7)

∑m−1

i�0
Pi � 1 (8)

Maxout divides the input z into i groups and outputs the

maximum value in each group. Unlike a conventional activation

function, Maxout is a piecewise linear function that can be

learned, and such local linearity strengthens the fitting ability

of the network (Goodfellow et al., 2013). Experiments have

shown that Maxout is closely related to pooling operations,

and the combination of dropouts can effectively improve the

network performance (Montúfar et al., 2014).

4.1.6 Dense layer
All dense layer neurons connected with all of the previous

layer neurons, the connection layer integration convolution

layer or pooling of category-distinct local information, will

learn the convolution and pooling “distributed characteristic

said” mapped to the sample tag space. The last full

connection layer will be the output value passed to the

softmax classifier to classify (Zhou et al., 2017). Owing to

the characteristics of a full connection, the number of

parameters in the full connection layer is very large.

Taking AlexNet (Krizhevsky et al., 2012) as an example,

the number of parameters in the three fully connected layers

accounts for 96.2% of the total network parameters.

4.2 Convolutional neural networks blocks

4.2.1 Inception and xception
Unlike VGGNet, the GoogLeNet series enhances network

performance by increasing the network depth. Unlike VGGNet,

GoogLeNet uses Inception architecture to enhance the network

width and improve the network performance by increasing the

network complexity while reducing the network parameters.

Inception uses convolutional kernel units of different scales to

convolute or pool the input feature maps and then connects and

outputs feature maps of different receptive fields. Figure 6

illustrates the topology of Inception-V3.

In Figure 6, all convolution units use 1 × 1 convolution kernel

for dimensionality reduction, feature graphs process and

reaggregate output at different scales, and the normalization

method, batch normalization (BN), standardizes the output of

each layer, which enables a higher learning rate and accelerates

network training.

Xception improves Inception-V3 and proposes depth wise

separable convolutions, whereas Inception-V3 divides the

channel into four groups to perform 1 × 1 convolution

computation. Xception performs a 1 × 1 convolution

calculation for each channel’s feature graph and then joins the

feature forces. The completely decoupled channel correlation and

spatial correlation (are shown in Figure 7). Xception has the same

number of parameters as Inception-V3 but performs better, and

network parameters are used more efficiently (Chollet, 2017).

4.2.2 Residual blocks
The residual network solves the problem of network

degradation with an increase in network depth. By

superposing residual blocks, the accuracy of the network can

be improved, even when the network depth is significantly

TABLE 2 Commonly used activation functions.

Name Function f(x) Range of values f9(x)

Sigmoid 1
1+e−x (0, 1) 1

1+e−x − ( 1
1+e−x)2

Tanh tanh(x) = ex−e−x
ex+e−x [−1, 1] 1- tanh(x)2

ReLU max (0, x) (0, +∞) { 1 if x > 0
0 if x≤ 0

Softmax σ(z)j � ezj∑K

k�1e
zk

[0, 1]K
σ(z)j · ∑

K

k�1e
zk −ezj

∑K

k�1e
zk

Maxout hi(x) � max zij (−∞, +∞) { 1 if xi � maxx
0 otherwise
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increased. The core concept of the residual network is that a skip

connection is used in the internal residual block. The information

in the feature graph gradually decreases with increasing network

depth, and the jump connection enables the features of the

shallow layer to be transmitted to deeper layers, thus

alleviating the gradient disappearance caused by the increase

in depth in the shallow neural network (He et al., 2016a). The

residual network provides two types of mappings, as shown in

Figure 8. One is identity mapping (left part), and the other is

residual mapping (right part).

Xl is the input, and Xl+1 is the output, then:

Xl+1 � Xl +H(Xl,Wl) (9)

The features of Xl+1 layer are composed of Xl and residual

function mapping H. Deep neural networks can be constructed

through residual block stacking, such as ResNet-101 and ResNet-

152. In the network training process, if the optimal is achieved,H

is set to 0, and only the identity mapping part is retained.

Network performance did not decrease with increasing depth.

4.2.3 Dense blocks
Dense blocks are collections of convolutional layers. Within

each block, all convolutional layers are directly connected, and

the input of each convolutional layer is the union of the output of

all previous convolutional layers, which enhances the repeated

use and transmission of features to ensure maximum

information flow between layers in the network. Conventional

convolutional neural networks have L connections for L layer,

whereas dense blocks have (L (L + 1))/2 connections (Huang

et al., 2017). Dense blocks refer to the idea of Inception and

Residual Blocks. In the horizontal structure, that is, within each

block, the superposition of the convolution layer increases the

FIGURE 6
The topology of Inception-V3.

FIGURE 7
Perform the 3 × 3 convolution on each channel of the 1 ×
1 convolution.
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width of the network, and the features are merged before the

output. The skip connection design was used at the network

depth as a reference. Feature propagation is enhanced by having

each layer accept the output of all the layers before it. The Dense

block is calculated as follows:

Xl � Hl ([X0, X1, . . . , Xl−1 ]) (10)

where [] represents the feature map from layers X0 to XL-1

combined. Hl is a nonlinear transformation implemented by

Batch Normalization, activation function ReLU, and convolution

calculation.

With an increase in the network depth, the dimension of the

feature map increases significantly. To solve this problem, a

transition layer, composed of a convolution layer and a

pooling layer, is used to connect the adjacent dense blocks.

The 1 × 1 convolution and 2 × 2 average pooling layers

reduce the number of feature channels. Figure 9 illustrates the

DenseNet with three dense blocks.

5 Experiments

5.1 Experimental settings

The experimental design focused on the dataset, classification

model selection, and model training method. First, two datasets

were constructed based on the same data source to use the prior

knowledge of multi-spectral remote sensing images fully. Second,

on the classification model, we designed a convolutional neural

network semantic segmentation model, CSNet, based on a deep

learning algorithm, and compared it with the traditional machine

learning algorithm.

5.1.1 Satellite data
Section 2.4 explains the differences between the two datasets

used in this study. In the image classification task based on neural

networks, the image data of the three channels are more common

at the input layer. By modifying the input-layer structure, the

network can support the data input of more channels.

The vegetation index (VI) is an important parameter for crop

growth analysis and is widely used in agricultural fields. NDVI,

which can measure the photosynthetic active biomass of plants,

has been used by many researchers for dynamic monitoring of

crop growth and crop classification (Zhang et al., 2011; Dimitrov

et al., 2019; Solano-Correa et al., 2019; Zheng et al., 2021a; Zheng

et al., 2021b; Li et al., 2021). Prior feature maps were constructed

by adding NDVI to the RGB + NDVI datasets. The purpose was

to realize a multichannel feature combination.

5.1.2 Support vector machine classifier and
random forest classifier

The SVM and RF are representative non-deep-learning

algorithms. For SVM and RF, we used the Python

programming language and SciKit-learn (Scikit-learn, 2018)

library for implementation. The hyperparameters control the

model fitting. For the same dataset, each classifier has an optimal

combination of hyperparameters. Experience-based tuning is

suitable for a small number of hyperparameters, and when

there are many hyperparameters to be tuned, this manual

setting method is inefficient. Scikit-learn provides two

automatic hyperparameter optimization methods, random

search (RS) and grid search (GS), to improve the efficiency of

hyperparameter optimization. The former uses random sampling

to obtain the best combination, and the latter cross-validates all

candidate hyperparameter values to reserve the combination

with the highest score. Experiments have shown that RS is

more efficient than GS (Bergstra and Bengio, 2012; Tian et al.,

2019; Tian et al., 2020; Chen et al., 2021). For the same number of

searches, RS will try more values than GS. The RS method was

FIGURE 8
Residual block He et al. (2016b).
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adopted in this study, and the hyperparameter optimization

results of the SVM and RF are listed in Table 3.

The SVM selects the radial basis function kernel as the kernel

function, and RS selects c = 10 and gamma = 0.1 as the optimal

hyperparameter combination. According to the importance of

RF hyperparameters, the selection results of RS are listed in

Table 3, where the number of RF spanning trees (n_estimators) is

200, and the maximum split number of each tree (max_depth) is

15. To prevent overfitting of the model due to unbalanced sample

categories, the training parameter of the category weight is set to

a weight that is inversely proportional to the number of sample

categories so that each category has the same contribution.

The input of the above two machine learning algorithms is a

comma-separated Values (CSV) file. We used Python to convert

the two data sets mentioned in Section 2.4 into CSV files

respectively. For RGB data sets, the CSV storage format is red

band, green band, blue band and crop category labels. For RGB +

NDVI dataset, the storage format in CSV is red band, green band,

blue band, NDVI and crop category label.

5.1.3 Fine-tuning ResNet
With the development of deep learning technology and the

support of high-performance GPU and large datasets, many

convolutional neural networks with excellent architectures

have been proposed. The error rate on ImageNet (Li et al.,

2022) has been continuously reduced. These networks have

been widely applied to various computer vision tasks with

stronger feature expression abilities. The backbone refers to

the shared structure of various convolutional neural network

models, such as VGGNet, ResNet, and DenseNet. ResNet won

the champion of image classification, image localization and

image detection in the Imagenet large-scale visual recognition

competition in 2015. Its proposal is considered by many scholars

as a milestone event of the deep learning algorithm. The network

can improve the accuracy by adding a considerable depth. The

internal residual block uses jump connection, which alleviates the

gradient disappearance problem caused by increasing depth in

the deep neural network. It has more powerful feature extraction

ability and strong universality, and is widely used in remote

sensing image classification (Deng et al., 2009; Kim et al., 2014;

He et al., 2016a; Cao and Zhang, 2020; Hao et al., 2020; Tian et al.,

2021a; Tian et al., 2021b). In this study, we choose resnet-50 (He

et al., 2016a), a deep residual network containing

50 convolutional layers, and its two variants, backbone, which

we call ResNet-B (Szegedy et al., 2016) and ResNet-C (Gao et al.,

2021).

Model fine-tuning and feature extraction complement each

other for the new data set. Though the model fine-tuning

advanced the training with custom network convergence,

which is a more commonly used method, even minor

adjustments may produce a significant effect on the

performance of the model. In this experiment, we used the

two popular ResNet adjustments. Figure 10A shows the

downsampling block of the ResNet residual block. In part A

of Path, the convolution kernel size is 1 × 1 with stride 2, so only a

quarter of the information of the input feature graph is retained.

The stride of the first convolution layer was changed to one in

ResNetB to retain all the input feature graphs. The stride of the

second 3 × 3 convolutional layer was changed to two, and the

output shape of Path A remained unchanged in the modified

structure, thus retaining more characteristic information.

Figure 10B shows the structure of ResNetB. ResNetC changes

Path B of resNET-50’s downsampling block and replaces the

original convolutional layer with a convolution kernel size of 1 ×

1, stride 2 into an average pooling layer with a pooling size of 2,

stride of 2, and a convolution kernel size of 1 × 1. For the

FIGURE 9
The feature map in the dense block has the same size, and the transition layer completes down-sampling.

TABLE 3 The hyperparameters and candidate values of the SVM andRF
classifier are optimized on both datasets using the RS method.

Classifier Hyper-parameter Candidate values Selected

SVM C {0.1, 1, 10, 100} 10

gamma {0.01, 0.1, 1, 10, “auto”} 0.1

RF n_estimators {200, 300, 500, 800} 200

max_depth {5, 7, 10, 15, 25, None} 15

min_samples_split {2, 3, 5, 10, 20, 50} 3

min_samples_leaf {1, 3, 5, 7, 10} 1

max_features {“auto”, “sqrt”, “log2”} “sqrt”
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convolution layer with stride 2, this modification retains all the

input feature maps, as shown in Figure 10C.

In this study, we designed a convolutional neural network

CSNet based on an encoder-decoder architecture for the

semantic segmentation of crops. The encoder used the three

residual networks listed in Figure 10 as the backbone to extract

features. In the decoder part, deconvolution and upsampling are

used to recover the spatial information lost in the encoder

gradually. Finally, Softmax outputs the probability values of

the different categories for each pixel. The network

architecture is shown in Figure 11.

Before deep learning model training, the two datasets

mentioned in Section 2.4 were preprocessed respectively. We

randomly cropped 256 × 256 images from four sample plots in

the dataset as the input of the model, the resolution of the input

image is 256 × 256. The images cropped from the two datasets

have the same resolution, but the number of channels is different.

This is done in the Python language through the OpenCV library.

FIGURE 10
The architecture of ResNet-50 and ResNetB and ResNetC. (A) ResNet-50 (B) ResNetB (C) ResNetC.

FIGURE 11
Architecture of the CSNet model.
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In the encoder part, for the RGB data set, each image has

three channels, and the shape of the input is (256, 256, 3); for the

dataset with the NDVI feature, each image has four channels, and

the shape of the input is (256, 256, 4). We deleted the global

average pooling layer and dense layer from the backbone. After

Stage 4, a convolution layer with a 3 × 3 convolution kernel size

and stride of one was added. Then, a BN layer was then added

with ReLU as the activation function. In this case, the number of

feature graph outputs from the model was the same as that from

Stage 4. The output shape is (8, 8, 2048). In the decoder part, we

added a convolutional layer and a BN layer to obtain the same

number of output channels as the number of crop categories in

the mission, with output shapes of (8, 8, 4). Then, upsampling

was performed using two deconvolution units. In the first

deconvolution unit, the number of channels output by Stage

3 is the same as the number of crop categories by adding a

deconvolution layer and a BN layer. Deconvolution with a 3 ×

3 convolution kernel size and stride 2 was used to up-sample the

input to (16, 16, 4). Finally, the deconvolution output is added to

the output of Stage 3, and the result is inputted to the next

deconvolution unit. In the second deconvolution unit, the

calculation process was the same as the first deconvolution

unit, except that Stage 3 was replaced by Stage 2, and the

output shape was (32, 32, 4). At the end of the model, the

up-sampling layer and activation function softmax were used to

up-sample the output results of the second deconvolution unit

eight times and restore the image to the input size of 256 × 256.

The output shape was (256, 256, 4), where four is the probability

that each pixel is divided into four categories.

We used the Keras deep learning framework and TensorFlow

as the backend to realize CSNet. The CSNet of different

backbones uses the same hyperparameters in the two datasets

to conduct experiments. The optimizer uses the adaptive learning

rate algorithm Adam (Kingma and Ba, 2014). The initial learning

rate was set to 1 × 10−4, and the learning rate was attenuated to

1 × 10−5. The loss function adopts the widely used categorical

cross-entropy, and the batch size was set to 15. The model was

trained for 200 epochs on each dataset. Early stopping is a

method used to avoid network overfitting. When the

performance of the model on the verification set does not

increase, training can be stopped in advance. In the

experiment, model training was stopped when the maximum

accuracy was not reached in 30 consecutive epochs, and the

model with the best performance was saved on the test set.

Figure 12 shows the training process for obtaining the highest

classification accuracy on the two datasets for the three different

backbone CSNet models. With an increase in the number of

iterations, the model converges rapidly, the classification

accuracy gradually improves, and no fitting occurs. Owing to

the use of early stopping, CSNet (resnet-50) and CSNet

(ResNetB) stopped training after iterating 140 epochs and

160 epochs on the RGB dataset. Simultaneously, we applied

FIGURE 12
(A–C) The training process of CSNet (ResNet-50), CSNet (ResNetB), CSNet (ResNetC) on RGB dataset. (D–F) The training process of CSNet
(ResNet-50), CSNet (ResNetB), CSNet (ResNetC) on RGB + NDVI dataset.
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the data enhancement strategy of the Keras framework to expand

the samples randomly in the input layer of the model. During

model training, we noticed that the errors in the validation set

could be significantly reduced by using data augmentation, with

the total training duration of the model being up to 800 h. The

operating environment used an Intel Xeon E5-1650

V4 processor, an NVIDIA Quadro P4000 GPU, and 64 GB of

memory.

The overall accuracy (OA), kappa average coefficient, and

mean intersection over union (MIoU) were used as the

evaluation indicators to evaluate the performance of all

classifiers.

5.2 Results

GF-1 data processed in Section 2.4 were taken as input. The

machine learning algorithm (RF and SVM) in Section 3 and the

CSNet model proposed in this paper were used for classification,

and each classifier was cross-verified five times. The test results

and indicators for the two datasets are listed in Table 4.

The classification results show that, for the same classifier, the

average classification accuracy of the RGB + NDVI dataset is

slightly better, indicating that adding NDVI features helps

improve the classification accuracy. For different classifiers,

the performance of SVM was slightly better than that of RF,

and the performance of the three classifiers based on the deep

learning algorithm was better than that of the machine learning

algorithm. CSNet, which uses ResNetC as the backbone, achieves

the highest classification accuracy in the RGB + NDVI dataset.

The results were 13.3 and 9.5 percentage points higher than those

of RF and SVM and 5.6 and 0.6 percentage points higher than

those of CSNet (ResNet-50) and CSNet (ResNetB), respectively.

Figure 13 shows that the classification results of RF and SVM

on the two data sets are discontinuous, with unclear boundaries,

obvious misclassification of corn and background, and a big gap

between the precision and the classification results of a deep

learning algorithm. In model training, RF and SVM can quickly

fit sample data, but the prediction efficiency is low. The deep

learning model takes a long time to train, and the average training

time of the model used in this paper is about 40 h. Semantic

segmentation is pixel-level classification, which can predict the

whole image, making it more efficient. Thanks to the powerful

feature extraction capability of the residual network, CSNet of

three different Backbone has achieved good classification effect

and high classification accuracy on two data sets. With a clear

plot boundary, few noise points and relatively few error

classification areas, it has achieved the highest classification

accuracy of 89.7% on RGB data sets. In the RGB + NDVI

data set, CSNet (ResNetC) achieved the highest classification

accuracy of 91.2%, and OA, Kappa and MIoU indexes were the

highest. By comparing (c) and (h), (d) and (I), it can be found

that, for RF and SVM, relatively few backgrounds in RGB +

NDVI data sets are misclassified into crop categories, which is

caused by the enhanced sensitivity of NDVI to low vegetation

density coverage areas. This phenomenon also exists in CSNet,

but it is not obvious. The classification results of CSNet

(ResNetC) on the RGB + NDVI data set are shown in

Figure 14, see Figure 13 for legend. There is no obvious

stitching trace in the crop distribution map, and the spatial

distribution of corn, rice and soybean, as well as the

background of buildings and roads, can be identified visually.

5.3 Discussion

The research in this study shows that high-resolution remote

sensing data are suitable for crop classification, and the

introduction of NDVI as an auxiliary feature variable can

improve classification accuracy. Based on a comparative

analysis of traditional machine learning algorithms such as RF

and SVM, we built CSNet, a semantic segmentation network that

TABLE 4 Over accuracy, kappa averaged (±one standard deviation) and MIoU for every classifier.

Classifier Dataset OA Kappa MIoU

RF RGB 74.7% ± 0.5% 0.735 ± 0.007 0.613 ± 0.005

RGB + NDVI 77.3% ± 0.6% 0.743 ± 0.012 0.622 ± 0.003

SVM RGB 76.6% ± 1.3% 0.758 ± 0.005 0.636 ± 0.005

RGB + NDVI 79.8% ± 0.9% 0.762 ± 0.009 0.641 ± 0.012

CSNet (ResNet50) RGB 83.4% ± 1.3% 0.835 ± 0.008 0.801 ± 0.006

RGB + NDVI 84.1% ± 1.5% 0.848 ± 0.007 0.809 ± 0.011

CSNet (ResNetB) RGB 87.7% ± 0.8% 0.855 ± 0.015 0.811 ± 0.012

RGB + NDVI 88.8% ± 1.8% 0.864 ± 0.020 0.816 ± 0.016

CSNet (ResNetC) RGB 88.5% ± 1.2% 0.869 ± 0.008 0.823 ± 0.010

RGB + NDVI 90.6% ± 0.6% 0.878 ± 0.014 0.825 ± 0.009

The bold values mean the highest classification accuracy.
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can identify crops at the plot scale. Both the traditional machine

learning and advanced deep learning algorithms achieved good

classification results on the two datasets. The overall accuracy of

the deep learning algorithm was greater than 80%, and the kappa

coefficient was greater than 0.8. The experimental results show

that the CSNet model is suitable for cropmapping and estimating

crop planting area and is an effective supplementary method for

crop surveys.

The model of classification performance is largely

dependent on the amount and type of training samples

(Wang et al., 2019), the main crops are corn, rice, and

soybeans, among which the former two crops planting area

of more than 90% of the total sown area; the planting structure

of soybean field sampling work has brought the difficulty, also

led to the sample not being balanced, making the model easy

to fit, and problems with poor generalization ability.

Therefore, we used the following two methods to solve the

sample imbalance problem: During model training, a data

enhancement strategy was used in the model input layer to

expand the categories with fewer samples. Simultaneously, the

sampling strategy is modified to increase the selection

probability of categories with fewer samples. We also found

crops such as wheat and Chinese medicinal materials during

the field sampling process. According to the years of statistical

FIGURE 13
Comparison between machine learning algorithm and deep learning algorithm for image classification. (A) The original data. (B) Ground truth.
(C–G) Results of RF, SVM, ResNet50, ResNetB, ResNetC based on RGB dataset, (H–L) Results of RF, SVM, ResNet50, ResNetB, ResNetC based on
RGB + NDVI dataset.
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data, the sown area of these crops is less than 1% of the total

sown area. Therefore, these crops are classified as background,

which is also one of the reasons for the large background areas

in the middle of the individual plots.

With the development of sensor technology, satellite data sources

with high resolution and high temporal and spatial resolution in

agricultural areas are becoming increasingly abundant, increasing the

ability to obtain remote sensing satellite data in large agricultural

areas. In deep learning, when the conditions of the application

scenario are similar, one can learn by migration (Pan and Qiang,

2010), the parameter and the knowledgemigration, using the training

model to support the new task in this trial. We also tried applying the

CSNet model to study areas near other agricultural regions and

achieved a higher classification accuracy, especially when remote

sensing satellite data are similar in time.

6 Conclusion

In this study, GF-1 images were used as data sources to

construct two datasets of crops in agricultural areas: RGB and

RGB +NDVI. Traditional machine learning algorithms and deep

learning algorithms were compared and analyzed. CSNet, a

semantic segmentation network for crop classification, was

proposed to realize fine crop remote-sensing classification.

The main conclusion are as follows.

1) The overall classification accuracy and classification effect of

the deep learning algorithm were better than those of the

machine-learning algorithm. Fine-tuning can affect the

feature extraction ability of the backbone network, thus

affecting the model performance. According to the

FIGURE 14
The classification result of CSNet (ResNetC).
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accuracy evaluation results, the CSNet of the backbone

network using ResNetC with fine-tuning has the highest

classification accuracy. It can reach 91.2%. In terms of the

classification effect, the classification results of the deep-

learning algorithm were more precise.

2) Compared with the classification accuracy of all classifiers on

the two data sets, it can be seen that the addition of NDVI

features helps improve the classification accuracy of crops,

especially for machine learning algorithms, but the model

performance improvement is limited for deep learning

algorithms.

3) The system constructed in this study can effectively improve

the classification accuracy of crops, and the pre-training

model can be applied to a wider range of crop recognition

tasks in agricultural areas through transfer learning,

providing a reference for the real-time acquisition of crop

planting structure information in agricultural areas.
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