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The velocity field in coastal and oceanic currents is mostly non-uniform, which

will result in irregular particle distribution when the fluid is represented by an

amount of moving discrete particles as in smoothed particle hydrodynamics

(SPH). When the non-uniformity of the flow is big, i.e., with large deformation,

the conventional SPH method can hardly solve the associated advection-

diffusion process (e.g., substance transport). To accurately simulate the

substance transport in flows with large deformation, two types of particle

shifting techniques (PSTs) are incorporated into the conventional SPH in this

paper. One is based on current particle distance, and the other is based on Fick’s

law. In the second type, the repulsive force (RF) term for suppressing the paring

instability that occurs in particle shifting technique (PST) is studied and the effect

of the kernel function is examined. By introducing a particle disorder

measurement, the simulated results of SPH with the two types of PSTs and

their modifications are evaluated and the influence of the shifting magnitude is

analyzed. The suggestions for how to set reasonable parameters in PSTs are

provided by a systematic parametric study. For further illustration, the

simulation of the anisotropic diffusion is also examined. To give reliable

reference solutions, the high-resolution modified total variation diminishing

Lax Friedrichs scheme with Superbee limiter (MTVDLF-Superbee) with fine

mesh is also implemented. The validated Lagrangian particle model with

optimized PST is applied to a practical application.
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1 Introduction

Substances (including sediment, salt and soluble pollutants, etc.) transport in surface

and subsurface water is modeled by the advection-diffusion equation, for which various

numerical methods have been developed (Finlayson, 1992; Ewing andWang, 2001; Wang

and Hutter, 2001; Alhumaizi, 2004). The difficulties to obtain good solutions for
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advection-diffusion equation mainly exist in two aspects. One is

the treatment of the advection term, especially when the problem

is advection dominated, and the other is that there exist steep

fronts in the solution. Compared with Eulerian methods, the

major advantage of the Lagrangian methods is that the advective

term is not involved in the Lagrangian form of the advection-

diffusion equation, so that the numerical problems of both

spurious oscillations and diffusion error caused by spatial

discretization of the advection can be easily eliminated,

leading to accurate solutions (Zimmermann et al., 2001; Liu

and Liu, 2006; Devkota and Imberger, 2009). Compared with

mesh-based Eulerian methods, the smoothed particle

hydrodynamics (SPH) is more competitive and attractive due

to its good properties of Lagrange and meshfree. It is considered

to have the competence to tackle intractable problems in the CFD

field, such as big deformation, free-surface and multi-phase flows

(Monaghan and Kocharyan, 1995; Kum et al., 2003; Larbe and

Price, 2012; Monaghan, 2012; Ye et al., 2019; Gu et al., 2022).

However, SPH has two inherent drawbacks, i.e., boundary

deficiency and particle inconsistency, which are still the key

issues for research and application in the SPH society

(Monaghan, 2000; Kum et al., 2003; Ye et al., 2019; Gu et al.,

2022). To solve the governing partial differential equations

(PDEs) using SPH, there are two main procedures. One is the

kernel approximation in continuous form, and the other is the

particle approximation in discretization form. To obtain

reasonable solutions, the kernel needs to satisfy some

requirements, such as normalization of kernel integration,

symmetry of the kernel and anti-symmetry of kernel gradients

(Violeau, 2012). These properties can be well preserved in the

procedure of particle approximation when the particles maintain

regularly spaced, otherwise numerical instability and accuracy

degradation cannot be fully avoided. The conventional SPH has

second-order accuracy for organized particles, while it cannot

even achieve first order as the particles become disorganized (Ye

et al., 2019). This is known as particle inconsistency, which

mainly results from the discrepancy between kernel

approximation and particle approximation when the particles

are irregularly spaced.

SPH is applicable in solving the advection-diffusion and

heat conduction equations, to which some studies have

devoted (Cleary and Monaghan, 1999; Monaghan, 2005;

Aristodemo et al., 2010; Bai et al., 2018; Wang et al., 2019).

Noticing that both of them have identical form in Lagrangian

frame, the discrepancy between them is the zero advection in

heat conduction problems, while attention also needs to be

paid to particle inconsistency when heat conduction couples

with the large deformation flows (Cleary and Monaghan,

1999). Arising from advection, particle disorder affects the

simulation of the diffusion process. Chaniotis et al. (2002)

approximated the diffusion terms by directly discretizing the

second-order derivatives, but this approach is sensitive to

particle disorder, then particle remeshing schemes have to

be added. Most of the studies (Cleary and Monaghan, 1999;

Shao and Lo, 2003; Aristodemo et al., 2010; Ryan et al., 2010;

Chang and Chang, 2017; Zheng et al., 2018) adopted a scheme

that can be regarded as the hybrid of SPH and difference

method. In this scheme, the simulation of diffusion terms

merely includes the first-order derivative approximation of

SPH. Via this hybrid scheme, Cleary and Monaghan (1999),

Aristodemo et al. (2010), Chang and Chang (2017) expressed

the diffusion coefficient in a symmetric form to ensure

continuity of the flux when the diffusion coefficient is

discontinuous and to reduce the influence of particle

disorder. Ryan et al. (2010) also used the hybrid scheme to

handle the diffusion terms in flows with small deformation,

and the focus was on the treatment of the complicated

boundary conditions. Recently, Alvarado-Rodríguez et al.

(2019) improved the consistency of SPH via setting

smoothing length and the number of neighboring particles

relevant to the total number of particles, aiming to simulate

the anisotropic diffusion with irregular particle distribution.

In this paper, the SPH format for diffusion terms differs from

the two methods mentioned above. It is a complete SPH form

and does not directly approximate the second-order

derivatives.

To restore particle consistency, many high-order SPH

methods have been proposed, which are known as corrective

SPH schemes. To enhance the approximation accuracy, the

reproducing kernel particle method (RKPM) modifies the

kernel function by a correction function (Liu et al., 1995; Liu

and Jun, 1998). The corrective smoothed particle method

(CSPM) (Chen et al., 1999; Chen and Beraun, 2000) improves

the conventional SPH on the basis of Taylor series expansion,

whose discretization form is equivalent to the normalization for

the function and its first derivatives. Based on CSPM, the finite

particle method (FPM) was put forward by Liu and Liu (2006),

which approximates the function and its first derivatives

simultaneously and has higher order accuracy than CSPM.

The kernel gradient correction (KGC) (Bonet and Lok, 1999;

Shao et al., 2012) method corrects the kernel gradient by

multiplying the original kernel gradient with an invertible

matrix. This method is easy to code on account of retaining

the structure of conventional SPH. For the ease of choosing

kernel function, the kernel gradient free (KGF) SPH method

was proposed (Huang et al., 2015), whose corrective matrix is

invertible even if the particles are highly disordered, because

the corrective matrix is symmetric. Recently, the decoupled

finite particle method (DFPM) (Zhang and Liu, 2018) was

developed, in which the corrective matrix is diagonally

dominant and it is not necessary to calculate the inverse

matrix particle by particle, so it becomes less sensitive to the

particle disorder. In fact, the high-order SPH methods

mentioned above correct the conventional SPH by some

kernel properties which are satisfied only when the particle

distribution is regular. On that account, the accuracy of these
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algorithms will degrade to some extent when particles are

disordered.

Apart from the corrective SPH methods, some other ones,

namely particle regularization techniques, are also capable of

restoring particle consistency. The XSPH scheme (Monaghan,

1988; Shahriari et al., 2013; Ye et al., 2019) uses the adjacent

particles to calculate the local velocity, by which the movement of

particles tends to mitigate. However, this method may result in

non-physical solutions especially when large velocity gradient

exists. To improve particle consistency, Monaghan (2000)

adopted a repulsive force (RF) term in the equation of motion

to avoid the clumping of particles. Similar to RF, Tsuruta et al.

(2013) employed a stabilizing force to prevent interparticle

penetration. In this work, the same RF term as that of

Monaghan (2000) is brought into particle shifting techniques

(PST) to redistribute particles. The state of the art PSTs gained

much attention in recent years (Nestor et al., 2009; Xu et al., 2009;

Lind et al., 2012; Skillen et al., 2013; Antuono et al., 2014;

Khorasanizade and Sousa, 2016; Huang et al., 2018). They try

to make the particles distribute as uniformly as possible

according to certain rules. Xu et al. (2009) brought the PST

proposed originally in the finite volume particle method

(Nestor et al., 2008; Nestor et al., 2009) into SPH. They

applied this technique to simulate incompressible flows by

coupling with incompressible SPH (ISPH) method. This PST

depends on the calculation of particle distance to decide the

shifting of particles. Lind et al. (2012) proposed another type

of method on the basis of Fick’s law aiming at the

incompressible flows too. Several improvements (Skillen

et al., 2013; Khorasanizade and Sousa, 2016; Huang et al.,

2018) for Xu et al. (Xu et al., 2009) and Lind et al. (Lind et al.,

2012) methods are suggested in succession to stabilize the

PSTs. In this paper, we contribute to the parameter

optimization and stabilities improvement for the PSTs. The

purpose of studying PSTs in this paper is to solve the particle

cavity problem which leads to the failure of the simulation of

advection-diffusion process.

The rest of the paper is organized as follows. Section

2 presents the governing equation and the SPH-based

Lagrangian particle transport model. In Section 3, to deal

with substance transport in large deformation flows, several

typical PSTs are presented. An evaluation method for the

degree of particle disorder is also described. In Section 4, the

Lagrangian particle transport model based on SPH combined

with PSTs is applied to the isotropic and anisotropic diffusion

problems in flows with large deformation, and the results are

compared with the exact and reference solutions. The

performance of different PSTs and the effect of involved

parameters are also evaluated. In Section 5, the SPH

method with optimized PST is applied to a case study to

show its applicability to practical problems. Section

6 summarizes the concluding remarks.

2 Lagrangian particle transport model

2.1 Governing equations

The governing equation for substance transport adopted in

this paper is the two-dimensional (2D) advection-diffusion

equation

zC

zt
+ u

zC

zx
+ v

zC

zy
� k(z2C

zx2
+ z2C

zy2
) (1)

where C(x, y) is the concentration of the substance; u and v are

the velocity of the flow field; k is the coefficient for isotropic

diffusion; x and y are the spatial coordinates and t is time. In

coastal flow, the physical process of diffusion should consider the

longitudinal dispersion and turbulent diffusion at least,

i.e., behaves as anisotropic diffusion. To denote the

anisotropic diffusion, the mixed second-order derivatives

should be included in Eq. 1 as

zC

zt
+ u

zC

zx
+ v

zC

zy
� z

zx
(k11zC

zx
) + z

zx
(k12zC

zy
) + z

zy
(k21zC

zx
)

+ z

zy
(k22zC

zy
)

(2)
where the diffusion coefficients can be symbolized by a tensor

K (K � kij (i, j � 1, 2)).
Note that Eqs 1, 2 are derived for incompressible fluid and

hence the divergence of the velocity is zero. The given velocity

field in Section 4 is consistent with this assumption. The

velocities of the flow field can either be given analytically or

numerically calculated by any suitable methods, which are

supposed to be known here.

With the definition of the material derivative
d
dt � z

zt + u z
zx + v z

zy, the Lagrangian form of Eq. 1 is expressed as

dC
dt

� k(z2C
zx2

+ z2C

zy2
) (3)

on the moving coordinate system

dx
dt

� u and
dy
dt

� v (4)

The Lagrangian form of Eq. 2 can be constructed following

the same way.

2.2 SPH-based Lagrangian particle model

The SPH method is introduced briefly in this section, the

foundation of which is the interpolation theory (Violeau, 2012).

The kernel approximation in continuous form and the particle

approximation in discretization form are its two main

ingredients.
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There are three typical approximation forms for second

derivatives in SPH. They can be directly approximated via the

second derivatives of the kernel (Monaghan, 2005) as

〈z
2C

zx2
〉a � ∑

b
Cb

z2Wab

zx2

mb

ρb
(5)

where mb and ρb are the mass and density of particle b; Cb is the

concentration at position xb;Wab � W(|xa − xb|, h) is the kernel
function and h stands for the smoothing length. The formulation

(5) is sensitive to irregular particle distribution and may lead to

numerical results inconsistent with physics due to instability of

the second derivative of the kernel (Monaghan, 2005).

To circumvent the weakness of Eq. 5, other forms

approximating the second derivatives are developed, among

which the hybrid scheme and the approach presented in this

work have been widely used. By the hybrid scheme (Cleary and

Monaghan, 1999; Monaghan, 2005), the diffusion term can be

discretized as

〈z
2C

zx2
〉a � ∑

b
(ka + kb)(Ca − Cb) xa − xb

|xa − xb|2
zWab

zx

mb

ρb
(6)

in which only the first derivative of kernel is contained. The

formulation (6) can be considered as the hybrid of SPH and finite

difference (Cleary and Monaghan, 1999), hence its stability and

accuracy is vulnerable to be effected by the finite difference part.

In this paper, another scheme for approximating diffusion

terms is applied, in which only first-order derivatives need to be

treated (Jeong et al., 2003; Liu et al., 2020). By this scheme, Eq. 1

can be rewritten by the diffusive flux q (Liu et al., 2020)

⎧⎪⎪⎨⎪⎪⎩
q � −k∇C
dC
dt

� −∇ · q
(7)

Again k needs to be changed into K for anisotropic diffusion.

With this form, the diffusion terms can be solved by

approximating the first-order derivative twice. It is easy to

code and converted flexibly between isotropic and anisotropic

diffusion codes. Better yet, it is a totally SPH based model. The

kernel approximation of the concentration gradient in SPH is

(Liu et al., 2020)

〈∇Ca〉 � ∫
Ω
C(x)∇aWdx (8)

where ∇aW is the kernel gradient with respect to the position of

particle a. To make the discretization form of (8) less sensitive to

particle distribution, the anti-symmetry property of the kernel

gradient (Violeau, 2012)

∫
Ω
∇aWdx � 0 (9)

can be used to extend Eq. 8 as

〈∇Ca〉 � ∫
Ω
C(x)∇aWdx − Ca ∫

Ω
∇aWdx (10)

The particle discretization form of Eq. 10 is

〈∇Ca〉 � ∑
b
(Cb − Ca)∇aWab

mb

ρb
(11)

Note that Eq. 11 can mitigate the particle inconsistency

problem to some degree, although the discretization of Eq. 9

is only true for regularly distributed particles.

Applying Eq. 11 to the first-order derivatives in Eq. 7, the

semi-discretization form of the substance transport equation is

derived as (Liu et al., 2020)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dCa

dt
� ∑

b

mb

ρb
(qb − qa)·∇aWab

qa � k∑
b

mb

ρb
(Cb − Ca)∇aWab

(12)

Note that a similar formulation can be obtained for

anisotropic diffusion, which eases the coding of anisotropic

diffusion process (Liu et al., 2020). Since the diffusive flux is

included, it is also easy to handle Neumann type boundary. The

accuracy of Eq. 12 is the same order as that of Eq. 6 when particles

are regularly spaced (Fatehi and Manzari, 2011). Together with a

time integration algorithm, the above semi-discretization form

and the change of the coordinate can be integrated. For

simplicity, the first-order one-step Euler method is used here,

which gives accurate results if the used time step is sufficiently

small.

Equation 12 has been derived in Liu et al. (2020) with more

details. In that work, the capability of the Lagrangian particle

transport model to handle the grid anisotropic problem,

dominated advection, pure advection and discontinuity have

been validated in the flows with small deformation. Its

accuracy, efficiency and stability were compared with the

mesh-based Eulerian method, and the particle cavity problem

was also recognized. In this work, the SPH-based model is further

applied to substance transport problem in flows with large

deformation. Since the model given by Eq. 12 cannot simulate

the diffusion process when particles are in cavity state, the PSTs

for eliminating particle cavities need to be incorporated, which is

presented below.

3 Particle shifting techniques

When the particles become disordered due to non-uniform

velocity field, SPH cannot accurately approximate the first- and

second-order derivatives (Monaghan, 2000; Xu et al., 2009; Lind

et al., 2012), and PSTs are good remedies. PSTs can be

categorized into two classes. One is based on the distance

between particles (Xu’s approach and its modified ones), and

the other is based on the Fick’s law of diffusion (Lind’s approach
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and its modified ones). The latter ones are more feasible for free

surface flow. In this section, the representative PSTs and their

modified ones are presented. Moreover, a measurement to

evaluate the degree of particle disorder is introduced.

3.1 PST of Xu (Xu et al., 2009)

In Xu’s approach, the particles are shifted in terms of the

distance between the center particle and its neighbors (those in

the support domain of the kernel). On the basis of Tailor series

expansion, the concentration in the new position is

interpolated by

Ca′ � Ca + δraa′ · (∇C)a + O(δr2aa′) (13)

where Ca′ denote the concentration of particle a at the new

position xa′, δraa′ is the distance vector between xa′ and xa, and
δraa′ is the distance between the two positions. Note that Eq. 13

will be adopted to interpolate the concentration in all the PSTs

demonstrated in this paper.

In Xu’s approach, the regulation directing particle

redistribution is given by

δra � −AαRa (14)
Ra � ∑Na

b�1
rab
r3ab

�r2a (15)

�ra � 1
Na

∑Na

b�1rab (16)

whereA is a constant ranging from 0.01 to 0.1, and α � Umaxdt is

the shifting magnitude which is assigned to be the maximum

advection distance. Na is the number of neighbors of particle a ,

rab � xa − xb, rab � |rab|, and �ra is the averaged distance between

particle a and its neighbors. The anisotropic features of particles

are achieved by the summation of unit distance vector rab/rab in
Eq. 15 and the term �r2a/r

2
ab decreases the influence of particles in

far distance. The parameter A should be properly chosen to

restrict the shifting magnitude to a reasonable range, because it

affects both the interpolation accuracy of the concentration and

the degree of particle disorder.

3.2 Modified Xu’s algorithm

In Xu’s approach, Umax in the shifting magnitude is the global

maximum velocity, which increases the shifting distance of particles

with lower velocities. To solve this problem, Khorasanizade and

Sousa (2016) introduced the local maximum velocity. For the

purpose of obtaining appropriate shifting magnitude, i.e., the

product of A and α in Eq. 14, they proposed a set of algebraic

equations, by which the shifting magnitude was determined

ultimately. Replacing Aα with A′, the whole set algebraic

equations is given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a1 � UmaxdtA
a2 � Ulocal

max ,adtA
b � CF�ra
d � max (a2, b)
A′ � min (a1, d)

(17)

where Ulocal
max ,a stands for the local maximum velocity related to

particle a; CF is a constant with the best choice of 0.001. The

anisotropic degree of particles is determined by the parameter d,

and the maximum advection distance is still a limitation for

particle shifting in this modified approach. Its main contribution

is the introduction of the local maximum velocity, which

regulates the shifting distance of slower particles to be

moderate. Due to the ambiguous description of Ulocal
max ,a

(Khorasanizade and Sousa, 2016), it is assigned to be the same

as Ua in Eq. 24 in this work.

3.3 Lind’s approach

In Lind’s approach, the movement of particles is determined

by the gradient of particle concentration. To distinguish the

diffusion process of pollutant concentration in Lagrangian

Particle Transport Model Section from that of particle number

concentration in this section, we use D to represent the particle

number concentration and K for its diffusion coefficient. The

diffusion flux can be presumed to be the number of particles

crossing the unit area in unit time, which means that the flux is

directly proportional to the particle shifting velocity. Define Ps as

the proportional scale between the flux and the shifting velocity

va, then the relation is given by

−K∇Da � Psva (18)

Colagrossi et al. (2012) showed that −∇D can direct particles

to move along the maximum anisotropic direction.

Substituting Eq. 18 into the shifting displacement of particle

a, i.e., δra � vadt, yields

δra � −K/Psdt∇Da (19)

The gradient of particle concentration can be discretized by

SPH as (Lind et al., 2012)

∇Da � ∑
b
Vb∇aWab (20)

where Vb � mb/ρb is the volume of the neighboring particle b.

Monaghan (2000) showed that when Eq. 20 is applied, the

kernel gradient deviates from its physical meaning and will

result in unphysical solution. For instance, the gradient of the

cubic spline is zero in the origin, which will impose unphysical

influence on the results when particle b is close enough to

particle a. Physically speaking, the kernel gradient is supposed

to increase with the decrease of particle distance. To make up

for this kernel deficiency, Monaghan (2000) employed the

term of RF (in fluid dynamics, it is regarded as artificial
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pressure) to eliminate the tensile instability. The expression

for the RF is

fab � W(rab)
W(dx0) (21)

where dx0 is the initial particle spacing. In Lind’s approach, Eq.

21 is employed to calculate the gradient of particle concentration

and Eq. 20 is then modified as

∇Da � ∑
b
Vb(1 + Rfn

ab)∇aWab (22)

The parameters R and n are suggested to be 0.2 and 4,

respectively (Monaghan, 2000). Via the modification, the kernel

gradient is in better agreement with its physical meaning. For

details, Figure 1 can be referred.

Using the symbol K′ � K/Ps to stand for integration of the

scaling constants, the coefficient K′ has similar meaning as

parameter A′ in Eq. 17 and is of great importance to decide

the shifting magnitude. Its value is determined on the basis of von

Neumann stability theory with the expression (Lind et al., 2012)

K′≤Lph
2/dt (23)

where Lp is taken as a constant of 0.5 by Lind et al. (2012), but it

can be different values as tested in Section 4. Note that as the

shifting distance has the possibility to exceed the smoothing

length, Lind et al. (2012) gave an upper limit for it with the

value of 0.2h.

3.4 Modified Lind’s algorithms

Skillen et al. (2013) improved Lind’s approach via the CFL

condition for the purpose of bringing in the local velocity which

makes a similar sense as Ulocal
max ,a in Eq. 17. According to the CFL

condition, the time step should satisfy

dt≤
h

Ua
(24)

in which Ua is the velocity magnitude of particle a. Taking dt �
0.5h/Ua and Lp � 0.5, and substituting them into Eq. 23 yields

K′≤ hUa (25)

Then the local velocity can be used to control the shifting

magnitude. In fact, there should be a dimensionless parameter as

Lp to adjust the shifting magnitude. For the sake of distinction,

this parameter is symbolized by Sp. As the upper limit is not

necessary to be set, the shifting of all the particles satisfies the

Fick’s law, while the shifting distance of some particles is clipped

by 0.2h in Lind’s approach.

Recently, by using the maximum advection distance to

replace one h in Eq. 23 and slightly changing the constant R,

Huang et al. (2018) derived a new formula as

δra � Umaxdt
h

2
∑

b
Vb(1 + 0.24f4

ab)∇aWab (26)

Note that although these PSTs do not strictly preserve

momentum, they are still valuable in solving the particle

inconsistency problem because they have good features in

convergence, accuracy and stability (Lind et al., 2012).

In Figure 1, the original kernel gradient (derivative with

respect to xa) is compared with those with added RF. As

demonstrated above, the portion between the two inflexions

(see Figure 1) does not conform to its physical meaning. If

possible, the smoothing length h should be chosen properly to

make the nearest neighboring particle outside the misleading

portion, otherwise particle clustering will be resulted (Lind et al.,

2012). Physically speaking, the repulsive force between two

particles should become larger when they get closer, while the

kernel gradient indicating that the repulsive force shows the

opposite effect. After the RF term is added, the improper zone

gets narrower and the curve becomesmuch steeper (see Figure 1),

which implies a larger shifting distance and a more flexible

selection of h. In theory, a larger shifting distance can lead to

more regular particle distribution.

3.5 Particle disorder measurement

For judging the performance of different PSTs and the effect of

related parameters, a measurement to evaluate the degree of particle

disorder is presented in this section. The algorithm proposed by

Antuono et al. (2014) is adopted here to figure out the best choice of

parameters in different schemes and to appraise which scheme can

lead to the best consequence in the simulation of the advection-

diffusion process.

In the evaluation of particle consistency, there are two main

steps. The first step is to search the neighbors of particle a in its

support domain Ωa (see Figure 2), and the second is to find the

FIGURE 1
Comparison of the original kernel gradient (cubic spline
kernel, solid line) with the modified ones by adding RF.
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maximum nearest distance among all the sectors which partition

the support domain by specific rules (see Figure 2). In the first

step, the minimum distance r min between particles a and b is

calculated by

r min � min
b∈Ωa

‖xa − xb‖ (27)

In the second step, the sector domain Ψa(n) is defined firstly,
where n is the unit vector to denote its direction. In terms of

proper angle θ (see Figure 2) and sector numbers suggested by

Antuono et al. (2014), θ � 7π/18 and eight sectors are used to

divide the support domain. For the ease of segmentation, the first

sector direction is determined by the vector r min � xa − xb min,

where xb min symbolizes the nearest neighboring particle in Ωa.

The next sector direction needs to plus π/4 since eight sectors

are used. It means that there are certain areas are overlapped

between two adjacent sectors. In every sector region, the

nearest neighboring particle to the center particle a is

searched by

r min(n) � min
b∈Ψa(n)

‖xa − xb‖ (28)

Accordingly, the maximum value Rmin among the eight

minimum distances r min(n) is obtained, which is compared

with r min to judge the anisotropic degree of particles.

The function for quantitating particle disorder is given by

λa � R a
min − r a

min

R a
min + r a

min

(29)

Then the effect of particle inconsistency can be evaluated by

averaging all of λa as

Λ � ∑N
a�1λa
N

(30)

whereN is the total number of particles in the computational domain.

If the distribution of particles is regular, the index Λ is equal to zero,

whichmeans that the closerΛ is to zero, themore regular the particles

are. For more details, one is referred to Antuono et al. (2014).

4 Numerical results and discussion

In this section, we aim to confirm the feasibility of SPH coupled

with PST in solving the advection-diffusion process when particle

cavity problem occurs. An anisotropic rotation flow field with strong

deformation (Pudykiewicz and Staniforth, 1984) is used for

validation. The pure advection simulation is carried out firstly to

illustrate the cavity phenomenon, which still exists even a large

number of particles are used. Under this circumstance, the diffusion

terms cannot be accurately approximated. For eliminating the cavity

problem and regulating the particle distribution, PSTs are added to

the Lagrangian particle transport model (Liu et al., 2020) and a series

of tests are then conducted. Through the numerical experiments, the

efficiency of different PSTs is compared, the factors affecting the

stability of PSTs are optimized, and the accuracy is examined by

comparing with the reference solution of MTVDLF-Superbee. The

performances of PSTs are discussed in detail to guide their possible

application to real engineering problems. The anisotropic diffusion

simulations are also performed to further state the feasibility of the

particle model.

In this test, the flow field is given by the streamline function

ψ � −LVmax

4
(1 − 4x2

L2
) cos(πy

L
) (31)

Then the velocities in x and y directions are

u � dx
dt

� −ψy � −πVmax

4
(1 − 4x2

L2
) sin(πy

L
) (32)

v � dy
dt

� ψx � 2Vmax
x

L
cos(πy

L
) (33)

whereVmax � 3 m/s is used herein. The absolute velocity and the

velocity vector are shown in Figure 3. It is a circulating non-

uniform flow. The computational domain is 0≤ x, y≤ 3200m.

The initial distribution of pollutant is given by the Gaussian as

C(x, y, 0) � exp⎛⎝ − (x − x0)2
2σ2x

− (y − y0)2
2σ2y

⎞⎠ (34)

where (x0, y0) is the center of the pollutant, and (x0, y0) �
(1000m, 1700m) is set in this test; σx and σy are the variance

in the x and y direction, respectively, and σx � σy � 100 are

assigned here. The initial value of the concentration is from 0mg/L

to 1 mg/L, which is assigned for all the numerical experiments in

Section 4 except for the anisotropic case.

FIGURE 2
The schematic of particle disorder measurement.
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FIGURE 3
The absolute velocity (A) and velocity vector (B) for the large deformation flow.

FIGURE 4
Pure advection simulation by SPH: concentration and particle distribution. (A) t = 0 s and 4096 particles, (B) t = 3400 s (roughly one rotation)
and 4096 particles, (C) t = 3400 s and 102400 particles and (D) t = 6800 s and 102400 particles.
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4.1 Advection-diffusion simulation
without PSTs

The pure advection case is simulated to verify the

existence of cavity problem even a large number of

particles are used. First, particles with a uniform spacing

of 50 m (4096 particles) are distributed in the domain (see

Figure 4A). The time step is 2.5 s and the simulation time is

3400 s, which approximately equals to the time needed for

one rotation. As shown in Figure 4B, after one rotation, the

particle distribution becomes highly irregular and some

cavities appear, which is also shown in (Liu et al., 2020).

Note that in the following figures, the color bar means

pollutant concentration unless otherwise mentioned.

A uniform spacing of 10 m (102,400 particles) is then

applied. The results after one rotation are presented in

Figure 4C, where the cavity problem is still evident. After

two rotations, the particle cavity phenomenon gets worse

(see Figure 4D). They indicate that increasing particle

number does not help to remove the cavity problem and

higher computational cost will be caused.

For the advection-diffusion process in the given flow

field, there is no exact solution available. To provide a

good reference solution for comparison and evaluation,

MTVDLF-Superbee method is implemented. In this case,

the initial concentration distribution is smooth and no steep

front forms within the simulation time, for which MTVDLF-

Superbee can achieve second-order accuracy (Wang and

Hutter, 2001). As the diffusion coefficient is assigned to be

20 m2/s, this is a diffusion dominated case, for which

MTVDLF-Superbee gives good reference solutions (Liu

et al., 2020). The grid number is 400 by 400 and the time

step is 0.005 s. The reference solution after one rotation is

shown in Figure 5. On a laptop machine (Core i7-5600U,

2.6 GHz), the CPU time for MTVDLF-Superbee is

roughly 6 h.

In the SPH-based model, 160 by 160 particles are used to

test its performance without PSTs. The smoothing length of

h � 1.5dx is set for the purpose of sufficient neighboring

particles and the time step is 1 s. As the cubic spline

kernel is used, the searching radius is 2h. The simulated

result after 1000 s is shown in Figure 6, where incorrect

concentrations have appeared at the boundary region. The

solution at one rotation cannot be obtained due to the

breakdown of the calculation caused by particle cavities.

Therefore, to obtain correct results for substance transport

in natural flows where both longitudinal dispersion and

turbulent diffusion play a vital role, PST-like measures

have to be taken.

4.2 Advection-diffusion simulation with
PSTs

As it is not necessary to arrange a large number of particles in

view of applying PSTs, the particle number is set to be 64 by

64 for all the tests in this section. For SPH combined with PSTs,

the CPU time is about half an hour. In general, Lind’s PST needs

one-third more time than Xu’s PST because it is based on SPH

approximations, whereas Xu’s PST is just based on a set of

algebraic expressions.

To quantitatively evaluate the SPH results, the L2 norm error

is taken here to measure the discrepancy between the solution of

SPH with PST and the one of MTVDLF-Superbee with finer

grids.

FIGURE 5
Reference solution obtained by MTVDLF-Superbee with grid
number 400 by 400 and dt = 0.005 s.

FIGURE 6
Simulation result of advection-diffusion by SPHwithout PSTs.
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L2 �
[∑N

a�1(Ce
a − Cn

a)2]1/2
[∑N

a�1(Ce
a)2]1/2 (35)

where cea is the exact solution and cna is the numerical solution; N

is the total number of particles.

Moreover, the irregularity index Λ presented in Section 3.5 is

used to judge which method can achieve more regular particle

distribution. For a numerical solution, if both the value of the L2
norm error and the index Λ are the minimum among those for

comparison, it can be judged as the best one. However, they are

used herein mainly to evaluate the performance of PSTs and to

optimize the involved parameters.

4.2.1 Factors affecting the stability of PSTs
1) Paring instability affected by kernel types in Lind’s PST

In Lind’s PST, the paring instability often occurs. To avoid it, the

smoothing length h should be chosen carefully, unless the RF term is

added. Without adding RF, the SPH results with Lind’s PST are

compared in Figure 7 for cases with different smoothing lengths.

Note that the different smoothing length set here is used only in

PSTs, while h � 1.33dx is adopted for the discretization of the

diffusion terms. The pairing instability phenomenon gets more

evident with the increase of h. On the other hand, when the

RF is added, no matter what h is chosen, no pairing instability

appears;see Figure 8. It means that adding RF can avoid pairing

instability.

As mentioned in Section 3.4, the misleading portion of the

kernel gradient should be narrow to alleviate the paring

instability, from which aspect the Wendland type kernel (see

Figure 9) is termed to be a better option (Dehnen and Aly, 2012;

Alvarado-Rodríguez et al., 2019). Since the paring instability only

occurs in PST and the simulation of diffusion is free of it, only the

cubic spline kernel is replaced by Wendland. For ease of

comparison, the same smoothing length with that in

Figure 8E is used. In the solution obtained with the

Wendland kernel without RF, paring instability has been

completely resolved; see Figure 10. The value of Λ is

0.0622 for Figure 8E and it is 0.0702 for Figure 9, which

means that the performance of the Wendland kernel without

FIGURE 7
Simulation results for one rotation by Lind’s PST with cubic spline kernel without RF in different smoothing length. (A) h = 1.1dx, (B) h = 1.2dx,
(C) h = 1.33dx, (D) h = 1.4dx and (E) h = 1.5dx.
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FIGURE 8
Simulation results for one rotation by Lind’s PST with cubic spline kernel with RF in different smoothing length. (A) h = 1.1dx, (B) h= 1.2dx, (C) h =
1.33dx, (D) h = 1.4dx and (E) h = 1.5dx.

FIGURE 9
Gradient comparison between Wendland kernel and cubic
spline kernel.

FIGURE 10
Simulation results for one rotation by Lind’s PST with
Wendland kernel without RF.
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RF is more or less the same as that of the cubic spline kernel with

RF. Furthermore, when the Wendland kernel is used, R and n in

Eq. 22 and in the modified methods can be removed, which

simplifies the algorithm to some extent.

In Figure 11, the contours of simulated result by Lind’s PST

with Wendland kernel are compared with the reference solution.

For clearness, the concentration profiles along y � 1500 m are

also compared in Figure 11C. The good agreement demonstrates

that the SPH combined with Lind’s PST can perfectly simulate

the advection-diffusion process in flows with large deformation.

In summary, when the cubic spline kernel is adopted, paring

instability appears, unless small smoothing length is applied or

the RF term is added. While when the Wendland kernel is

employed, there is no need to add RF to avoid paring

instability, even a large smoothing length is used.

2) Parameters controlling the shifting amplitude

In Lind’s approach, the shifting magnitude depends on the

value of Lp whose range can be determined by the von

Neumann stability analysis as presented in Section 3.3, and

the recommended value is 0.5 (Lind et al., 2012). In Table 1,

with changing Lp, the variation of the indicator Λ for particle

inconsistency and the L2 norm error are listed. The smoothing

length for PST is taken as h � 1.1dx, 1.33dx and 1.5dx,

respectively. In this section, h is also 1.33dx for the

discretization of diffusion terms. When h � 1.1dx and

Lp ≤ 0.7, its effect on particle disorder and numerical

accuracy is not significant, while when Lp > 0.7, the

numerical accuracy decreases rapidly and the degree of

particle disorder largely increases. Whereas, the limit

becomes Lp � 1.3 when h � 1.33dx and Lp � 1.8 when

h � 1.5dx. Based on the results shown in Table 1, it can be

concluded that the reasonable range of Lp is

related to the smoothing length h, and it expands as h

becomes larger.

To visually show whether the results are stable or not,

several simulations with different Lp and h are exhibited in

Figure 12. When Lp � 1, the concentration distribution has

become distorted for h � 1.1dx, but it is still satisfactory for

h � 1.33dx.

FIGURE 11
Comparison between reference solution and the result obtained by SPH combined with Lind’s PST. (A) Reference solution yielded by MTVDLF-
Superbee, (B) solution of particle scheme (Lind’s PST with Wendland kernel) and (C) concentrations along y � 1500 m.
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In Xu’s approach, the shifting magnitude relies on

parameter A, the range of which is suggested to be

0.01̃0.1 and 0.04 is considered to be the best choice (Xu

et al., 2009). This is tested for the concerned case. The

variation of the indicator Λ for particle inconsistency and

the L2 norm error are listed in Table 2, which shows that no

matter h � 1.1dx or h � 1.33dx is taken, the results are nearly

equivalent. That is to say, A is independent of the smoothing

length h. The indicator Λ tends to be smaller when A gets bigger

and the L2 norm error in all the cases shows subtle distinction. It

demonstrates that the influence of A is not so significant as that

of Lp in Lind’ PST.

TABLE 1 Influence of Lp on particle inconsistency and numerical error in Lind’s PST.

h � 1.1dx Lp 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Λ 0.0419 0.0396 0.0376 0.0326 0.0363 0.0718 0.0867 0.0920

L2(%) 2.88 2.90 2.95 2.82 2.88 22.34 36.35 43.62

h � 1.33dx Lp 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Λ 0.0379 0.0370 0.0344 0.0341 0.0380 0.0777 0.1033 0.1126

L2(%) 2.82 2.85 2.71 2.71 2.67 22.09 46.05 61.53

h � 1.5dx Lp 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

Λ 0.0507 0.0521 0.0515 0.0526 0.0623 0.0818 0.1184 0.1283

L2(%) 2.89 2.86 2.87 2.96 3.20 14.38 51.08

FIGURE 12
Simulation results of SPH combined with Lind’s PSTwith RF in different smoothing length and different Lp. (A) h= 1.1dx and Lp= 0.5, (B) h= 1.1dx
and Lp = 1, (C) h = 1.33dx and Lp = 1, (D) h = 1.33dx and Lp = 1.6, (E) h = 1.5dx and Lp = 1.6 and (F) h = 1.5dx and Lp = 2.2.
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FIGURE 13
Simulation results by Xu’s PST with different A. (A) A = 0.01, (B) A = 0.05, (C) A = 0.1 and (D) concentration profiles along y = 1500 m.

TABLE 3 Comparison of numerical results of different PSTs.

PST Xu Khorasanizade &
sousa

Lind with RF Skillen Huang

A � 0.4 A � 0.4 Lp � 1.2 Sp � 1 Sp � 6 Sp � 10

Λ 0.0835 0.0940 0.0341 0.0786 0.0461 0.0407 0.0742

L2 (%) 3.48 3.73 2.71 3.30 2.84 2.80 3.20

TABLE 2 Influence of A on particle distribution and numerical error in Xu’s PST.

A 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

h � 1.1dx Λ 0.1178 0.0975 0.0875 0.0838 0.0771 0.0765 0.0735 0.0741 0.0715 0.0702

L2(%) 3.76 3.76 3.62 3.43 3.33 3.13 3.05 3.23 3.34 2.97

h � 1.33dx Λ 0.1124 0.0927 0.0866 0.0835 0.0805 0.0773 0.0774 0.0755 0.0767 0.0749

L2(%) 3.81 3.58 3.51 3.48 3.49 3.43 3.39 3.34 3.22 3.15
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The concentration for three typical values of A are shown in

Figure 13. For all the cases, the particle distribution is reasonable.

In Figure 13D, the concentration profiles for different A along

y � 1500 m are compared with that of MTVDLF-Superbee. The

three curves with A � 0.01, A � 0.05 and A � 0.1 show almost

the same difference from the solution of MTVDLF-Superbee,

which is consistent with the error analysis shown in Table 3.

According to the numerical results, it is seen that the

solution of Lind’s PST within stable range is more accurate

and has more regular particle distribution, while Xu’s PST is

more stable. For the key parameter Lp in Lind’s PST with RF,

its stable range is related to the smoothing length h, and it

should be set according to the value of h, otherwise distorted

results might be generated.

3) Encoding details for mixed particle position

The test in this section is only for Lind’s PST. In the above

simulations, the PST is executed after the advection process,

which means that the particle position needs to be updated twice

in each time step. For illustration, two symbols are used to

distinct the particle positions in the current time step n. The

one is na denoting the position after advection, and the other is np
standing for the position after PST. If a particle has been shifted

in the PST, its position np will be updated. When it is searched as

a neighbor, its position np should be used to shift the position of

the center one, while for a particle (belong to the neighboring

particles) whose position has not been shifted, na will be used. All

the results shown above are obtained by using the mixed particle

positions of both np and na.

Note that the PST can be done by solely using na, but it is not

as stable as that using the mixed np and na. This is illustrated

below. In Figure 14, the results are obtained by using Lind’s

approach (with RF) with h � 1.1dx. In Figure 14A, np and na
are mixed to carry out the PST with Lp � 0.4, while only na is used

to shift particles in Figure 14B with Lp � 0.4. The latter result is

seriously distorted and is not correct. Meanwhile, if Lp is set to be

smaller than 0.4, acceptable results can still be obtained by using na
only (see Figure 14C). As shown in Table 1, when mixed particle

positions are used, good results are still obtained for Lp up to 0.7.

This implies that by using mixed particle position in the PST, the

stable range of Lp can be enlarged. In addition, when mixed

particle positions are used, in theory, computation sequence of the

particles decided by the identity number might affect the final

solution, i.e., different ways of ordering particles could lead to

different results in PST. It is because the particles are shifted one by

one in a certain time step according to the identity number and the

shifting distance depends on the position of their neighboring

particles. However, numerical experiments showed that this effect

can be neglected.

In terms of the results presented in this section, mixed

particle positions after both advection and PST should be

used, otherwise the solution will become less stable, if only

particle positions after advection are used.

4.2.2 Results of modified PSTs
To better control the shifting distance, the local velocity of

particles or the maximum advection distance is introduced in the

modified PSTs, which stabilizes the original algorithms and deletes

the upper limit for the shifting magnitude. In this section, the results

of themodified PSTs presented in Section 3 are comparedwith those

of the original ones. The smoothing length h for all the PSTs is still

taken as 1.33dx.

In the PST of Skillen et al. (2013) (modified Lind),

numerical results with three different Sp are computed. In

the PST of Huang et al. (2018), the computation directly

follows Eq. 23. In the PST of Khorasanizade and Sousa

(2016) (modified Xu), the same A is assigned as that in

Xu’s PST. Together with the solutions of the original PSTs

of Xu and Lind, results of the modified ones are listed in

Table 3. Although all the results are not better than those of

FIGURE 14
Simulation results by SPHwith PST using (A)mixed particle position np and na and Lp � 0.4, (B) advected particle position na and Lp � 0.4, and (C)
advected particle position na and Lp � 0.3.
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the original ones, they are all acceptable and the merits of the

modified PSTs stated in Section 3 are still reasonable from the

aspect of theoretical basis.

4.3 Simulation of anisotropic diffusion

Different from the isotropic diffusion cases studied above,

the anisotropic diffusion process brings two mixed derivatives.

In this section, the capability of the developed particle scheme

to simulate the anisotropic diffusion process with different K is

tested.

4.3.1 Transport in uniform flow
The ability of the SPH-based transport model (Eq. 12) to

solve the anisotropic diffusion process is firstly verified by

simulating an example with analytical solution.

The initial distribution of the concentration is also the

Gaussian type and the exact solution is

C(x, y, t) � ΔM

2π
�������������������������������
4t2(k11k22 − k212) + ε4 + 2ε2t(k11 + k22)

√

exp [−x2(2tk22 + ε2) − y2(2tk11 + ε2) + xy4tk12
8t2(k11k22 − k212) + 2ε4 + 4ε2t(k11+k22) ] (36)

where ΔM is the total mass of the substance; ε is related to the

distribution range of the concentration. The coefficient k21
disappears as it equals to k12.

In this case, ΔM is set to be 125,000 g and ε is 400m; the

computational domain is 0≤ x, y≤ 6400m; the central point of

concentration is initially located at (x0, y0) � (3200m, 3200m);
the flow velocity is u � v � 1m/s; and the simulation time is

1500 s. In MTVDLF, the grids are set to be 256 by 256 and dt is

0.025 , while in the particle method, the number of particles is

128 by 128 and dt is 25 s. Two groups of K are assigned to test the

discrepancy between the particle model and the grid method.

One is that the diffusivity of the mixed derivative terms is less

than that of the remaining two terms, i.e., k11k22 − k212 > 0, and
the other is k11k22 − k212 < 0. For the first group,

k11 � k22 � 12m2/s, k12 � k21 � 8m2/s, and for the second

one, k11 � k22 � 8m2/s, k12 � k21 � 12m2/s. The two

occasions denoted the different degree of anisotropic. Since

the mesh method is prone to produce unstable results, such as

FIGURE 15
Results of the anisotropic diffusion under condition of k11k22 − k212 <0. (A) Analytical solution, (B) particle solution, (C) grid solution and (D)
comparison of concentration profiles along y � 4700 m.
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FIGURE 16
Results of the anisotropic diffusion under condition of k11k22 − k212 >0. (A) Analytical solution, (B) particle solution, and (C) grid solution.

FIGURE 17
Simulations of anisotropic diffusion in flow with cavities by (A) grid method and (B) particle method and comparison of concentration profiles
along (C) y � 1500 m and (D) x � 1000 m.
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negative concentration and artificial mixing (Nordbotten and

Aavatsmark, 2005; Mlacnik and Durlofsky, 2006; Yuan and

Sheng, 2008; Dehnen and Aly, 2012), especially when the

degree of anisotropic diffusion is large, we want to verify

whether the SPH-based model is susceptible to tensor K .
The numerical results of the first group are shown in

Figure 15, where the results of both the particle and grid

methods agree well with the analytical solution. For more

clearness, all of them are compared through the concentration

profiles along y = 4700 m; see Figure 15D. With regard to the

second group (see Figure 16), the result of the particle method

still agrees well with the analytical solution (Figure 16B), while

that of the grid method loses stability (Figure 16C).

4.3.2 Transport in cavity problem
The flow field is still that with large deformation given by

Eq. 31 and the initial concentration distribution is identical

with that shown in Figure 4A. For the reference solution

obtained by the grid method, the parameters are consistent

with those used in the isotropic case in Section 4.1. In SPH the

particles are 64 by 64 and the time step is 2.5 s. The simulation

time is 3400 s. The diffusion coefficients

k11 � 20m2/s, k22 � 8m2/s, and k12 � k21 � 10m2/s are set,

giving the condition of k11k22 − k212 > 0, under which the

grid method gives accurate and stable solutions as shown

in Section 4.3.1.

As shown in Figure 17, although a slight discrepancy still

exists, good agreements between particle solution and reference

solution are observed. That is, the developed particle model can

also give reliable solutions for the anisotropic diffusion in the

cavity problem.

FIGURE 18
The geometry of Gehu Lake discretized with triangular meshes (A) and calculated flow velocity (B).

FIGURE 19
The initial distribution of particles and pollutant.
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5 Case study

To show the capacity of the developed model for real

problems, an engineering case study is presented in this

section. The Gehu Lake is an artificial lake located in

Jiangsu Province, China, the area of which is about

164 square kilometers. Its geometry is shown in Figure 18.

To meet the ecological and landscape needs, the renewal time

of the water body has to be determined. As the maximum

water depth is only 4 m, the horizontal scale is much larger

than the vertical scale. Meanwhile, the calculation of water

renewal time involves the convection and diffusion of

substances in the water. Therefore, this case study can be

simplified into a problem of substance transport in 2D space.

With the given shoreline, topography, outlet water level and

inlet flow velocity, the flow field is firstly calculated by solving

the shallow water equation on triangular meshes (see

Figure 18A). As seen from the calculated velocity shown in

Figure 18B, the flow is governed by the inlet and the two

outlets.

Different from the idealized case with given analytical

velocity field (e.g., Figure 3), the velocity distribution in this

real case is known only on the nodes of the triangular meshes (see

Figure 18A). To interpolate the velocity of particles moving

through the grids, the symmetric smoothed particle

hydrodynamics (SSPH) method (Batra and Zhang, 2008) is

used, which is third order accurate when up to third-

order derivatives are remained in the Taylor’s expansion.

Since the computational domain is irregular, the triangular

mesh is adopted for initial particle distribution. In this case,

as the transportation of pollutants along the central axis of

this lake is the main concern, the zero concentration for the

dummy particles is applied. For the PST, sufficient dummy

particles are needed to prevent fluid particles clustering near

the boundary or escaping from the computational domain.

To determine how substances transport in this lake and

how long they cross the lake, the Gaussian type pollutant

given by Eq. 34 is supposed to be released into the water

instantaneously at the upstream (See Figure 19), for which the

maximum concentration value is 1 mg/L. Initially 9000 fluid

particles are set at the triangular mesh point with a spacing of

100 m. An enlarged view of the area around the pollutants

shows that initially the particles are more or less uniformly

distributed. The time step can be assigned with a large value,

up to 3000 s, which still satisfies the stability condition due to

the slow velocity. A constant diffusion coefficient of k �
10m2/s is applied. As shown in Figure 20, when the

simulation starts, the pollutant moves downstream

gradually and is still along the central axis. As a result of

diffusion, the area of the pollutant goes broader and the

concentration is diluted. Since Lind’ PST is added, the

particles remain uniform all the time. When the pollutant

is close to the first outlet, it takes roughly 150 h, and it takes

roughly 10 days for all the pollutants flowing out of the lake.

In this work, we only discussed the transportation along the

central axis, for which the pollutant can be expelled from the

lake and its impact on the water body is diminished because

of diffusion. If they were released near the boundary, how

long it would take to get out of the lake would be a challenging

problem.

6 Conclusion

The SPHmethod under Lagrangian frame has advantages in

solving the advection-diffusion problems. It can well handle the

advection-dominated transport problems with discontinuity

which are tough for mesh-based Eulerian methods, and has

characters of high efficiency and precision (Liu et al., 2020).

However, when complicated velocity field is encountered, the

particle distribution will become disordered and even forms

particle cavities. On this condition, the simulation of the

diffusion process easily fails because the insufficient or

asymmetry of neighboring particles leads to inaccuracy of

kernel approximation. To settle this problem, the particle

shifting techniques (PSTs) are introduced to eliminate the

particle cavities and make the Lagrangian particle transport

model run accurately and smoothly. It can well resolve both the

isotropic and anisotropic diffusion process in large deformation

FIGURE 20
The concentration distribution at different time.
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flow. Reasonable results are obtained when it is applied in

practical flow. The stability, efficiency and accuracy of

different PSTs are compared. Lind’s approach gives more

regular particle distribution and hence higher accuracy, while

Xu’s PST is more stable and its efficiency is higher. When

Lind’s approach is adopted, to prevent paring instability, the

Wendland kernel is a better choice than the cubic spline, since

the RF term is not needed. In addition, to carry out the PST for

a given particle, the updated positions of its neighbors after

both advection and PST should be applied, otherwise

instability might be induced if only the advected positions

are used. Comparing with the original PSTs of Xu and

Lind, the modified ones do not show

noticeable improvements, at least for the cases studied in

this work.

The flow field in the present work, either steady in the real

case or straightly given by the streamline function, is

relatively simple. How the developed scheme performs in

the more practical problems, e.g., in the complicated and

time-variant ocean flow field (Luo et al., 2021), should be

further explored. The involvement of irregular boundaries

could be more intractable, which has not been fully discussed

in this work. The PST introduced intents to make the particle

method available in the transportation simulation of real

flows. We will focus on promoting the capability of the

proposed numerical model in solving the practical

problems in future.
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