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Crop production space is the most important part of land use system, and

spatial simulation has always been the key task of land science. Crop production

space is affected by many factors on different spatio-temporal scales, which

leads to the complexity of simulation models. The existing simulation models

also have the limitations of lack of human factors, large simulation area and

excessive reliance on expert experience. Sichuan Province is a typical area of

Citrus spatial expansion in China, so it is of great practical significance to carry

out spatial regulation. From the comprehensive perspective of nature and

humanity, this research uses MaxEnt, ArcGIS, Orcale, SQL to design a spatial

regulation method (CSSM) for citrus, predict the citrus production space in

Sichuan Province in 2025, and put forward regulation suggestions. The results

showed that the citrus spatial simulation method better reflects the

comprehensive effect of natural and human factors on crop space, and

realizes the research on the regulation of single crop production space. The

dominant environmental variables affecting citrus production in Sichuan are

input of production factors, society, climate and terrain. Human activities play a

leading role. The suitable environment for citrus production in Sichuan is:

elevation ≤500m, annual average temperature ≥16.5 °C, aspect are

northeast, southwest and northwest, supported by preferential policies, the

input of Citrus fertilizer in the county is ≥ 500t, the input of Citrus labor in the

county is ≥ 5,000, the input of Citrus pesticide in the county is ≥ 12.5t, and the

technical progress represented by unit yield is 750–7000 t/km2. The suitable

space for citrus production in Sichuan are mainly located in Zigong, Nanchong,

Ziyang, Neijiang, Meishan, Leshan, Yibin and Luzhou. The government should

choose a positive low growth scenario to stabilize the citrus area in Sichuan at

3533 km2 in 2025, and form a major citrus production area in Meishan, Ziyang,

Neijiang, Chengdu, Nanchong and Yibin.
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1 Introduction

Crop production space is the most extensive and important part

of land use system (Ramankutty et al., 2008; Volk and Ewert, 2011;

Tang et al., 2015). It is the spatial expression of crop type and

production distribution (Tang et al., 2010). Crop spatial simulation

is not only an important task of agricultural land system research,

but also an industrial policy problem faced by government

departments. Therefore, it has always been the research focus of

land science (Liu and Chen, 2002). The purpose of crop spatial

simulation is to arrange crops in the most suitable space as far as

possible, form a relatively centralized regional layout, realize the

optimization of agricultural land system, and obtain the best

comprehensive benefits (Tang et al., 2015).

The land use change simulation model has formed SD,

Markov, CA, clue, flus and their coupling models (Verburg

et al., 2002; Genga et al., 2017; Mamanis et al., 2021; Zhang

et al., 2021). This kind of simulation is based on driving factors,

utilization needs, regional constraints and conversion order, and

realizes top-down or bottom-up change simulation on different

space-time scales. However, this kind of research only realizes the

simulation of the primary type of agricultural land and

construction land, but fails to realize the spatial simulation of

the internal crop types of agricultural land, and because the

simulation area is too large, it is difficult to guide the practice at

the samll-scale of county (town) and even villages. Land

ecological suitability evaluation (LESE) based on GIS is often

used in spatial simulation. This kind of method is based on the

response of crop physiological growth to the natural

environment, selects representative indicators from climate,

terrain and soil, identifies and divides suitable space, and

realizes spatial regulation on different scales (Neamatollahi

et al., 2012; Bagherzadeh and Daneshvar, 2014; Li et al., 2015;

Wotlolan et al., 2021). However, this kind of method also has two

limitations. The first is to ignore social and economic factors and

reduce the scientificity of the results. The most suitable space is

the result of agricultural land adapting to changes in natural and

human factors, including natural suitability and human

suitability (Lin et al., 2020). The natural environment

determines the basic pattern of crop production space, and

makes the natural suitable space become the initial gathering

area of crops (Li et al., 2012). With the development of society,

economy, science and technology, human factors have become

an important inducement to cause spatial changes. The spatial

heterogeneity of labor, farmers’ behavior, production costs,

consumption, policy and technological progress on different

spatial and temporal scales has an increasingly strong impact

on spatial changes (Xiang et al., 2014; Zhang and Zhang, 2016;

Wang and Qi, 2018). Spatial change has changed from natural

driving to common driving of nature and humanity (Lin et al.,

2021). Second, it is difficult to determine the representative

indicators and their thresholds. Crop growth is affected by

many variables. The dominant variables affecting the spatial

change of crop production in different regions are different,

and the threshold of the same variable affecting the spatial change

in the same region also has time differences (Zabihi et al., 2015;

Mokarram and Mirsoleimani, 2018; Tercana and Dereli, 2020).

Therefore, the determination of representative indicators and

their thresholds is often affected by subjective experience and

regional differences.

Species distribution model (SDM) provides a new idea for crop

spatial simulation. According to the relationship between species

distribution and eco-environmental characteristics, SDM does not

need to have rich prior knowledge of species ecological

characteristics. Now it has been widely used in potential

distribution (Yang et al., 2013; Qin et al., 2017). A series of

ecological statistical models based on ArcGIS have been widely

used, such as MaxEnt (Phillips et al., 2006), BIOCLIM (Beaumont

et al., 2005), ENFA (hengl et al., 2009), GARP (Stockwell and Peters,

1999). More than 1,000 studies since 2006 show that MaxEnt model

has been proved to have the best prediction ability and accuracy

(Wisz et al., 2008; Merow et al., 2013). MaxEnt model has achieved

good results in the suitability zoning of rice, wheat, corn, potato and

other crops and the assessment of the response to environmental

andmajor climate factors (Khalil et al., 2021; Khubaib et al., 2021; Yu

et al., 2022). MaxEnt model can not only consider the impact of

natural variables such as climate, terrain and soil, but also consider

the impact of non natural variables such as labor force and land use

(Galletti et al., 2013; Yi et al., 2016; Gu et al., 2018; Cao et al., 2021;

Yang et al., 2022). The change of environment and human activities

has obvious uncertainty and complexity (Zhang et al., 2016; Yang

et al., 2022). MaxEnt model shows applicability in coupling analysis

of natural environment and human activities (Tan et al., 2019;

Nyairo andMachimura, 2022), which is conducive to understanding

the comprehensive impact of environment and human activities on

agricultural production. Supported by Geographic Information

System (GIS), MaxEnt model provides a good method for crop

spatial distribution and agricultural land structure optimization.

This work uses MaxEnt, ArcGIS, Oracle, SQL to design the

citrus spatial simulation method (CSSM). CSSM

comprehensively considers natural and human factors, uses

MaxEnt to calculate the distribution probability of citrus

production, simulates the production space with the

distribution probability as the standard through Oracle and

SQL, and carries out empirical research on the spatial layout

of citrus production in Sichuan Province of China in 2025, in

order to provide a new method for the simulation of agricultural

land system.

2 Study area and data source

2.1 Study area

Sichuan Province located in the southwest of China

(26°03′–34°19′ N, 92°21′–108°12′ E), is the transitional area
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between the Qinghai-Tibet Plateau and the middle-lower

Yangtze Plain (Figure 1). The western part is a plateau area,

with an elevation of more than 4000m; The eastern part is the

hilly plain area of the basin, with an elevation of 1,000–3,000 m.

The climate types of Sichuan Province are diverse, including the

mid-subtropical humid climate area in the basin, the subtropical

semi humid climate area in the mountains of Southwest Sichuan,

and the alpine climate area in the plateau of Northwest Sichuan.

Since the reform and opening up, China’s citrus production space

has expanded rapidly, and has become the world’s largest citrus

producer. The planting area reached 2.83 × 104 km2 in 2020

(Rural social and Economic Investigation Department of the

National Bureau of statistics of China, 2021), and citrus has

become an important land cover type in southern China. The

citrus production in Sichuan Province has been in the forefront

for a long time. In 2020, the citrus area in Sichuan reached

3,389 km2. Since 2000, the production space has expanded by

1837 km2(Rural social and Economic Investigation Department

of the National Bureau of statistics of China, 2021), which is a

typical area of Citrus spatial expansion. At present, citrus has

formed Chengdu Plain production area, South Sichuan

production area and Northeast Sichuan production area in

Sichuan. Compared with the production space and suitable

space, the production area has far exceeded the high suitable

area, and there is a reality of transferring to the middle and low

suitable space. It is urgent to carry out spatial regulation, reduce

the supply and demand risks faced by the citrus industry, and

promote the sustainable development of the citrus industry (Lin

et al., 2019).

2.2 Data source and preprocessing

2.2.1 Data source
This study uses a large number of public data provided by

national (provincial and municipal) data platforms, mainly

including climate, topography, land and socio-economic data

(Table 1).

2.2.2 Pretreatment of environmental variables
According to the existing research conclusions,

35 environmental variables of seven types affecting the

distribution of citrus production were selected (Table 2) (Li

and Xie, 2003; Zhang and Zhang, 2016; Su et al., 2017; Lin

et al., 2019; Lin et al., 2021). Variable 1) to Variable 12) are the

average annual values from 1980 to 2015 obtained from the

daily meteorological data of 42 meteorological stations

calculated by MATLAB (Figure 1). Variable 13) to Variable

(20) are obtained by potassium dichromate volumetric

method, potentiometric method, semi micro Kjeldahl

method, spectrophotometry, hydrofluoric acid digestion

method and hydrometer speed measurement method.

Variable 24) to Variable 34) are the average value of

county from 1980 to 2015 calculated by using the

FIGURE 1
Geographical location of Sichuan Province and data distribution.

Frontiers in Environmental Science frontiersin.org03

Lin et al. 10.3389/fenvs.2022.993920

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.993920


corresponding formula. The time smoothing method is used

to supplement the missing data in a few counties. Variabl 35)

is a dummy variable, 51 counties that implement industrial

support policies are 1, and the rest are 0. The administrative

divisions of Sichuan Province have been adjusted for many

times. In order to ensure the consistency of data, the

administrative boundaries in 2010 are taken as the

benchmark and merged into 181 counties. Using ArcGIS

10.2 software to unify the boundary of all environmental

variables, the coordinate system was

WGS_1984_UTM_Zone_48N, the resolution was 1 km ×

1 km, and data were converted to the ASCII format

required by MaxEnt software.

2.2.3 Distribution data processing
There are two sources of Citrus distribution data. The

longitude and latitude of the main citrus producing areas in

Sichuan were obtained by handheld GPS positioning. Other

distribution data are queried and supplemented by the Global

Biodiversity Information Facility (http://www.gbif.org), and

invalid records and duplicate records are removed. Sampling

bias will lead to MaxEnt over fitting, thereby reducing the

prediction ability of the model (Phillips et al., 2009). In this

study, SDMtoolbox was used for spatial screening of sampling

points, and one distribution point was reserved in 1 km × 1 km

pixels, and 191 sampling points were finally obtained (Figure 1).

3 Research methods

3.1 Method framework

3.1.1 Probability model
CSSM simulates citrus production space with distribution

probability, and MaxEnt is an important model tool of CSSM.

The maximum entropy model is a mathematical method for

unbiased inference of unknown distribution based on limited

known information. The theory holds that, without external

force, things always strive for the maximum freedom under

constraint conditions. Under known conditions, things with the

maximum entropy are most likely to be close to their true state

(Jaynes, 1957). MaxEnt model requires two types of data. The first is

the geographical location of known crop distribution, which is

expressed in the form of longitude and latitude coordinates. The

second is the environmental variable within the predicted spatial

range (Phillips et al., 2006). The distribution of crops is affected by

environmental variables. In the sample data set composed of

environmental variables and crop distribution, the introduction

of environmental variables will affect the distribution probability

and amount of information. MaxEnt model obtains the prediction

model according to the geographical coordinates of the known

distribution points of species and the environmental variables of the

species distribution area, and then uses the optimal model to

simulate the possible distribution of the target species in the

TABLE 1 Datasets used in this study.

Data name Period Data sources

Climatic data

Daily meteorological dataset of basic meteorological elements of China
National Surface Weather Station

1951–2017 China National Meteorological Information Center (http://data.cma.cn)

Topographic data

Elevation (SRTM 90m) 2000 Resource and environment science data center of Chinese Academy of
Sciences (http://www.resdc.cn)

Land data

Nutrient data set of soil testing and formula fertilization in Sichuan Province 2008–2010 Sichuan Provincial Department of agriculture and Rural Affairs

Land use/land cover data 2020 Resource and environment science data center of Chinese Academy of
Sciences (http://www.resdc.cn)

Socio economic data

Administrative division 2010 National Geomatics Center of China (http://www.webmap.cn)

Population、GDP 1981–2016 Sichuan statistical yearbook

Road 1981–2016 Sichuan statistical yearbook

Disposable income of residents 1981–2016 Sichuan statistical yearbook

Area and output (Citrus, Grain) 1981–2016 Sichuan Rural Statistical Yearbook

Pesticides 1981–2016 Sichuan Agricultural statistical yearbook

Fertilizer 1981–2016 Sichuan Agricultural statistical yearbook

Rural laborers 1981–2016 Sichuan Agricultural statistical yearbook

Effective irrigation area 1981–2016 Sichuan Agricultural statistical yearbook

Distribution data

Global Biodiversity Information Facility http://www.gbif.org
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target area, and selects the distribution with the largest entropy from

the distribution that meets the conditions as the optimal distribution

(Elith et al., 2006; Phillips et al., 2006; Merow et al., 2013). The

maximum entropy algorithm is a constrained optimization

algorithm, which is simply described as: when the output of x is

known to be y, for the given training data set and characteristic

function fi(x,y), where i = 1,2,..., n, MaxEnt solves the equation as

follows (Yang et al., 2022):

TABLE 2 Calculation formula and raster processing of environment variables.

No Type Variable Calculation formula Raster processing

1 Climate Annual sunshine hours Sum of daily sunshine hours IDW

2 Annual average temperature (Sum of daily average temperature) ÷ (Days) MR + Residual IDW

3 Florescence average temperature (Sum of daily average temperature from April to may) ÷ (Days) MR + Residual IDW

4 Average temperature in July (Sum of daily average temperature in July) ÷ (Days) MR + Residual IDW

5 Average temperature in January (Sum of daily average temperature in January) ÷ (Days) MR + Residual IDW

6 Annual temperature range (Average temperature in July)—(average temperature in January) IDW

7 ≥0 °C accumulated temperature the sum of daily mean temperatures above 0 °C in 1 year MR + Residual IDW

8 ≥10 °C accumulated temperature the sum of daily mean temperatures above 10 °C in 1 year MR + Residual IDW

9 summer ≥38 °C duration days Cumulative days with the highest temperature ≥38 °C from July to September IDW

10 Frost free period Days between the last frost day and the first frost day IDW

11 Annual precipitation Sum of daily precipitation Ordinary kriging

12 Annual average air humidity (Sum of daily air humidity) ÷ (Days) MR + Residual IDW

13 Soil Organic matter Potassium dichromate volumetric method Ordinary kriging

14 pH Potentiometric determination Ordinary kriging

15 Total N Semi micro Kjeldahl method Ordinary kriging

16 Total P Spectrophotometry Ordinary kriging

17 Total k Hydrofluoric acid digestion method Ordinary kriging

18 Clay Hydrometer speed measurement method Ordinary kriging

19 Silt Hydrometer speed measurement method Ordinary kriging

20 Sand Hydrometer speed measurement method Ordinary kriging

21 Topography Slope — Spatial Analyst Tools

22 aspect — Spatial Analyst Tools

23 elevation — Spatial Analyst Tools

24 Production Land input (Citrus area) ÷ (Agricultural land area) Feature To Raster

25 Labor input Labor input × (Citrus area) ÷ (Agricultural land area) Feature To Raster

26 Fertilizer input Fertilizer input× (Citrus area) ÷ (Agricultural land area) Feature To Raster

27 Pesticide input Pesticide input× (Citrus area) ÷ (Agricultural land area) Feature To Raster

28 Irrigation input Irrigation input× (Citrus area) ÷ (Agricultural land area) Feature To Raster

29 Economics Urbanization (total population - rural population) ÷ Total population Feature To Raster

30 Economic feedback (Output value of secondary and third industry)÷(Total output value) Feature To Raster

31 Food security (Grain output)÷ (Total population) Feature To Raster

32 Market Traffic (Highway mileage) ÷ (Total area) Feature To Raster

33 consumption Disposable income of urban residents Feature To Raster

34 Sociology technical progress (Citrus yield) ÷ (Citrus area) Feature To Raster

35 Policy The county implementing the supporting policy is 1, otherwise it is 0 Feature To Raster

MR: multiple regression; IDW: inverse distance weighting.
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maxpϵc H(P) � −∑
x,y

~P(x)P(y∣∣∣∣x)logP(y∣∣∣∣x),
s.t.EP(fi) � E ~P(fi), i � 1, 2,/, n,

∑
y

P(y
∣∣∣∣x) � 1,

(1)

Where H(P) is the conditional entropy, P(y|x) is the

conditional probability distribution assumption, ~P(x) is the

empirical distribution, and EP(fi) represents the expectation

of the characteristic function of the empirical distribution.

Lagrangian multiplier method is used to transform the

original constrained optimization problem into a dual

unconstrained optimization problem.

3.1.2 Main steps
CSSM includes three steps: environmental variable selection,

distribution probability calculation, and spatial distribution

simulation (Figure 2). The first step is to use ArcGIS to unify the

data structure, spatial resolution and geographic coordinates of

various environmental variables, and establish a geographic

information database. Then, Pearson correlation analysis was

carried out on environmental variables to screen out the potential

environmental variables that drive the spatial changes of citrus

production. The second step is to calculate the distribution

probability of citrus on the basis of MaxEnt parameter

optimization, and revise it with land cover data. Use the

prediction model to obtain the future citrus planting area. The

third step is to select the simulation strategy according to the

discrimination conditions to judge and mark the pixels suitable for

citrus production one by one. When the threshold is reached, stop

labeling, output all labeled pixels, and get the most suitable citrus

production space. This step is implemented by SQL and Oracle.

3.2 Environment variable selection

In order to avoid the error caused by the over fitting of the

model caused by the multicollinearity of environmental

variables, and to retain the ecological significance of different

FIGURE 2
Research framework of CSSM.
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types of variables on the distribution of citrus as much as possible

(Elith et al., 2011), this study conducted Pearson on the same type

of environmental variables, and retained the variables with R <
0.75. Among the variables with R > 0.75, select a variable closely

related to citrus distribution or convenient for model

interpretation to participate in the prediction. Finally,

24 variables were identified as potential environmental

variables (Table 3).

3.3 Distribution probability calculation

3.3.1 Model optimization
The parameter optimization of MaxEnt helps to improve the

prediction accuracy of the model. The most important parameters

are feature class (FC) and regulrationmultiplier (RM) (Radosavljevic

and Anderson, 2014). MaxEnt provides five feature types: linear (L),

quadratic (Q), hinge (H), product (P), and threshold (T), which can

produce 31 feature class. RM parameter is set to 0.1–4, with an

increase of 0.1 each time, a total of 40 regulrationmultiplier. Kuenm

toolkit of R is used to optimize 1,240 parameter combinations.

Among all candidate combinations, select the parameter

combination with statistical significance, omission rate ≤5%, and
delta. AICc = 0 for modeling (Warren and Seifert, 2011). The results

show that the parameter combination when FC = h and RM = 4 is

the optimal model. MaxEnt settings are as follows: ① sampling

points are randomly divided into training samples (75%) and

verification samples (25%). ② Select random seed. ③ The

repetition type is subsample. ④ Take the average of

10 calculations as the final result.

TABLE 3 Potential environmental variables affecting the spatial distribution of citrus production.

Type Potential
environment variable

Code Factor meaning

Climate Annual sunshine hours Sun Sunshine is conducive to the growth of branches, leaves and flower buds, and improves the fruit setting rate, fruit
coloring and acidity. Suitable threshold: 1200–1500 h

Annual average temperature Ta Citrus likes warm and humid climate, and temperature is the decisive factor of Citrus Distribution and growth.
Suitable threshold: 16.5°C–23 °C

Annual temperature range Tad Too high or too low is not conducive to citrus production, so Tad is used to evaluate the average temperature change
range

summer ≥38 °C duration
days

Sta38d When the temperature is higher than 38 °C, high temperature heat damage occurs, and the growth of citrus trees
stops completely

Annual precipitation Pre The uneven distribution of rainfall in Sichuan Province has a great impact on the growth and quality of citrus, and
the appropriate threshold is 1,000–2000 mm

Soil Organic matter Om Improve the physical and chemical properties of soil and affect the yield and quality of citrus

pH Ph PH affects the dissolution of mineral nutrients, and the appropriate threshold is 5–6.5

Total P Tk Phosphorus can reduce fruit acidity and improve solid acid ratio

Total k Tk Potassium can increase single fruit weight and soluble solid content, and reduce fruit cracking

Clay Clay Affect soil porosity, change soil water and gas content, and indirectly affect citrus growth

Silt Silt Affect soil porosity, change soil water and gas content, and indirectly affect citrus growth

Topography Slope Slope The drainage and ventilation of hillside land are good, and it is easy to form an inversion layer, which is conducive to
the growth of citrus

Aspect Aspect Aspect affects citrus yield and quality through light and precipitation

Elevation Dem Elevation affects citrus growth through temperature

Production Labor input Lab Reflect the situation of Citrus workers in the county

Fertilizer input Fer Reflect the fertilization of Citrus in the county

Pesticide input Pes Reflect the pesticide application of Citrus in the county

Economics Urbanization Ur Reflect the land and labor environment faced by county citrus production

Economic feedback Neo Reflect the supporting capacity of county economy for citrus production

Food security Gra Reflect farmers’ land selection behavior in the decision-making of planting grain or citrus

Market Traffic Traf Reflect the market circulation of Citrus in the county

Consumption Cons Reflect the willingness and ability of Citrus consumption

Sociology Technical progress Sci Reflect the popularity of advanced technology and varieties of citrus

Policy Pol Reflect the impact of industrial policies on citrus production
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3.3.2 Model accuracy
The MaxEnt model uses the receiver operating characteristic

(ROC) curve to evaluate the accuracy of the analysis results for

fitness area. The ROC curve takes the false positive rate as the

abscissa and the true positive rate as the ordinate. The area value

enclosed by the curve and abscissa is area under curve (AUC),

and an AUC value between 0.5 and 0.6 is unqualified,

0.6–0.7 poor, 0.7–0.8 fair, 0.8–0.9 good, and 0.9–1.0 excellent.

(Swets, 1988). The closer the AUC was to 1, the better the model

performance was. In this study, the average AUC of 10 repeated

runs is 0.924, and the standard deviation is 0.008 (Figure 3),

indicating that the accuracy of the model is reliable.

3.3.3 Probability revision
The result of MaxEnt is the suitable distribution probability (P),

and P range is 0–1. The closer the p-value is to 1, themore suitable the

citrus production distribution is (Ma and Sun, 2018). Limited by land

cover, the distribution probability results need to be revised according

to the land cover type, and the probability distributed in water,

construction land, grassland and unused land should be deleted.

3.4 Spatial distribution simulation

3.4.1 Area prediction
In the future, whether citrus in Sichuan Province will show

spatial expansion or spatial contraction is facing great

uncertainty. Different research results show different

development expectations. The Sichuan provincial government

has formulated the citrus industry development plan and

proposed to maintain the citrus area at 3333 km2 by 2025.

According to this calculation, the average annual growth rate

of Citrus area in Sichuan must reach 3.26%. The research results

of China’s Agricultural Outlook report (2020–2029) show that

the expansion of China’s fruit planting area is limited in the next

10 years, with an average annual growth rate of about 0.77%

(Market early warning Expert Committee of the Ministry of

agriculture and rural, 2020). Wang (Wang and Qi, 2018) used the

panel data from 2005 to 2015 to quantitatively calculate the

comparative advantage index of the main citrus producing areas

in China. The results showed that the citrus advantage in Sichuan

was in a downward trend, with a growth rate of -0.79% to -2.78%.

According to the above conclusions, this study takes 2020 as the

base year, and sets four scenarios of average annual growth rate,

positive high growth (3.26%), positive low growth (0.77%),

negative low growth (-0.79%), negative high growth (-2.78%),

using a time linear model to predict the citrus planting area in

Sichuan Province in 2025 (Table 4).

3.4.2 Model strategy
Taking the provincial predicted area (Qy), provincial suitable

area (Qx), municipal predicted area (Sn,y) and municipal suitable

area (Sn,x) as the discrimination conditions, four simulation

strategies are set (Figure 4). The discriminant condition and

FIGURE 3
ROC curve and AUC value of MaxEnt.
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simulation strategy are implemented by Oracle and SQL. Before

discrimination, the suitable probability raster is converted into

points, and then spatially connected with the municipal

administrative division data, so as to obtain the city name,

distribution probability and predicted area fields of each

point, and import them into Oracle to establish a table file.

Select the corresponding strategy to store the table file according

to the discrimination conditions. The simulation process of the

four strategies is as follows: Strategy 1:① take the city as the unit,

sort the raster pixels one by one according to the probability from

high to low. ② Take Sn,x as the threshold, mark the raster pixels

one by one according to the probability from high to low, until all

raster pixels are marked, and the simulation ends. Strategy 2: ①

refer to step 1 of strategy 1.② For cities with Sn,y＜Sn,x, take Sn,y
as the threshold, mark the suitable raster pixels one by one

according to the probability from high to low, until the marked

raster pixels area is greater than or equal to Sn,y, and repeat the

simulation until (n-m) cities are simulated. ③ For cities with

Sn,y ≥ Sn,x, first refer to step 2 of strategy one; Secondly, calculate

the difference (Sm) between the predicted area and the suitable

area, and take it as the threshold, mark the suitable raster pixels

that have not been marked one by one within the provincial

scope according to the probability from high to low, until the

marked suitable raster pixels area is greater than or equal to Sm,

and end the simulation. Strategy 3:① refer to step 1 of strategy 1.

② Take Sn,y as the threshold, mark the suitable raster pixels one

by one according to the probability from high to low, until the

area of the marked suitable raster pixels is greater than or equal to

Sn,y, and the simulation ends after all city simulations are

completed. Strategy 4: refer to strategy 2.

Qy is the provincial predicted area. Qx is provincial suitable

area. Qm is the provincial simulated area. Sn,y is the predicted area

of city n. Sn,x is the suitable area of the city n. n is the number of

cities. m is the number of cities with Sn,y ≥ Sn,x. n-m is the number

of cities with Sn,y＜Sn,x. Sm is the sum of the difference between

the predicted area and the suitable area of all city with Sn,y ≥ Sn,x

4 Results and analysis

4.1 Analysis of environmental variables

The contribution of 24 potential environmental variables to

the distribution of citrus production is calculated according to

the Jackknife method (Table 5). The percent contribution (PC) of

pesticide input (pes, 62.1%), fertilizer input (fer, 14.26%), policy

TABLE 4 Predicted area of Citrus in Sichuan Province under different scene in 2025.

City Planting area in 2020
(km2)

Predicted area in 2025 (km2)

Positive low growth Positive high growth Negative low growth Negative high growth

Chengdu 336.80 349.97 395.40 323.70 292.52

Zigong 187.80 195.14 220.47 180.50 163.11

Panzhihua 3.50 3.64 4.11 3.36 3.04

Luzhou 161.50 167.81 189.60 155.22 140.27

Deyang 50.10 52.06 58.82 48.15 43.51

Mianyang 72.50 75.33 85.11 69.68 62.97

Guangyuan 27.10 28.16 31.81 26.05 23.54

Suining 26.50 27.54 31.11 25.47 23.02

Neijiang 250.80 260.61 294.43 241.05 217.82

Leshan 125.60 130.51 147.45 120.72 109.09

Nanchong 341.50 354.85 400.91 328.22 296.60

Meishan 600.80 624.29 705.33 577.44 521.80

Yibing 303.50 315.37 356.30 291.70 263.59

Guangan 129.60 134.67 152.15 124.56 112.56

Dazhou 177.10 184.02 207.91 170.21 153.81

Yaan 45.40 47.18 53.30 43.63 39.43

Bazhong 37.80 39.28 44.38 36.33 32.83

Ziyang 471.50 489.93 553.53 453.17 409.51

Aba 0.00 0.00 0.00 0.00 0.00

Ganzi 1.20 1.25 1.41 1.15 1.04

Liangshan 38.50 40.01 45.20 37.00 33.44

Total 3,389.10 3,521.61 3,978.73 3,257.33 2,943.49
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(pol, 6.93%), annual average temperature (ta, 5.56%) and labor

input (lab, 4.06%) ranked in the top 5, with a cumulative

contribution rate of 92.91%. The permutation importance (PI)

of annual average temperature (ta, 46.88%), pesticide input (pes,

29.32%), aspect (aspect, 8.44%), technical progress (sci, 4.89%)

and fertilizer input (fer, 4.46%) ranked in the top 5, with a

cumulative contribution rate of 93.99%. In the regularization

training gain (RTGO) using this factor alone, the average annual

temperature (ta) and pesticide input (pes) are 1.2, and the

elevation (dem), fertilizer input (fer) and labor input (lab) are

1.19, 1.18 and 1.16 respectively, indicating that these

environmental variables have more effective information than

other variables. Therefore, the main environmental variables that

affect the distribution of citrus production are production factors

(pesticide input, fertilizer input, labor input), social factors

(policy, technological progress), climate factors (annual

average temperature), topography factors (aspect, elevation).

The response curve of environmental factors can further

clarify the relationship between Citrus Distribution Probability

and environmental variables. It is generally believed that when

the distribution probability is >0.5, the corresponding

environmental variable value is conducive to species

distribution (Wang et al., 2020). Natural environment suitable

for citrus production in Sichuan Province is (Figure 5):

elevation ≤500m, annual average temperature ≥16.5 °C, and

the aspect is relatively suitable in Northeast, Southwest and

Northwest. Human environment suitable for distribution is:

with the support of citrus policy, the input of citrus fertilizer

in the county is ≥ 500t, the input of citrus labor in the county is ≥
5,000, the input of citrus pesticides in the county is ≥ 12.5t, and

the technical progress represented by unit yield is

750–7000 t/km2.

4.2 Citrus distribution probability in
sichuan

According to the land use/land cover classification

system monitored by remote sensing in China (Liu and

Buhe, 2000), China’s land use control policies and citrus

planting habits in Sichuan Province, citrus production can

only be in garden and dryland. Therefore, retain the

probability of distribution on garden and dryland, and

eliminate the probability of distribution on paddy field,

grassland, water, unused land and urban and rural

(industrial and mining, residential) construction land, and

finally obtain the probability of Citrus Distribution in

Sichuan Province (Figure 6). The number of pixels of

citrus distribution probability is 77,906, including

34,360 pixels with p < 0.3, 20,520 pixels with P (0.3–0.5),

21,863 pixels with P (0.5–0.7), 1,163 pixels with p > 0.7, the

minimum value is 0.003, and the maximum value is 0.893.

FIGURE 4
Discrimination conditions and thresholds of strategies.
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Most areas of Sichuan province are unsuitable areas (p < 0.3),

low suitable areas (0.30 ≤ p < 0.50) are mainly distributed in

Suining, Deyang and Mianyang, medium suitable areas

(0.50 ≤ p < 0.70) are distributed in Neijiang, Meishan,

Ziyang, Nanchong, Zigong, Yibin and Guang’an, and high

suitable areas (p > 0.7) are in Neijiang, Ziyang and the south

of Nanchong. In addition, in Dazhou and Zigong, high

suitability areas are scattered.

4.3 Spatial regulation of citrus production
in sichuan

In this study, the predicted area of Citrus in Sichuan

Province in 2025 is less than the appropriate grid area of

Citrus (Qy ≤ Qx), and the predicted area of all cities is less

than the appropriate grid area of Citrus (Sn,y＜Sn,x), so

Strategy three simulation is selected. The spatial pattern of

citrus production in the four scenarios is similar. The

production space is concentrated in Central Sichuan,

relatively concentrated in Meishan, Ziyang, Neijiang,

Chengdu, Nanchong and Yibin, and scattered in Deyang,

Mianyang, Dazhou, Luzhou, Leshan, Liangshan and

Panzhihua (Figure 7). In different scenarios, the relative

error between the simulated area and the predicted area of

citrus production space is 0.28%–0.39%.

Using ArcGIS spatial analyst statistics, the spatial

simulation data of citrus production in each city are

obtained (Table 6). In the positive low growth scenario, the

citrus planting area in Sichuan will reach 3533 km2 in 2025, an

increase of 143.90 km2 compared with 2020, and the total

spatial expansion will increase by about 4.25%. Meishan

(24.20 km2) is the only city with an increase of more than

20km2, and five cities with an increase of 10–20 km2 are

Ziyang (18.5 km2), Nanchong (13.50 km2), Chengdu

(13.20 km2), Yibin (12.50 km2) and Neijiang (10.20 km2). In

the positive high growth scenario, the citrus production area

in Sichuan in 2025 was 3990km2, an increase of 600.90 km2

compared with 2020, and the total spatial expansion increased

by 17.73%. There are 11 cities with an increase of more than

20km2, of which Meishan has the largest increase

(105.20 km2). In the negative low growth scenario, the

TABLE 5 Various parameters of the main environmental variables of Citrus.

Code PC/% PI/% RTGO RTGW TGo TGw AUCo AUCw

pes 62.1 29.32 1.20 1.40 1.34 1.56 0.90 0.92

fer 14.26 4.46 1.18 1.41 1.34 1.54 0.90 0.92

pol 6.93 1.26 0.70 1.41 0.96 1.54 0.82 0.92

ta 5.56 46.88 1.20 1.35 1.35 1.52 0.90 0.92

lab 4.06 1.92 1.16 1.42 1.31 1.56 0.90 0.92

slope 3.90 0.75 0.70 1.42 0.87 1.56 0.85 0.92

aspect 1.51 8.44 0.03 1.40 0.02 1.55 0.52 0.92

dem 0.70 0.00 1.19 1.42 1.33 1.56 0.90 0.92

sci 0.49 4.89 0.58 1.41 0.64 1.55 0.77 0.92

cons 0.35 0.09 0.03 1.42 0.12 1.55 0.68 0.92

pre 0.05 0.95 0.58 1.42 0.68 1.55 0.79 0.92

om 0.04 0.35 0.78 1.42 0.83 1.56 0.81 0.92

tp 0.02 0.47 0.43 1.42 0.67 1.56 0.82 0.92

clay 0.01 0.11 0.45 1.42 0.56 1.56 0.81 0.92

pH 0.01 0.02 0.17 1.42 0.21 1.56 0.72 0.92

gra 0.00 0.00 0.29 1.42 0.38 1.56 0.74 0.92

neo 0.00 0.09 0.16 1.42 0.21 1.56 0.64 0.92

silt 0.00 0.00 0.02 1.42 0.05 1.56 0.57 0.92

sta38days 0.00 0.00 0.74 1.42 0.82 1.56 0.83 0.92

sun 0.00 0.00 0.83 1.42 1.10 1.56 0.88 0.92

tad 0.00 0.01 0.21 1.42 0.28 1.56 0.71 0.92

tk 0.00 0.00 0.06 1.42 0.09 1.56 0.54 0.92

traf 0.00 0.00 0.87 1.42 0.98 1.56 0.86 0.92

ur 0.00 0.00 0.01 1.42 0.02 1.56 0.57 0.92

PC, is percent contribution; PI, is permutation importance; RTGO, is the regularization training gain using the factor alone; RTGW, is the regularization training gain using other factors;

TGw, is the test gain using other factors; TGO, is the test gain using the factor alone; AUCo, is the area under the working characteristic curve of the subjects using the variable alone; AUCw,

is the area under the receiver operating characteristic curve using other factors.
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citrus production area in Sichuan will be 3270 km2 in 2025, a

decrease of 119.10 km2 compared with 2020, and the total

space needs to be reduced by 3.51%. Only Meishan

(22.80 km2) has a reduction of more than 20km2, and there

are four cities with a reduction of 10–20km2, which are Ziyang

(17.50 km2), Chengdu (12.80 km2), Nanchong (12.50 km2)

and Yibin (11.50 km2). In the scenario of negative high

growth, the citrus planting area in Sichuan will reach

2954 km2 in 2025, which will be reduced by 435.10 km2

compared with 2020. There are nine cities with a reduction

of more than 20km2, of which Meishan has the largest

reduction (78.80 km2).

5 Discussion

5.1 Applicability of MaxEnt model

MaxEnt model is a highly complex machine learning model.

Like other distribution models, the basic assumption of modeling

is that the study area has undergone systematic or random

unbiased sampling (Phillips et al., 2009). However, samples

are often taken from easily accessible areas, such as along

roads and rivers, orchards and farms. Therefore, due to the

influence of sampling deviation, AUC may overestimate the

ability to evaluate the model (Veloz, 2009). 87% of the

FIGURE 5
Response curves of existence probability of Citrus.
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previous MaxEnt model studies used data that are easy to cause

sampling deviation (Yackulic et al., 2013). Spatial filtering is often

used to correct sampling bias, that is, only a limited number of

sites are retained within a certain distance (Syfert et al., 2013;

Radosavljevic and Anderson, 2014). The difficulty of spatial

screening method is the setting of spatial spacing, which

should be consistent with the variation degree of

environmental variables on the spatial scale (Anderson, 2012;

Shcheglovitova and Anderson, 2013). There are few studies on

the sampling interval of citrus sample points. In the existing

research on national scale and regional scale, the space spacing of

1 km2 shows good accuracy (Lu et al., 2012; Yan et al., 2021).

Therefore, this study refers to their method and reserves one

distribution point in 1 km × 1 km pixel to reduce sampling

deviation.

The MaxEnt model provides a set of default parameters for

modeling. The distribution model under the default parameters

is sensitive to the test data and prone to over fitting. Therefore,

the optimization of model parameters is crucial to improve the

prediction accuracy and reliability of results (Syfert et al., 2013).

In this study, Feature Class and Regulrzation Multiplier are used

to constrain the complexity of the model (Cobos et al., 2019), and

the combination of parameters when AICc is 0 is selected for

modeling. The results show that when AICc is the smallest, AUC

value is the largest, which is consistent with Anderson’s research

(Anderson and Gonzalez, 2011). At the same time, in recent

research, Xian used MaxEnt model to simulate the spatial

distribution of citrus based on nine environmental factors,

with AUC values ranging from 0.888 to 0.973 (Xian et al.,

2022). The average AUC of this study is 0.924 ± 0.008, which

is similar to that of the study, indicating good model

performance.

5.2 Dominant environmental variables

The results show that elevation, annual average temperature

and aspect are important natural factors affecting citrus

production in Sichuan. This finding is basically consistent

with Tercan’s research results. Based on ArcGIS multi criteria

evaluation spatial decision support system, Tercan found that

temperature is the most important variable affecting citrus

production and distribution in Antalya province of Turkey,

followed by elevation (Tercana and Dereli, 2020). Mokarram’s

research on the suitability of citrus land in Fars Province Iran,

also shows that temperature, elevation and aspect are important

factors affecting the distribution of citrus production (Mokarram

andMirsoleimani, 2018). In this study, soil had little influence on

citrus distribution, with PC and PI tending to 0 and RTGO less

than 1. However, Likhar’s assessment on the suitability of citrus

production in Nagpur, Maharashtra, showed that soil particle

structure, pH and soil fertility also significantly affected the

FIGURE 6
Suitable distribution probability of citrus in sichuan based on natural and human factors.
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distribution of citrus production, which is different from this

study (Likhar and Prasad, 2011). The reasons may be as follows:

① It may be caused by the spatial scale effect of variables. Most of

the citrus distribution sampling points in this study are located in

plain and hilly areas. The soil environmental variables in this area

have obvious homogeneity, and their dispersion is small

(Table 7). ② The production and management level of

farmers in Sichuan Province has gradually improved,

especially since 2005, with the promotion of soil testing and

formulated fertilization technology, the spatial difference of soil

variables has been reduced.

Crop production space has dual characteristics of nature and

society, and is the result of interaction of many factors such as

nature, economy, market and society. In the process of

transformation from tradition to modernity, the constraint of

natural environment on the formation of comparative advantage

of crops has been greatly weakened, and the impact of economic

and social activities has been increasing. In most existing studies,

only climate factors are used to establish models (Kogo et al.,

2019; Khalil et al., 2021; Khubaib et al., 2021), which reduces the

scientificity and guidance of spatial regulation of crop

production. In this study, both the natural environment and

human activities are integrated into the model. The results show

that the contribution rate of human activities (88.19%) is higher

than that of the natural environment (11.81%), and pesticides

(62.1%), fertilizers (14.26%), policy support (6.93%) and labor

force (4.06%) are the top four leading environmental variables.

The results show that with the support of production factors and

financial policies, the constraints of natural environment on

Sichuan citrus production space are decreasing, and human

activities have become the dominant factor.

5.3 Citrus suitable space and production
optimization

The research results show that the citrus suitable area in

Sichuan (p > 0.5) covers an area of 8,549.21km2, of which Zigong

(1,698.13 km2), Nanchong (1,571.26 km2), Ziyang

(1,211.25 km2), Neijiang (1,035.58 km2), Meishan (559.54 km2),

Leshan (435.92 km2), Yibin (370.86 km2) and Luzhou

(361.10 km2) are the main distribution areas. This is because

FIGURE 7
Simulation of spatial distribution of citrus production in Sichuan under different scenarios.
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the natural and social conditions in the above areas meet the

requirements of citrus production. The elevation is within

1000m, the annual average temperature is 16–18 °C, the social

economy is relatively developed, the rural laborers is relatively

rich, and the level of fertilizer and pesticide input is high. For

example, Meishan, as a typical area, has about 13.39×104 workers

engaged in citrus planting, and the input of chemical fertilizer

and pesticide for citrus production is 1.53 × 104t and 455.79t, and

the input level of production factors is in the forefront of the

province.

The optimization of crop production space is to maximize

the efficiency of resource allocation and realize the transfer of

agricultural production to high-yield, efficient and stable regions

(Wang et al., 2018; Li et al., 2020). Driven by interests, although

TABLE 6 Spatial regulation results of citrus production in Sichuan Province in different scenarios.

City Positive low growth (km2) Positive high growth (km2) Negative low growth (km2) Negative high growth (km2)

Simulated
area

Regulation
quantity

Simulated
area

Regulation
quantity

Simulated
area

Regulation
quantity

Simulated
area

Regulation
quantity

Chengdu 350.00 13.20 396.00 59.20 324.00 (12.80) 293.00 (43.80)

Zigong 196.00 8.20 221.00 33.20 181.00 (6.80) 164.00 (23.80)

Panzhihua 4.00 0.50 5.00 1.50 4.00 0.50 4.00 0.50

Luzhou 168.00 6.50 190.00 28.50 156.00 (5.50) 141.00 (20.50)

Deyang 53.00 2.90 59.00 8.90 49.00 (1.10) 44.00 (6.10)

Mianyang 76.00 3.50 86.00 13.50 70.00 (2.50) 63.00 (9.50)

Guangyuan 29.00 1.90 32.00 4.90 27.00 (0.10) 24.00 (3.10)

Suining 28.00 1.50 32.00 5.50 26.00 (0.50) 24.00 (2.50)

Neijiang 261.00 10.20 295.00 44.20 242.00 (8.80) 218.00 (32.80)

Leshan 131.00 5.40 148.00 22.40 121.00 (4.60) 110.00 (15.60)

Nanchong 355.00 13.50 401.00 59.50 329.00 (12.50) 297.00 (44.50)

Meishan 625.00 24.20 706.00 105.20 578.00 (22.80) 522.00 (78.80)

Yibing 316.00 12.50 357.00 53.50 292.00 (11.50) 264.00 (39.50)

Guangan 135.00 5.40 153.00 23.40 125.00 (4.60) 113.00 (16.60)

Dazhou 185.00 7.90 208.00 30.90 171.00 (6.10) 154.00 (23.10)

Yaan 48.00 2.60 54.00 8.60 44.00 (1.40) 40.00 (5.40)

Bazhong 40.00 2.20 45.00 7.20 37.00 (0.80) 33.00 (4.80)

Ziyang 490.00 18.50 554.00 82.50 454.00 (17.50) 410.00 (61.50)

Aba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ganzi 2.00 0.80 2.00 0.80 2.00 0.80 2.00 0.80

Liangshan 41.00 2.50 46.00 7.50 38.00 (0.50) 34.00 (4.50)

Total 3,533.00 143.90 3,990.00 600.90 3,270.00 (119.10) 2,954.00 (435.10)

Brackets represent negative values.

TABLE 7 Descriptive statistics of soil environmental variables of Citrus sampling points in plain and hilly areas.

Soil variables Range Minimum Maximum Mean Standard deviation

Organic matter 1891 1,352 3,243 1930.78 460.109

pH 26 54 80 67.81 7.845

Total nitrogen 91 84 175 120.95 20.697

Total phosphorus 39 59 98 75.08 9.125

Total potassium 412 1723 2,135 1994.09 100.662

Clay 37 36 73 50.28 4.220

Silt 8 14 22 18.15 1.187

Sand 35 11 46 31.79 3.443
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technological progress has reduced the constraints of the natural

environment on crop production distribution, the natural

environment still determines the basic space of crop

distribution (Rurinda et al., 2020). This means that arbitrarily

expanding the scale of crop production will inevitably increase

the cost of natural transformation, leading to increased costs of

agricultural products and greater pressure on the environment.

Therefore, we must respect the natural environment and

minimize the impact of human activities. The citrus

production space in Sichuan has experienced long-term

expansion, and there is a reality that it has been distributed to

low suitability areas, or even unsuitable areas. The matching

result between the production space and the suitable space shows

(Figure 8) that the production area in Liangshan (0.99), Meishan

(0.93), Ya’an (0.53), Deyang (0.13) and Mianyang (0.07) has

exceeded the suitable area. The matching degree in Panzhihua

(24.79), Suining (12.28), Zigong (9.04), Nanchong (4.60),

Neijiang (4.13) and Leshan (3.47) is relatively large, which still

has a certain potential space. At present, the development of

China’s citrus industry has shifted from quantity growth to

quality improvement, and the growth rate of planting area has

decreased. Therefore, Sichuan should not expand the citrus space

scale at a high speed. It should choose a positive low growth

scenario, stabilize the citrus area at 3,533 km2, and focus on

optimizing the citrus production space. The government should

speed up the elimination and transformation of low yield, low

quality and low efficiency citrus orchards, encourage companies

and farmers to increase production input, improve land quality,

improve water conservancy facilities, production roads and

trading markets, and build standardized and large-scale citrus

production bases. Strengthen the training, demonstration and

promotion of new varieties and technologies. Through the

optimization of production space, the main citrus production

areas can be formed in Meishan, Ziyang, Neijiang, Chengdu,

Nanchong, Yibin.

5.4 Limitations and uncertainties

Based on MaxEnt model, this study constructed the citrus

spatial simulation method (CSSM), which better reflects the

comprehensive effect of natural and human factors on crop

space, and realizes the regulation simulation of single crop

production space. However, the study found that the method

is not perfect, mainly in the following aspects: ① Crop

production space is affected by many factors, including crop

physiological and ecological factors, as well as many complex

environmental factors and human activities, such as extreme

weather events, heavy metal pollution, sales prices, import and

export trade, it is difficult to include all aspects of the impact in

the model. ② Citrus distribution points have an impact on

MaxEnt. MaxEnt calculates the suitable distribution

probability, generally taking the current position as the

distribution variable. When simulating the distribution of

citrus production in the future, the influence of the actual

distribution points in the future may be ignored, resulting in

systematic errors. The longer the citrus planting time, the more

prominent the path dependence of citrus planting. Therefore,

when sampling the distribution of citrus in this study, try to select

citrus producing areas with planting years ≥30a to reduce the

impact of the actual distribution points in the future. ③The

environmental variables in CSSM are all based on the average

value of many years, ignoring the time change of environmental

variables, which makes the prediction results of the model have

certain limitations. In the next step, the predicted value of

environmental variables can be used to calculate the

distribution probability to improve the accuracy of the model.

Despite these limitations, the CSSM method has successfully

mapped the spatial distribution of citrus in Sichuan Province

under four different scenarios for the first time. The results

obtained have certain reference value for guiding the spatial

optimization of citrus production in Sichuan Province and the

adjustment of crop structure.

6 Conclusion

This study uses MaxEnt, ArcGIS, Oracle, SQL to build citrus

spatial simulation method (CSSM) to simulate the spatial

distribution of citrus production in Sichuan Province under

different scenarios in 2025. The following conclusions are

drawn: 1) The main environmental variables affecting the

distribution of citrus production in Sichuan are production

factors (pesticide input, fertilizer input, labor input), social

factors (policy, technological progress), climate factors (annual

average temperature), Topographic factors (aspect, elevation). 2)

Driven by production factors and financial policies, the

constraints of natural environment on Sichuan citrus

production space are gradually reducing, and human activities

play a leading and decisive role. 3) Citrus suitable space in

FIGURE 8
The matching degree between the suitable space and the
production space of citrus in Sichuan.
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Sichuan are mainly distributed in Zigong, Nanchong, Ziyang,

Neijiang, Meishan, Leshan, Yibin and Luzhou. 4) The

government should choose a positive low growth scenario to

stabilize the citrus area in Sichuan at 3533 km2 in 2025. Through

the optimization of production space, the main citrus production

areas are formed in Meishan, Ziyang, Neijiang, Chengdu,

Nanchong and Yibin.
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