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The eco-efficiency of real estate development (RED) is an important indicator in

evaluating the effectiveness of eco-civilization construction. Thus, analyzing its

temporal evolution and spatial spillover effect can help to judge the degree of

coordinated development between RED and eco-civilization construction in

the Yangtze River Economic Belt (YREB). From an ecology-based angle of RED,

the data of 108 cities in YREB from 2006 to 2020 were selected. Then, the

Super-SBM model, Moran’s I model, and Markov chain model were used to

measure the eco-efficiency value of RED and analyze its spatial–temporal

evolutionary characteristics. Research results indicate that the eco-efficiency

of RED in YREB increased by 7.3%. Differences were apparent in the regional

eco-efficiency of RED, but the gap gradually narrowed, and the range

decreased from 0.60 to 0.05. A positive spatial autocorrelation was

observed in the eco-efficiency of RED, and the high–high (H-H) cluster

areas showed a trend of expansion and transfer. The proportion of H-H

cluster cities increased from 11 to 20%, whereas the low–low cluster areas

showed a trend of small-scale diffusion. The eco-efficiency of RED exhibited

consistently stable and “club convergence” characteristics. When the spatial

spillover effect is ignored, the eco-efficiency of RED presents at least 55.1%

probability to be maintained in the original state. By contrast, when the spatial

spillover effect is considered, the probability can be increased, and the

assimilation effect of transferring the eco-efficiency of RED can be

enhanced. In the future, the overall eco-efficiency of RED in YREB can be

improved by exploring new development technologies, establishing

collaborative development mechanisms among cities, and adopting eco-

protection-oriented reward and punishment policies.
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1 Introduction

Environmental pollution has become a widespread global

issue since the 1990s. Real estate development (RED) is

considered to be one of the main sources of environmental

pollution (Onat et al., 2014), with the construction industry

being responsible for 30% of the global carbon emissions

(BERCTU, 2016). Among European Union member states, the

real estate industry consumes approximately 40% of the social

energy (Dall et al., 2012), and the environmental pollution

stemming from this industry is more serious in developing

countries (Gong and Kong, 2022). Real estate is considerably

mature in developing countries, with most enterprises excessively

emphasizing on building density and plot ratio, resulting in

enormous pressure on the ecological environment (Shen et al.,

2017). As the largest developing country in the world, China has

a huge population and a great housing demand, especially against

the backdrop of vigorously promoting national urbanization

since 2000. On this basis, RED not only guarantees that the

housing needs of urban residents can be met, but it has also

become an important engine of China’s economic growth.

However, although RED has the characteristics of high input

and high output, it also has some defects, including resource

redundancy and extensive development, suggesting that the

problem of environmental damage caused by China’s RED is

also aggravating day by day (Gong and Kong, 2022). According

to the 2021 Research Report on Carbon Emissions of Chinese

Real Estate Enterprises, China’s real estate industry ranks third

globally in terms of carbon emissions, accounting for 40% of the

national total carbon emissions. Furthermore, the country’s

carbon emission intensity is more than twice the average of

other industries, having seriously deviated from the eco-

civilization construction advocated by state leaders. In

September 2020, China set a strategic “Double-Carbon” goal

(“carbon peak” by 2030 and “carbon neutralization” by 2060).

Since then, low carbon and emission reduction have been high on

the agenda of local governments (Zhang and Liu, 2022).

Consequently, the coordination between RED and

environmental protection has given impetus to the effective

achievement of the “Double-Carbon” goal, and the key is to

accurately grasp the interactions among resource consumption,

socioeconomic output, and environmental pollution in the RED

process.

The Yangtze River Economic Belt (YREB) is an area in China

where copious properties are developed. According to the China

Bureau of Statistics, the RED investment and added value of the

real estate industry in YREB were 892.392 and 459.8 billion yuan

in 2020, accounting for 46 and 43% of the national level,

respectively. However, high-intensity RED has led to a surge

in regional eco-environmental problems (Zhang et al., 2021).

According to the 2018 Program for the Conservation of Aquatic

Biodiversity in Key Areas, the percentage of endangered fish

species caused by environmental degradation in the upper area of

the Yangtze River accounted for 27.6% of the total number. The

Bulletin of Soil and Water Conservation in the Yangtze River

Basin (2020) also showed that the area of soil and water loss in

YREB was as high as 389 000 km2 in 2020, accounting for 19% of

the total area. Moreover, the deterioration of the ecological

environment contributes to the widening of the development

gap between regional cities in YREB. The China Statistical

TABLE 1 Evaluation indicator system of the eco-efficiency of RED.

Variable type Variable Factors meaning Unit of measure

Input factors Labor input number of employees in RED 10 thousand people

Economic input investments completed in RED 10 thousand yuan

Material input building construction area 10 thousand square meters

Expected output factors Economic benefit output value of completed house 10 thousand yuan

house sales 10 thousand yuan

Social benefit output salary of employees in RED yuan

Technical benefit output house completion rate %

non-vacancy rate of houses %

Unexpected output factors Environmental damage degree Ecological footprint produced by ecological land directly occupied of RED national hectare

Ecological footprint produced by building materials national hectare

Ecological footprint produced by construction waste national hectare
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Yearbook of 2021 reported that the per capita GDP in areas along

the lower reaches of YREB is 1.9 times that along the upper

reaches, with the environmental degradation aggravating the

development gap (Liu M. B. et al., 2022). On the basis of the

aforementioned problems, this study attempts to explore the

degree of coordination between the ecology of RED and

ecological environment in YREB to reveal the

spatial–temporal pattern and evolutionary characteristics of

regional eco-efficiency of RED for promoting the high-quality

development of the economic belt.

2 Literature review

Since the proposition of “eco-efficiency,” academic circles have

continuously enriched and extended the concept and applied it to

different research fields. Eco-efficiency has become an important

indicator for measuring the level of eco-civilization construction.

The higher the value of eco-efficiency, the higher the level of

ecological development (Mavi et al., 2019). The academic

research on eco-efficiency is mainly focused on its basic theory,

measurement methods, and practical application. In terms of the

basic theory, different organizations and scholars have offered

different definitions of eco-efficiency. Eco-efficiency was first

defined as a type of efficiency that can quantify the relationship

between economic growth and environmental impact, and the ratio

between them is used to characterize the eco-efficiency level (Yan

and Tu, 2021). From a business perspective, the World Business

Council for Sustainable Development has defined eco-efficiency as

the ability of business firms to obtain maximum value and reduce

emission levels with minimum resource input (Carvalhaes et al.,

2017). The Organisation for Economic Cooperation and

Development has extended the concept of eco-efficiency to

industries, governments, and regions, and it views eco-efficiency

as a coordinated relationship between environmental loss and

maximization of human welfare (Polemis et al., 2021). The

definitions of eco-efficiency vary across academic circles, but the

basic idea is to regard eco-efficiency as the relationship among input,

output, and environmental pollution (Lin et al., 2010). In terms of

measurement method, early scholars used the simple ratio method

to measure the eco-efficiency value (Huang and Wang, 2017; Liu

et al., 2021). With the deepening of research, the measurement

method of eco-efficiency has gradually transformed into the

utilization of indicator evaluation and model methods, among

other tools (Teng and Wu, 2014; Gudipudi et al., 2018). The

simple ratio method usually adopts the ratio of economic value

to environmental impact for characterizing eco-efficiency; however,

it cannot depict the eco-efficiency variations across different

environments, and the grades from the calculated results can

hardly be distinguished (Zheng et al., 2017). The indicator

evaluation method selects a number of indicators to evaluate eco-

efficiency according to different research contents. Scholars usually

select evaluation indicators based on resources, output, and

pollution. Resource indicators mainly include water, electricity,

manpower, among others (Moutinho et al., 2017; Coluccia et al.,

2020). Output indicators mainly include GDP, enterprise income,

industry output value, among others (Robaina-Alves et al., 2015; He

et al., 2022). Pollution indicators mainly include wastewater, solid

waste, carbon dioxide, among others (Yang et al., 2017; Huang and

Hua, 2019). This method comprehensively considers all types of

factors, but the indicator needs to be weighted, yet subjectivity is

difficult to avoid; therefore, this method is seldom used at present

(Wang et al., 2022). The model method mainly includes ecological

footprint, data envelopment analysis (DEA), and the extended DEA

model (Saling et al., 2005; Shao et al., 2019; Yang and Yang, 2019).

Here, DEA and its derivative model are used to measure eco-

efficiency based on different indicators. This method does not

need to weigh the original indicator and can preserve the

original data to a large extent; thus, it has become the

mainstream model for measuring efficiency (Ning et al., 2018).

In terms of practical application, scholars have conducted numerous

research about eco-efficiency in different application fields,

including agriculture (Van Grinsven et al., 2019; Chi et al., 2022),

industry (Lin et al., 2019; Chen and Lin, 2020), and tourism (Liu

et al., 2017; Peng et al., 2017). The study areas cover cities, regions,

and countries, focusing mainly on the evaluation indicator design,

spatial–temporal evolutionary characteristics, and influencing

factors of eco-efficiency (Moutinho et al., 2018; Golas et al., 2020;

Xu et al., 2021). In terms of the evaluation indicator design, scholars

typically use data about resource consumption, economic output,

and pollutant emissions for the characterization (Moutinho and

Madaleno., 2021). In terms of the spatial–temporal evolutionary

characteristics, scholars mainly analyze the change in eco-efficiency

in terms of time and the distribution difference in space (Li et al.,

2021). In terms of the influencing factors, scholars usually select the

status of economic development, level of urbanization, and intensity

of scientific and technological innovation as components of the eco-

efficiency analysis system (Zhang, 2020).

The reviewed literature indicates that eco-efficiency can be

used to characterize the interactive relationships among resource

consumption, social economy, and environmental damage,

which is highly consistent with the characteristics of RED.

However, the current research on eco-efficiency is focused

only on agriculture, industry, or tourism, whereas the

literature about the impact of RED on environmental damage

is dearth. The encroachment caused by RED on ecological lands

in terms of environmental damage has been quantitatively

evaluated, and the ecological carrying capacity of RED has

been analyzed, but the other properties of RED (i.e., high

input and high output characteristics) are hardly fully

considered. Aiming to fill the aforementioned gaps, this study

attempts to introduce “eco-efficiency” theory into RED.

On the basis of the analyses derived from the aforementioned

research, the focus of this study can be summarized as follows.

First, the theoretical connotation of the eco-efficiency of RED is

comprehensively defined based on its constituent input, output,
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and pollution characteristics, and the eco-efficiency evaluation

indicator system of RED is constructed. The Super-SBMmodel is

employed to measure the eco-efficiency of RED in YREB from

2006 to 2020, and its spatial–temporal pattern distribution

characteristics are evaluated. Second, this research studies the

spatial clustering characteristics after measuring the eco-

efficiency of RED. Global and local spatial autocorrelation

models are used to test the spatial spillover effects of the eco-

efficiency of RED in the entire area of YREB and between some

cities in the economic belt. Finally, this study presents the

evolutionary characteristics of the eco-efficiency of RED and

uses the traditional and spatial Markov chain models to explore

whether the spatial spillover effect will impact the evolution of

such eco-efficiency. On the basis of the research results, this study

proposes the basic strategies of energy saving and emission

reduction for RED in YREB.

3 Theoretical connotation and
indicator construction

3.1 Theoretical connotation

Eco-efficiency hinges on the measurement of the relationship

among input, expected output, and unexpected output; in other

words, the degree of interaction in the “resource–social

economy–environment” system is evaluated (Liu S. G. et al.,

2022). The differences in the connotation of eco-efficiency across

different research fields lie in the varying interpretations of input,

expected output, and unexpected output. On the basis of the

resource–social economy–environment system, combined with

the characteristics of RED, this study designs the theoretical

framework of the eco-efficiency of RED (Figure 1).

RED is one of the driving forces of China’s economic growth,

and it is hoped that the maximum expected output per unit of

resource input can be achieved while minimizing the degree of

pollution to the ecological environment. In essence, the aim is to

pursue the coordination and unity of socioeconomic

development and ecological environment, which is consistent

with the idea of eco-efficiency. Therefore, this study defines the

theoretical connotation of the eco-efficiency of RED in

accordance with the resource–social economy–environment

system. Given the profit-seeking nature of enterprises, an

increase in RED input usually leads to an increase in RED

expected output, which generally includes enterprise interest,

industry output value, and employees’ salary. Under the

condition of increasing output, the financial revenue of the

local government can be reinforced, and the methods of

increasing financial revenue generally rise with much higher

land transfer fees, corporate taxes, and personal taxes (Park and

Kim, 2016). The increase in government revenue further leads to

more financial support for environmental improvement (Ge

et al., 2021). In addition, some RED companies may

spontaneously improve the infrastructure around an eco-

efficiency-related project (Li and Deng, 2015), thus saving the

government’s financial funds for infrastructure construction

FIGURE 1
Connotation mechanism of the eco-efficiency of RED.
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(i.e., some of the savings may be used for environmental

improvement). Local infrastructure and environmental

improvement may also lead to population inflow, thus

promoting local market consumption and housing demand

(Jacobs-Crisioni et al., 2016; Panter et al., 2017). RED

enterprises and the government are the beneficiaries; RED

enterprises may increase the investment to meet market

demand, while the government is expected to support local

RED enterprises (Cai et al., 2018). The key to achieving the

above interaction is to reduce the excessive loss brought about by

RED to the ecological environment while finding a reasonable

layout of RED resources, thus achieving a win–win situation with

socioeconomic and eco-environmental benefits.

3.2 Indicator construction

On the basis of the theory of the eco-efficiency of RED, this

study constructs the corresponding eco-efficiency evaluation

indicator system by referring to the methods of existing

research (Zhang et al., 2016; Yuan and Yin, 2020), and the

specific indicators are shown in Table 1. In terms of input

factors, the number of employees in RED, investments

completed in RED, and building construction area are selected

to characterize the input of labor, economy, and material

resources, respectively. In terms of expected output, the value

of completed houses and house sales are selected to characterize

economic benefits. According to the principle of measurability,

some new indicators are added. For instance, the salary of

employees in RED is used to characterize social benefits, and

the house completion rate and non-vacancy rate of houses are

used to characterize the technical benefits1. The reasons for the

new indicators can be described as follows. The expected output

level of RED is closely related to the local economic level, labor

quality, development technology, among others. In general, the

local economic level, quality of employees, and development

technology are positively correlated with the expected output

value of RED. The higher the level of these three parameters, the

higher the expected output value of RED. To a certain extent, the

salary of employees in RED can be used to reflect the local

economic level and labor quality and characterize the social

benefits. Meanwhile, the house completion rate and non-

vacancy rate of houses reflect the selling ability of RED, and

they can be used to characterize the technical benefits. In terms of

unexpected output, the existing research lacks quantitative

indicators for measuring the environmental pollution degree

caused by RED. Ecological footprint is one of the important

indicators for evaluating the degree of environmental pollution,

and it has been widely used in various research fields (Zafar et al.,

2019). Therefore, this study introduces ecological footprint into

the whole cycle of RED to measure the ecological footprint of

directly occupied ecological lands, building materials, and

construction waste in the RED process and subsequently

characterize the environmental damage degree caused by

RED2. The calculation process of the ecological footprint of

RED has been elaborated by Wang (2013) and Gonzalez-

Vallejo et al. (2015).

4Researchmethods and data sources

4.1 Super-SBM model

The Super-SBM model is a scientific evaluation method

adopted by scholars to improve the traditional DEA model

according to practical experience, and it has been widely used

for ensuring efficiency measurement in various fields.

Compared with the traditional DEA model, the Super-SBM

model has the following advantages: 1) the unexpected output

in the ecological process of RED is included in the evaluation

indicator system to demonstrate the true value of the eco-

efficiency of RED in a more accurate manner; 2) the slack

variable in the efficiency measurement is considered, and the

problem of measurement deviation caused by radial and

angular differences is addressed; and 3) the efficiency value

can be set to greater than 1 as a means of solving the sorting

problem that tends to ignore multiple evaluation units with

efficiency values of 1 (Liu et al., 2019). Therefore, this study

uses the Super-SBM model to measure the eco-efficiency of

RED by presetting the variable returns to scale (VRS) for the

model constraint. The specific principle can be summarized as

follows.

A total of n evaluation units are preset. Here, x and y

represent the input and output variables, respectively (ye and

yne represent the expected and unexpected output,

respectively), and a and b represent the number of input

and output variables, respectively (b1 and b2 represent the

number of expected and unexpected output variables

respectively, i.e., b1 + b2 = b). Matrices X, Ye, and Yne can

be defined as X � (xi,j) ∈ Ra×n, Ye � (ye
i,j) ∈ Rb1×n, and

Yne � (yne
i,j) ∈ Rb2×n, respectively, where X, Ye, and Yne are

set to be greater than 0 according to the actual input and

1 This research uses the perpetual inventory method to process the
investment completed in RED. The non-vacancy rate of houses is
calculated from the area of commercial housing sold and the area
of commercial housing to be sold for 3 years or more.

2 This research takes “national hectare” (nha) as themeasurement unit of
ecological footprint. With regard to the calculation of ecological
footprint of the ecological land directly occupied, the land area is
calculated by the average plot ratio of residential housing (1.55) and the
average plot ratio of office building and housing for commercial use
(1.65), respectively, according to the project announced by the
provincial and municipal land and resources departments in YREB.
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output values. Then, the production possibility set P is defined

as P � {(x, ye, yne)|x≥Xλ, ye ≥Yeλ, yne ≤Yneλ, λ≥ 0}. The

expression of the model is given by

δ* � min

1
a
∑a
i�1

�xi

xik

1
b1 + b2

⎛⎝∑b1
r�1

�ye
r

ye
rk

+∑b2
t�1

�yne
t

yne
tk

⎞⎠

Subject to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�x≥∑n

j�1,≠ k
λjxj

�ye ≤∑n

j�1,≠ k
λjy

e
j

�yne ≥∑n

j�1,≠ k
λjy

ne
j

�x≥ xk, �y
e ≤ye

k, �y
ne ≥yne

k , �y
e ≥ 0, λ≥ 0

(1)

where n evaluation units (cities) exist by default; xk, ye
k, and yne

k

represent the vectors of input, expected output, and unexpected

output, respectively; xik, ye
rk, and y

ne
tk represent the vector elements

of input, expected output, and unexpected output, respectively;X,

Ye, and Yne represent the matrices of input, expected output, and

unexpected output, respectively; a, b1, and b2 represent the

quantity of input, expected output, and unexpected output,

respectively; λ represents the weight vector; and δ* represents

the eco-efficiency value of RED. If δ* ≥ 1, then the evaluation unit

is effective. If δ* < 1, then the evaluation unit needs to adjust the

ratio among input, expected output, and unexpected output as a

means of achieving the best level of eco-efficiency.

4.2 Spatial autocorrelation model

Spatial autocorrelation analysis is the mainstream evaluation

method used to describe spatial correlation and spatial

heterogeneity, including global spatial autocorrelation and

local spatial autocorrelation (Fan et al., 2022). Global spatial

autocorrelation can be used to judge the spatial correlation

characteristics of the eco-efficiency of RED from a global

perspective. It can be depicted by global Moran’s I, and the

specific expression is given by

Ig �
∑n
i�1
∑n
j�1
wij(xi − �x)(xj − �x)

S2∑n
i�1
∑n
j�1
wij

(2)

where xi, xj, and �x represent the observed value and average

observed values of units i and j, respectively; n represents the

number of evaluation units; S2 � 1
2 ∑n
i�1
(xi − �x)2 represents the

variance; and wij represents the spatial weight matrix constructed

based on the centroid distance of the evaluation unit. Ig represents

Moran’s I, where Ig ∈ (−1, 1). If Ig is significantly positive

(negative), then the spatial autocorrelation in the eco-efficiency of

RED is positive (negative). Meanwhile, Ig � 0 means that the

observed values in the different areas are not spatially correlated.

Global spatial autocorrelation can only reflect the average

correlation or difference in the degree of the eco-efficiency of

RED in the whole space, but it cannot reflect the specific

characteristics of local spatial clustering or differentiation.

Nonetheless, local spatial autocorrelation analysis can

overcome this deficiency. Therefore, this study uses local

Moran’s I to analyze the local spatial correlation effect of the

eco-efficiency of RED. The specific expression is given by

Il �
(xi − �x)∑n

j�1
wij(xj − �x)
S2

(3)

where Il represents local Moran’s I. If Il > 0, then the areas with

similar values for the eco-efficiency of RED are adjacent to each

other, and the local space has high–high (H-H) or low–low (L-L)

cluster characteristics. If Il < 0, then the areas with different

values for the eco-efficiency of RED are adjacent to each other,

and the local space has “high–low” or “low–high” cluster

characteristics.

4.3 Markov chain model

This research covers the period between 2006 and 2020,

which spans China’s 11th, 12th, and 13th Five-Year Plans. RED is

closely related to market supply and demand, government

orientation, and technology, depicting obvious inaccuracies

and uncertainties, suggesting that the evolutionary

characteristics of the eco-efficiency of RED should be a

primary focus. The Markov chain model is used to determine

the changing trend of all state types of objects through initial

probability and mutual transfer probability. This model is often

used in environmental science to analyze the dynamic

spatial–temporal evolutionary characteristics of objects

(Agovino et al., 2019). Here, the traditional Markov chain

model is used to construct an N×N Markov probability

transfer matrix based on the eco-efficiency of RED and

subsequently explore the dynamic evolutionary characteristics

of the eco-efficiency of RED in YREB. In particular, Pij is set as

the probability that the eco-efficiency of RED in a city can be

transferred from state Ei in year t to state Ej in year t+1, and the

transfer frequency can be used to represent the transfer

probability of the eco-efficiency of RED. The specific

expression is given by

Pij(Ei → Ej) � nij
ni

(4)

where nij represents the total number of cities at level i to level j

when the eco-efficiency of RED is transferred from state Ei to

state Ej, and ni represents the number of cities with state Ei at

level i.

The spatial Markov chain introduces “spatial lag” into the

Markov probability transfer matrix based on the traditional

Markov chain. This parameter is used to explore the influence

Frontiers in Environmental Science frontiersin.org06

Fan et al. 10.3389/fenvs.2022.996152

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996152


of the same attribute value of adjacent objects in geographical

space. By setting the spatial weight matrix, the N×N Markov

probability transfer matrix can be decomposed into an N×N×N

probability transfer matrix. Then, Pij(N) is used to represent the
transfer probability of the eco-efficiency of RED from state Ei in

year t to state Ej in t+1 when the spatial lag type of an evaluation

unit isNi as ameans of revealing the influence of the spatial effect

on the eco-efficiency of RED in YREB. The spatial lag type of the

evaluation unit can be determined according to its spatial lag

value, which is the spatially weighted average of the attribute

value of the neighboring region of the evaluation unit. The

specific expressions are given as follows:

Lag � YiWij (5)

where Lag represents the spatial lag value of the evaluation unit i;

Yi represents the attribute value of the evaluation unit i; and Wij

represents the relation matrix between the evaluation unit and

the neighboring region.

4.4 Overview of the study area

YREB spans the eastern, central, and western parts of China,

covering 11 provinces, including Shanghai, Jiangsu, Zhejiang,

Anhui, Jiangxi, Hubei, Hunan, Chongqing, Sichuan, Yunnan,

and Guizhou. These provinces account for 21.4% of the land area

of China. YREB is one of the regions with the greatest

comprehensive strength and the greatest strategic support in

the country, and it is also one of the regions with the most highly

developed real estate industry. According to the China Bureau of

Statistics, in 2020, the RED investment and real estate value

added in YREB accounted for 46 and 43% of China’s total value,

respectively. Furthermore, the average prices of commercial

housing in Shanghai, Jiangsu, and Zhejiang were higher than

10 000 yuan/m2 (i.e., the average price of commercial housing

was higher than 10 000 yuan in only eight provinces in China).

The average prices of commercial housing in four provinces in

YREB also ranked among the top 10 in China. However, the

development of the local real estate industry aggravated the

resource depletion and even has continuously posed an

enormous impact on the local ecological environment.

Moreover, in 2020, the total energy consumption of the real

estate industry in YREB was 93.2 million t of standard coal, and

the total consumption of coal reached 6.39million t. Nonetheless,

the real estate industry in YREB greatly promoted the

development of its affiliated industries, leading to a surge in

energy consumption. For example, the total energy consumption

in the furniture manufacturing industry reached 3.93 million t of

standard coal. Therefore, aiming to respond to the call for eco-

priority and green development implemented via the Outline of

the Development Plan of the YREB, we must correctly

understand the coupling and coordination between RED and

ecological environmental protection and strive to realize the

regional eco-civilization construction. On this basis, this study

selected 108 prefecture-level cities in YREB as the research object

(Figure 2). Then, according to the classification standard of the

China Bureau of Statistics, the selected cities were divided into

three major areas: those areas along the upper reaches of YREB

(31 cities in Chongqing, Sichuan, Guizhou, and Yunnan), those

areas along the middle reaches of YREB (36 cities in Jiangxi,

Hubei, and Hunan), and those areas along the lower reaches of

YREB (41 cities in Shanghai, Jiangsu, Zhejiang, and Anhui).

4.5 Data sources

RED is closely related to national policy, depicting obvious

periodicity. Thus, this study took the 5-year plan period of

China’s national economic and social development as a cycle.

The study period of 2006–2020 was set according to the principle

of data availability, covering the 11th, 12th and 13th Five-Year

Plan periods. The data were retrieved from the China Statistical

Yearbook, China Urban Statistical Yearbook, China Regional

Economic Statistical Yearbook, China Real Estate Statistical

Yearbook, and provincial and municipal statistical yearbooks.

Some of the original data on unexpected outputs were obtained

from the Ministry of Housing and Urban-Rural Development of

the People’s Republic of China and the provincial and municipal

natural resource departments. The missing data were filled by

means of either application for disclosure or interpolation.

5 Analysis of empirical results

5.1 Temporal evolutionary characteristics
of the eco-efficiency of RED

5.1.1 Overall temporal evolutionary
characteristics

In this study, VRS was used to produce the production

technology constraints on the Super-SBM model, and MATLABR

2018 was used to measure the eco-efficiency of RED in YREB from

2006 to 2020 (Figure 3). On the basis of the quartile division standard

(25, 50, and 75%), the eco-efficiency of RED in YREB was divided

into four levels: low efficiency,mediumefficiency, high efficiency, and

very high efficiency.

Overall, the eco-efficiency of RED in YREB presented an

increasing trend at the medium level from 2006 to 2020. In the

time domain of the study, the eco-efficiency of RED fluctuated

slightly in the range of 0.78–0.88, with an overall increase of 7.3%.

Therefore, in the process of rapid urbanization, the RED in YREB

gradually formed a highly efficient and green development model

and realized the transformation from manual development to

mechanized development and from traditional cast-in-place

buildings to prefabricated buildings. These scenarios helped to
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improve the ratio among input, expected output, and unexpected

output3 and achieve a coordinated development of RED and

ecological protection. However, redundant input, insufficient

expected output, and widespread environmental pollution,

among other problems, still exist at the present stage.

5.1.2 Local temporal evolutionary characteristics
From a local point of view, the average annual eco-efficiency

of RED in YREB takes the order of lower area > upper area >
middle area.

The annual average eco-efficiency of RED in the lower area

was 0.90, and the corresponding areas always manifested a

leading position in YREB. This phenomenon can be simply

ascribed to the developed local real estate industry. However,

the eco-efficiency level in the upper area at the later stage of the

study period was exceeded by that in the lower area. In terms of

the growth trend, the average annual growth rate of the eco-

efficiency of RED in the lower area was the lowest, which is

similar to the conclusion of Jin et al. (2018). A possible reason is

that this region is the leader of RED in YREB. In the early study

period, the RED in this region flourished against the backdrop of

rapid urbanization in China, and the expected output scale of

RED held a safe lead, resulting in a high eco-efficiency of RED in

this region. In the later stage of the study period (especially with

the implementation of the policy of “houses are for living in, not

for speculation”), the limitation of RED weakened the advantage

of expected output in the lower area. In addition, the regional

ecological environment was seriously damaged, and the resource

endowment was poorer than that in the upper area, causing a

failure in further improving the eco-efficiency of RED.

FIGURE 2
The geographical location of study area.

3 In 2020, the number of employees, completed investments, and area
of building construction with respect to RED in YREB decreased by
67%, −41.7%, and −31.8%, respectively, compared with those in 2006.
The value of completed houses, house sales, and salary of employees
with respect to RED, house completion rate, and non-vacancy rate of
houses increased by 340, 808, 267, 64%, and −5%, respectively,
compared with those in 2006. The ecological footprint increased by
46% compared with that in 2006.
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The annual average eco-efficiency of RED was 0.87 in the

upper area, and it increased at the end of the study period.

From 2006 to 2020, the eco-efficiency of RED in the upper

area increased from 0.84 to 0.90, realizing the transformation

from a medium level to a high level, possibly because most of

these areas presented better eco-environmental quality and

resource endowment, and tourism economy had a positive

effect on eco-environmental protection. The local

governments attached great importance to the loss of

ecological environment caused by RED and consequently

introduced several policies and measures for energy

conservation and emission reduction in RED. Chongqing

revised and issued the Technical Standard for the

Construction of Green Ecological Housing (Green

Building); the State Council issued the Experimental Plan

for National Eco-civilization Experimental Zone (Guizhou);

and Sichuan and Yunnan successively issued the Sichuan

Green Building Action Implementation Plan the Yunnan

Green Building Innovation Action Implementation Plan,

among others. These policy measures helped to balance the

ratio among input, expected output, and unexpected output

of RED in the area4.

The gap in the eco-efficiency of RED between the middle

area and the other two areas was narrowed. From 2006 to

2020, the difference in eco-efficiency of RED decreased from

0.60 to 0.05. This trend can be explained by the middle area

encompassing all major agricultural provinces, focusing on

the development of the agricultural economy, albeit the real

estate industry was insufficiently developed in the early study

period, but the ecological advantages of RED gradually

loomed owing to the resource endowment conditions and

the transformation of the industrial structure in the late study

period. The proportion of added value of the primary

industry in the middle area decreased from 16% in 2006 to

9% in 2020, whereas the proportion of added value of the

real estate industry increased from 4% in 2006 to 8% in2020.

Clearly, the gap in the eco-efficiency level of RED

between the middle area and the other two areas gradually

narrowed.

5.2 Spatial evolutionary characteristics of
the eco-efficiency of RED

5.2.1 Overall spatial evolutionary characteristics
Using the spatial analysis module of Geoda, this study

selected four time points (2006, 2011, 2016, and 2020) to

explore the spatial autocorrelation in the eco-efficiency of

RED in YREB (Table 2).

As shown in Table 2, the global Moran’s I of the four time

points is greater than 0 and passes the significance test at 5% or

higher, indicating a significant positive spatial autocorrelation in

the eco-efficiency of RED in YREB. Thus, the distribution of eco-

efficiency of urban RED in geographical space has non-

FIGURE 3
Change trend of the eco-efficiency of RED in the study region from 2006 to 2020.

4 Data source: China Statistical Yearbook.
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randomized characteristics. In the early stage, the global Moran’s

I of the eco-efficiency of RED continues to decline; after 2016, an

increasing trend can be observed, indicating that the eco-

efficiency of RED in YREB has a spatial evolution trend from

weak correlation to strong correlation. This trend can be

attributed to the great differences in RED among cities in the

early stage. However, the differences in the later stage appear to

be reduced, which can be attributed to the process of

urbanization in China. RED showed obvious sequential

characteristics. Even at the early stage, the scale of RED in

the developed cities was larger than those of their neighboring

less-developed cities, and the circulation of RED factors among

the cities was insufficient, leading to a low spatial

autocorrelation of the regional eco-efficiency of RED. With

the deepening of urbanization, the RED differences among

cities were gradually reduced, especially with the

implementation of the 13th Five-Year Plan and the Outline

of Development Plan for YREB in 2016, and the overall degree

of regional development was further improved. In the context

of gradually saturated housing demand in the developed cities,

RED enterprises started to shift their focus to less developed

cities, consequently promoting the flow of factors of RED and

increasing the spatial spillover effect of the regional eco-

efficiency of RED. In the future, against the backdrop of

“Double-Carbon” goal, local governments and RED

enterprises in the selected cities attempted to strengthen

their exchanges with neighboring cities as a means of fully

maximizing the driving effect of high-efficiency cities.

5.2.2 Local spatial evolutionary characteristics
The local spatial autocorrelation model was used to analyze

the local evolutionary characteristics of the eco-efficiency of

RED. LISA cluster diagrams of the eco-efficiency of RED in

YREB in 2006, 2011, 2016, and 2020 were drawn (Figure 4). As

shown in Figure 4, the eco-efficiency of RED in YREB presents a

significant difference in terms of spatial distribution. In

particular, the clustering of cities with high (low) eco-

efficiency of RED in terms of geographical space constantly

changes over time.

1) In terms of the eco-efficiency of RED in 2006, the H-H and

L-L cluster areas showed spatial patterns of single-core

TABLE 2 Global Moran’s I of the eco-efficiency of RED in the study
area.

Index 2006 2011 2016 2020

Global Moran’s I 0.239*** 0.134*** 0.119** 0.236***

Z-Value 3.296 2.941 1.827 3.390

P-Value 0.001 0.001 0.040 0.001

Note: * * *, * * *, and * represent the significant levels of 1, 5 and 10% respectively.

FIGURE 4
LISA cluster diagrams of the eco-efficiency of RED in the study area.
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clustering and point distribution. The H-H single-core

cluster is mainly distributed in eight cities in the east of

Jiangsu Province, and the point distribution pattern is

mainly distributed in the west of the study area,

including Panzhihua and Deyang in Sichuan Province,

Yuxi and Lincang in Yunnan Province. By contrast, the

L-L single-core cluster is mainly distributed in eight cities in

Hunan Province, and the point distribution pattern is

composed of Anshun in Guizhou Province and Fuyang in

Anhui Province.

2) In terms of the eco-efficiency of RED in 2011, the H-H

cluster and L-L cluster areas showed spatial patterns of

dual-core and single-core clustering, respectively. The first

H-H cluster point further spread to the south of Jiangsu

Province with respect to the data for 2006, and four new

cities (Huaian and Zhenjiang in Jiangsu Province, Huizhou

in Zhejiang Province, and Shanghai) were added. The

second H-H cluster point is composed of two cities

(Liupanshui and Anshun in Guizhou Province). By

contrast, the L-L single-core cluster shifted northward

from eight cities in southern Hunan Province in 2006 to

six cities in northern Hunan Province and western Hubei

Province.

3) In terms of the eco-efficiency of RED in 2016, the H-H cluster

areas continued to expand outward, whereas the L-L cluster

areas underwent a dispersed spatial distribution. The H-H

cluster areas further expanded, from southeastern Jiangsu

Province as the core, in 2011, covering 17 cities in Sichuan,

Shanghai, Jiangsu, Zhejiang, and Anhui. This pattern

indicates that the H-H cluster effect was enhanced. By

contrast, the L-L cluster areas showed characteristics of

dispersion from the central areas to the surrounding areas,

but the number of cities remained unchanged compared with

that in 2011.

4) In terms of the eco-efficiency of RED in 2020, the cities in the

H-H cluster areas continued to increase, and the L-L cluster

areas converged to the north of YREB. The H-H cluster areas

shifted downwards with respect to data for 2016, and the

cluster scale was further expanded, covering 20 cities in

Sichuan, Shanghai, Jiangsu, Hubei, Zhejiang, Jiangxi, and

Hunan. By contrast, the L-L cluster areas were generally

located in the north of YREB, mainly covering 12 cities in

Hubei, Guizhou, and Anhui.

In summary, regarding the eco-efficiency of RED in YREB

from 2006 to 2020, the H-H cluster areas showed the

characteristics of cluster point expansion and transfer. The

cities in the H-H cluster areas increased year by year, from

12 cities in 2006 to 20 cities in 2020, with a growth rate of

67%. This feature indicates that the RED funds, labor,

equipment and materials, development technology, and

policy measures in the H-H cluster areas played significant

driving roles, and the circulation of production factors among

the neighboring cities was dense, thus promoting the eco-

efficiency level of RED in the underdeveloped cities.

Meanwhile, the L-L cluster areas showed the

characteristics of small-scale diffusion, indicating a

weakening of the clustering effect. However, the number of

clustered cities was stable, indicating that the negative spatial

spillover effect of YREB was not weakened in the study

period.

5.3 Markov chain analysis of the eco-
efficiency of RED

5.3.1 Traditional markov chain analysis
The eco-efficiency of RED in 108 cities at the prefecture or

above levels from 2006 to 2020 was divided into types based on

the quartile division standard: Ⅰ, Ⅱ, Ⅲ, and Ⅳ. The higher the

value of each type, the higher the eco-efficiency of RED. The

probability transfer matrix based on traditional Markov chain

analysis is shown in Table 3.

As shown in Table 3, the eco-efficiency of RED in YREB

has the characteristics of maintaining stability of the original

state, and “club convergence” is apparent in the extreme value.

Cross-stage transfer in the short term is difficult to achieve,

and the risk of transfer to a low state is low. First, in terms of

state preservation, the probability of the four state types on the

diagonal is higher than that on the non-diagonal, and the

minimum value is 0.551. In other words, at least 55.1% of the

eco-efficiency of RED will likely remain stable in the future

evolution process. Second, in terms of extreme convergence,

the probability of the eco-efficiency of RED at both ends of the

diagonal is higher than that in the middle, and the probability

is in the order of PIV−IV(0.756) > PI−I(0.745) > PII−II(0.632) >
PIII−III(0.551). This order indicates that the eco-efficiency of

RED tends to agglomerate to a high (low) level, i.e., the

phenomenon of club convergence is significant. Third, in

terms of state transfer, the maximum and minimum

probabilities on the non-diagonal are 0.178 and 0.028,

respectively, and the values are obviously lower than that

TABLE 3 Traditional Markov chain probability transfer matrix of the
eco-efficiency of RED in the study area.

Local status Type Ⅰ Type Ⅱ Type Ⅲ Type Ⅳ

<25% 25–50% 50–75% >75%

Type Ⅰ 0.745 0.119 0.108 0.028

Type Ⅱ 0.114 0.632 0.183 0.070

Type Ⅲ 0.100 0.171 0.551 0.178

Type Ⅳ 0.028 0.070 0.145 0.756
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on the diagonal. This trend indicates that the eco-efficiency of

RED is difficult to achieve for the cross-stage transfer in the

short term. Fourth, in terms of risk prediction, the probability

of transfer of the eco-efficiency of RED to a low state is

relatively low. The probability of state transfer from type

Ⅱto type Ⅰis less than that from type Ⅱ to type Ⅲ,

i.e., [PII−I(0.114) < PII−III(0.183)]. Furthermore, the

probability of state transfer from type Ⅲ to type Ⅱ is less

than that from type Ⅲ to type Ⅳ, i.e., [PIII−II(0.171) <
PIII−IV(0.178)]. The trends indicate a low risk of transfer of

the eco-efficiency of RED to a low state.

5.3.2 Spatial markov chain analysis
According to the spatial autocorrelation analysis, the eco-

efficiency of RED in YREB has significant spatial cluster

characteristics. Subsequently, the spatial weight matrix based

on geographical distance was introduced into the traditional

Markov chain, and the spatial Markov chain probability transfer

matrix was constructed based on the spatial lag type of each city

in the initial year (Table 4). By comparing the transfer

probabilities of Tables 3, 4, the following spatial evolutionary

characteristics can be obtained:

1) The spatial spillover effect significantly affects the dynamic

evolution process of the eco-efficiency of RED. In the

context of differences in the eco-efficiencies of RED

among neighboring areas, the probability of transfer of

these eco-efficiencies in YREB differs from those measured

by the traditional Markov chain. For example, in the

traditional Markov chain probability transfer matrix, the

probability of transfer from typeⅢ to type IV is the highest

[PIII−IV(0.178)]. However, in the spatial Markov chain

probability transfer matrix, the probability of transfer

from type Ⅲ to type Ⅳ is PIII−IV(I)(0.154) and

PIII−IV(II)(0.168), respectively, when a city is adjacent to

cities of types Ⅰ and Ⅱ, which is lower than those measured

by the traditional Markov chain. Furthermore, the

probability of transfer from type Ⅲ to type Ⅳ is

PIII−IV(III)(0.198) and PIII−IV(IV)(0.191), respectively,

when a city is adjacent to cities of types Ⅲ and Ⅳ,

which is higher than those measured by the traditional

Markov chain. Therefore, the spatial spillover effect has a

significant assimilation influence on the dynamic evolution

of the eco-efficiency of RED.

2) The spatial spillover effect has an important influence on the

dynamic transfer of the eco-efficiency of RED. When a city is

adjacent to another city with a high eco-efficiency of RED, the

probability of transfer of the eco-efficiency of RED to a high

state increases. By contrast, when a city is adjacent to another

TABLE 4 Markov chain probability transition matrix of the eco-efficiency of RED in the study area.

Spatial lag Local status Type Ⅰ Type Ⅱ Type Ⅲ Type Ⅳ

<25% 25–50% 50–75% >75%

Type Ⅰ Type Ⅰ 0.768 0.087 0.116 0.029

Type Ⅱ 0.124 0.616 0.179 0.080

Type Ⅲ 0.105 0.171 0.569 0.154

Type Ⅳ 0.035 0.122 0.148 0.696

Type Ⅱ Type Ⅰ 0.756 0.156 0.061 0.028

Type Ⅱ 0.113 0.668 0.162 0.056

Type Ⅲ 0.125 0.175 0.532 0.168

Type Ⅳ 0.041 0.090 0.172 0.697

Type Ⅲ Type Ⅰ 0.733 0.123 0.130 0.014

Type Ⅱ 0.116 0.608 0.202 0.073

Type Ⅲ 0.078 0.183 0.541 0.198

Type Ⅳ 0.022 0.050 0.095 0.832

Type Ⅳ Type Ⅰ 0.700 0.115 0.141 0.044

Type Ⅱ 0.103 0.641 0.186 0.069

Type Ⅲ 0.091 0.158 0.561 0.191

Type Ⅳ 0.020 0.045 0.169 0.767
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city with low eco-efficiency of RED, the probability of transfer

to the low state increases. For example, in the context of high

eco-efficiency of RED, PI−II(II)(0.156) > PI−II(0.119) and

PII−III(III)(0.202) > PII−III(0.183). In the context of low eco-

efficiency of RED, PII−I(I)(0.124) > PII−I(0.114) and

PIII−II(II)(0.175) > PIII−II(0.171). Therefore, cities with

low eco-efficiencies of RED should fully utilize the spatial

spillover effect of other cities with high eco-efficiencies to

promote the level of local eco-efficiency.

The above mentioned evolutionary characteristics indicate

that when driven by positive and negative spatial spillover effects,

the eco-efficiency of RED gradually forms H-H and L-L club

convergence in the geographical space of YREB. In accordance

with the notion of the eco-efficiency of RED, this parameter is the

result of interactions in the combined resource–social

economy–environment system, with the resource system

acting as the dominant factor. RED investment depends on

the direct investment of real estate enterprises and is greatly

affected by the influence of government behavior towards

enterprises. Therefore, the spatial spillover effect of the eco-

efficiency of RED can be viewed as the concrete manifestation of

the spatial spillover effect of the real estate enterprises’

investment behavior and the government behavior.

With the improvement of urbanization rate and economic

openness and the continuous development of informatization

and urban infrastructure, the flow of factors among cities is

accelerated. This phenomenon suggests that cities in YREB can

obtain the investment experience of other cities, especially the

neighboring ones, and consequently adjust the required RED

investment behavior and industrial structure. In addition, the

effect of government competition can also prompt local

governments to adopt favorable low carbon and emission

reduction policies to benefit RED, and they may be

implemented to local RED enterprises as a means of

increasing fiscal revenue and enhancing government

achievements. Therefore, driven by the investment behavior of

real estate enterprises and government behavior, YREB has

gradually formed H-H (L-L) cluster areas in terms of eco-

efficiency.

6 Conclusion and discussion

6.1 Conclusion

The RED panel data of 108 cities at the prefecture or above

levels in YREB were analyzed, with the research period set from

2006 to 2020. Then, the theoretical notion of the eco-efficiency of

RED was defined, and the evaluation indicator system was

constructed. Finally, the Super-SBM model was used to

measure the eco-efficiency of RED, and the spatial spillover

effects and evolution trends of this parameter was determined

using the spatial autocorrelation model and the Markov

chain model, respectively. The following conclusions can be

drawn:

1) In terms of the temporal evolutionary characteristics, the eco-

efficiency of RED in YREB presented an increasing trend at

the medium level from 2006 to 2020. The average annual eco-

efficiency of RED in YREB from 2006 to 2020 takes the

following order: lower area > upper area > middle area. The

differences in eco-efficiencies across the different regions

appeared to gradually narrow.

2) In terms of the spatial evolutionary characteristics, a

significant positive spatial autocorrelation was observed for

the eco-efficiency of RED in the study area. The degree of

spatial autocorrelation presented the characteristics of “falling

first and then rising.” In terms of the eco-efficiency of RED,

the H-H cluster showed a trend of expansion and transfer,

whereas the L-L cluster showed a trend of small-scale

diffusion.

3) In terms of the transfer trend characteristics, club

convergence was apparent for the eco-efficiency of regional

RED. Furthermore, achieving a cross-stage transfer in the

short term was difficult, and a low risk of transfer to a low

state was established. The spatial spillover effect played an

important role in the process of eco-efficiency transfer of

RED, and the assimilation effect caused by the spatial

spillover effect was significant.

6.2 Discussion

The results depict regional differences and varying spatial

spillover effects in the eco-efficiency of RED in YREB.

Furthermore, the spatial spillover effects intensified the club

convergence of the eco-efficiency of RED. From a practical

point of view, the RED behavior of enterprises and the role of

the government are the realistic ways for achieving the spatial

spillover effect. Therefore, knowing how to successfully exert

the spatial spillover effect of high-efficiency cities from these

two factors (i.e., behavior and role of enterprises and

government) is central in narrowing the regional differences

in the eco-efficiency of RED, and they can even determine the

improvement in the overall eco-efficiency of YREB. Besides the

disparities in urbanization levels and housing demands across

the cities, differences are also apparent in the growth and

development scales of the varying real estate industries in

those cities in the early stage. However, as China’s

urbanization is nearing the last phase, both government

control and housing demand saturation can slow down the

growth of RED (Liu et al., 2018), especially in the developed

cities (Cai et al., 2020). These phenomena have led to the

apparent narrowing of the regional differences in RED.

Thus, apart from allocating RED resources, enterprises and
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government bodies should also reduce RED-induced pollution

from the eco-environmental protection perspective. On the

basis of the above mentioned discussions, this study

proposes the following policy recommendations:

1) The RED model must be actively transformed in low-

efficiency cities, and the circulation of RED factors

between high-efficiency and low-efficiency cities should be

increased. First, RED enterprises should actively explore the

development of energy saving and emission reduction

technologies, such as “prefabricated” buildings, AI

development, and green building materials. Second, the

circulation of RED factors should be increased between

low- and high-efficiency cities. In particular, local

governments should encourage RED employees to

strengthen exchange and learning, and they can also guide

local enterprises to pursue cooperative development with

non-local enterprises as a means of learning advanced

development experience. Finally, RED information sharing

among cities should be realized by building a real estate

carbon trading market and RED project information

management system. In this manner, resource allocation

and pollutant release information about the same or

similar RED projects in high-efficiency areas can be mastered.

2) High-efficiency cities should further enhance the

environmental protection awareness of RED enterprises.

On the one hand, local governments can establish a RED

incentive system based on eco-environmental protection

(i.e., evaluating RED enterprises according to pollutant

discharge and rewarding successful enterprises by means of

financial support, tax incentives, and licensing) to alter the

extensive construction and development behavior of local

RED enterprises. On the other hand, local governments can

establish a tiered pricing strategy for RED pollution

(i.e., charging according to different levels and scales of

pollutant release from RED projects) to enhance the

consciousness towards low-carbon development of RED

enterprises.

Although this study has deeply analyzed the spatial–temporal

evolution pattern of the eco-efficiency of RED, two points remain

worth discussing.

1) The unexpected output in this study only considered the

ecological footprint of RED. Against the backdrop of the

“Double-Carbon” goal, future researchers may calculate carbon

emission by referring to the buildingmaterials consumed by RED

in the various cities in YREB. Carbon dioxide produced by a new

REDmay also be used to characterize the unexpected output, and

it is an accurate measurement of the eco-efficiency of RED.

2) This study only expounded the influence mechanism and

transfer path of the eco-efficiency of RED in YREB under the

spatial spillover effect. Future researchers can further quantify

the influence of the spatial spillover effect on the eco-

efficiency of urban RED by means of empirical analysis.

Finally, this study only determined the spatial spillover

effect at the city level, but this topic can be further

discussed in depth at the county or lower levels in the future.
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