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Environmental policies and Environmentally biased technological advances

have important theoretical value and practical significance for air pollution

reduction and green economic development in China. The article is based on

panel data for 270 cities in China from 2007 to 2020. Using a Spatial model, the

direct, spillover andmoderating effects of Environmentally biased technological

progress on “local-neighbourhood” urban air pollution are examined

empirically. On this basis, the PSTR model is used to further explore the

non-linear effects of different types of environmental regulations. The study

found that: 1) There is a significant positive spatial correlation between both air

pollution and Environmentally biased technological progress in China.

Environmentally biased technological progress significantly suppresses air

pollution, with significant spatial spillover effects, and the conclusions

remain robust after a series of robustness tests. 2) Different types of

environmental regulations reinforce the dampening effect of

Environmentally biased technological progress on air pollution. However,

informal environmental regulation only reinforces the dampening effect of

Environmentally biased technological progress on air pollution in the local

cities. 3) There is a significant threshold effect of environmental regulation on

the impact of Environmentally biased technological progress on air pollution.

When the level of environmental regulation within a certain threshold interval,

Environmentally biased technological progress has a dampening effect on air

pollution. 4) The more eastern the city, the larger the city and the non-

resource-based cities, the more significant the air pollution suppression

effect of Environmentally biased technological advances. Based on this, this

study points out that governments at all levels should pay attention to the spatial

spillover effect of technological progress bias on air pollution, deepen the

construction of joint prevention and control mechanisms for regional air

pollution control; Establish multiple environmental regulation policies,

formulate and implement environmental regulation policies according to

local conditions and local technological progress bias; Formulate targeted

environmental regulation policies and technological innovation policies

according to the characteristics of different cities. It is an important

theoretical reference to help China to fight the battle against air pollution
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in-depth and to promote further improvement of ecological and environmental

quality.
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1 Introduction

In the context of China’s pursuit of high-quality

development, President Xi Jinping has called for exploring a

new path oriented towards ecological priority and green

development. The issue of air pollution reduction is

particularly prominent and has become the main theme of

green economic development (Zhao et al., 2020). The

Ministry of Ecology and Environment of China released the

“2021 China Ecological Environment Status Bulletin” which

shows that only 218 of China’s 339 cities at prefecture level

and above, or 64.3% of all cities, meet the ambient air quality

standards. The annual average PM2.5 concentration is as high as

30 μg/m3, which far exceeds the standard of 10 μg/m3 in the Air

Quality Guidelines issued by the World Health Organization

(Chen et al., 2017). In recent years, many parts of China have

been covered by extensive and prolonged hazy weather, which

not only hinders the development of China’s green economy, but

also endangers people’s lives and health, thus making it urgent to

combat air pollution (Zhang and Wu, 2018). To this end, China

has developed a number of policies to control air pollution. The

Standing Committee of the 12th National People’s Congress

promulgated the Law of the People’s Republic of China on the

Prevention and Control of Air Pollution, which proposes to use

technological advances to strengthen the comprehensive

prevention and control of air pollution from coal combustion,

industry, motor vehicles and vessels, dust and agriculture. The

report of the 19th National Congress points out the promotion of

green technology innovation, the vigorous development of green

technology and the improvement of the utilization rate of

resources in order to reduce air pollution. China has made

“adhering to ecological priorities and technological progress

leading to green development” an important strategy for

achieving green economic development (Nijak, 2013). The

State Council promulgated the Three-Year Action Plan to

Win the Blue Sky Defense War in 2018, stating that

governments at all levels should promote the joint

advancement of air pollution control and air pollution

reduction technologies by unleashing the power of

technological innovation to ensure the ultimate victory of the

Blue Sky Defense War in the shortest possible time. So in the face

of China’s existing air pollution problems, technological

advances are seen as an important means of addressing the

air pollution challenge (Popp et al., 2010; Acemoglu et al., 2012).

Since air pollution mainly originates from energy

consumption, the mechanism by which technological progress

reduces air pollution is also related to the bias of technological

progress towards the use of energy as a factor of production (Xiu

et al., 2019). Technological progress will change the way

production input factors are integrated, with different effects

on different factors (Chwelos et al., 2010). Early theories of

economic growth assumed that technological progress was

neutral, but in reality, technological progress is biased, and it

can be either resource-efficient or resource-consuming.

Resource-saving technological progress can induce cities to

improve and continuously increase the efficiency of integrated

clean energy use to achieve the goal of green economic

development (Hu et al., 2021). Therefore, in the context of

China’s goal to achieve green economic development, it is

important to explore the impact of biased technological

advances, especially Environmentally biased technological

advances, on air pollution, in order for China to make use of

low-carbon technologies to fight air pollution in depth and

promote further improvement of ecological and

environmental quality.

Such resource-efficient technological progress is closely

related to local resource endowments, especially energy, and

the bias and magnitude of technological progress are

uncertain (Kim, 1989). Environmental regulations imposed to

protect the environment, internalise environmental costs. To a

certain extent, this changes the cost and profitability of clean

technology products and provides an incentive for firms to

develop and use clean technologies on their own, thus

breaking the pathway of technological progress to local

resources and changing the direction of technological progress

(Shao et al., 2020). This paper, therefore, uses environmental

regulation to induce a shift from biased technological progress to

cleaner production. However, different types of environmental

regulations may lead to different effects of biased technological

progress in reducing air pollution, and even too high or too low

environmental regulations may lead to stagnation of economic

growth. Is it possible then to construct an appropriate

implementation strategy for environmental regulation that

will have a reinforcing effect on the process of biased

technological progress in curbing air pollution? In other

words, is it possible to maximize the dampening effect of

biased technological progress on air pollution in such an

appropriate manner? The exploration of this question will

facilitate local governments in formulating and

implementing environmental regulatory policies by

following per under local technological progress biases,

which is of great significance to the in-depth fight against
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air pollution. Regrettably, few scholars have studied the

relationship between these three.

This paper is a study of the relationship between the three.

The structure of the study is as follows: Section 2 reviews the

relevant literature. Section 3 conducted a theoretical analysis and

makes the hypotheses. Section 4 shows the model construction

and variable descriptions. Section 5 illustrates the empirical

results and analyses them. Section 6 discussed the results.

Section 7 provides research conclusions and Policy

Implications. The research framework is shown in Figure 1.

2 Literature review

The study of the factors that contribute to air pollution

reduction has been a hot topic in academia. So far, the main

influencing factors include the level of economic development

(Lin et al., 2014; Xie al, 2016; Jin et al., 2017; Ahmed et al., 2021),

environmental regulation (Liu et al., 2021; Wang and Li, 2021; Li

et al., 2022), industrial structure (Pei et al., 2021; Xue et al., 2021),

transport infrastructure (Kinney et al., 2011; Lozhkin et al., 2020;

Liu and Dong, 2021), technological progress (Chen et al., 2019;

Wu et al., 2020; Ma et al., 2022), financial development (Yang

et al., 2021; Cao Yang et al., 2022; Yang et al., 2022) and financial

capacity (Kuai et al., 2019; Mahmood, 2020; Yang et al., 2022; Yin

et al., 2022). Among these factors technological progress is an

important means of air pollution abatement, most previous

studies have focused on the impact of technological progress

on air pollution abatement (Wang et al., 2019; Dong et al., 2020;

Amann et al., 2020; Jahanger et al., 2022). Wang et al. (2021)

highlights that technological advances can significantly reduce air

pollution, but that there is variation in the reduction effect across

regions. Some subsequent studies have found that technological

progress has a dampening effect on air pollution to varying

degrees in different industries (Fujii et al., 2013; Omri and Hadj,

2020). Some studies have also concluded that technological

progress does not simply have a dampening effect on air

pollution. Technological progress can lead to energy rebound

effects, which can increase pollutant emissions. The dual nature

of the impact of technological progress on air pollution (Sun

et al., 2021; Dong et al., 2022; Yuan et al., 2022). Interestingly, the

reality of production is that technological progress is biased

(Hicks, 1963; Samuelson, 1965; Drandakis and Phelps, 1966).

The factor ratios of capital, labour and energy, as important

factor inputs to social production, are not constant. As

technological progress acts, it brings about not only an

increase in the efficiency of energy use but also has an

impact on the efficiency of factors of production such as

capital and labour. And because there is a mutual

substitution relationship between different factors of

production, the existence of this relationship causes a

change in the ratio of demand between the factors when

technological progress occurs. In other words, this biased

technological progress will affect the environmental impact

of factor inputs (Kennedy, 1964; Romer, 1990; Aghion and

Howitt, 1992; Acemoglu, 2007).

FIGURE 1
Research structure.
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Current research on biased technological progress focuses on

the measurement of biased technological progress and the factors

influencing it. There are three main approaches to measuring

biased technological progress: one is the CES production

function estimation method (Kiley, 1999; van et al., 2008;

Klump et al., 2012). That is, by associating the production

function, the profit-maximising labour first-order optimality

condition and the capital first-order optimality condition with

a set of three equations. The factor elasticity of substitution is

estimated and the bias towards technological progress between

different factors is calculated. This function assumes constant

factor elasticities and strict convergence of investment rates,

contrary to the laws of reality. The second is the non-

parametric data envelopment (DEA) method (Song and

Wang, 2018; Kang et al., 2020). This method measures total

factor productivity based on DEA and further decomposes it into

technical change, from which input-biased technical progress,

output-biased progress and neutral technical progress are then

decomposed. Although this method is not constrained by the

form of the production function and avoids the resulting

estimation bias, it can only determine the bias of technical

progress between different factors and cannot fully reflect the

extent of the bias of technical progress. The third method is

stochastic Frontier models with a transcendental logarithmic

(Translog) production function (Kuroda, 1988; Görgand and

Strobl, 2002; Chen and Liu, 2021). This method overcomes the

shortcomings of non-parametric estimation by capturing the bias

in technological progress while also measuring the degree of bias.

It is also more realistic to include a technical inefficiency term in

the model to simulate the objective fact of efficiency loss in the

actual production process of the firm. Regarding the factors

influencing biased technological progress, studies found that

FDI (Hale and Xu, 2016; Dong et al., 2019), energy intensity

(Huang et al., 2017; Zhen et al., 2021), capital deepening

(Acemoglu and Guerrieri, 2008), economic growth (Antonelli

and Fassio, 2014; Jung et al., 2017), labour share (Blankenau and

Cassou, 2011; Meng andWang, 2021), finance (Bai and Li, 2018)

and environmental regulation (Yang et al., 2020; Zhou et al.,

2020; Cao et al., 2022) all have different degrees of influence on

biased technological progress. Most scholars believe that

environmental regulation can promote technological progress

in favour of pollution reduction (Liu and Du, 2021), and

Acemoglu et al. (2012) argues that environmental regulation

can stimulate firms to undertake more R&D activities, thus

promoting technological progress and total factor productivity,

achieving a “win-win” situation in which environmental

improvement and firm productivity increase. Some scholars

argue that environmental regulation is not conducive to

technological progress and is biased towards pollution

reduction (Ouyang et al., 2020). The “crowding out” effect of

environmental regulation makes firms invest less in productive

R&D, which in turn affects their ability to improve production

technology. Further research has found that the bias of

environmental regulation towards technological progress in

terms of pollution reduction varies by industry, province and

city and may be non-linear (Liu et al., 2019).

Exploring existing research, it is easy to find that: 1) Scholars

have examined the richness of research on technological progress

on air pollution abatement. However, real-life technological

advances are biased, and the impact and heterogeneity of

technological advances based on biased emission reductions

on air pollution lack in-depth exploration. 2) Most studies use

the CES model and DEA model to calculate biased technological

progress. However, the CES is contrary to the law of reality, and

the DEA model can only determine the bias of technological

progress among different elements, and cannot fully reflect the

degree of bias of technological progress. In contrast, although it is

more scientific to estimate technological progress using a

stochastic Frontier model with a transcendental logarithmic

(Translog) production function, most studies consider only

two factors, capital and labour, and ignore the energy factor,

which affects the environment. 3) Among the studies on the

impact of biased technological progress on air pollution, there is a

lack of systematic analysis from the perspective of different types

of environmental regulations. Few scholars have integrated all

three into the same analytical framework, and few studies have

focused on spatial effects.

Therefore, the marginal contributions of this paper may lie

in: 1) This study analyses the impact of environmentally biased

technological advances on air pollution in a more systematic

manner, and refines the study of the impact of environmentally

biased technological advances on air pollution from three perspectives:

geographical heterogeneity of cities, heterogeneity of city sizes and

whether they are resource-based cities, reflecting the actual situation

more accurately. 2) This study uses a transcendental logarithmic

production function to measure environmentally biased technological

progress that takes into account energy factors that affect the

environment, which is closer to the practical implications of green

development. 3) By constructing Spatial and PSTRmodels, this study

systematically discusses the spatial, moderating and non-linear effects

of different environmental regulations on environmentally biased

technological progress and air pollution reduction, in order to help

China fight the battle against air pollution in depth and promote

further improvement of China’s ecological and environmental quality.

3 Theoretical analysis and research
hypotheses

3.1 Direct effects of environmentally
biased technological advances on air
pollution

Environmentally biased technological progress can reduce air

pollution emissions by changing the ratio of capital to labour,

influencing the relative price of factors, and increasing total
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factor productivity. Firstly, Environmentally biased technological

progress is accompanied by innovation and replacement of

machinery and equipment, changing the ratio of capital

labour allocation and optimising the industrial structure to

curb air pollution emissions (Acemoglu et al., 2012).

According to the Cobb-Douglas production function, capital

and labour are the two essential factors of production in the

production process, and a relatively high price of a certain factor

will lead to economic development that will prompt production

units to undergo technological innovation in this factor of

production, and technological progress will be biased

(Takayama, 1974). Environmentally biased technological

progress allows for a change in the ratio of factor inputs of

energy and labour, promoting an optimal upgrading of the

industrial structure (Song and Wang, 2016). The optimization

of the industrial structure will gradually reduce air pollution

emissions by reducing the proportion of highly polluting

industries, promoting the development of high-tech industries,

service industries and other low-polluting industries, and

promoting the rational allocation and recycling of factor

resources. As the centre of economic development gradually

shifts from primary and secondary industries to secondary

and tertiary industries, clean and green production processes,

pollutant treatment equipment and green and renewable energy

will be introduced into the production process, thus contributing

to the reduction of air pollutant emissions and the improvement

of ecological and environmental management (Zheng et al.,

2020). Secondly, Environmentally biased technological

progress changes the relative prices of factors by influencing

changes in the supply and demand in factor markets, thereby

affecting the ratio of factor inputs and the scale of output to

reduce air pollution emissions (Acemoglu et al., 2014). Changes

between energy and labour factor inputs as a result of the

technological progress bias can affect the amount of energy

consumed and thus air pollution emissions. Changes in factor

input ratios can cause changes in the relative prices of factors.

The number of inputs will reduce the relative prices of factors,

and technological progress will further bias the lower-priced

factors, affecting changes in air pollution emissions. As resources

become increasingly scarce, factor prices rise (Hall and Hall,

1984). Firms need to increase factor output in order to save costs

and increase their profitability, causing them to expand

production to achieve economies of scale. This leads to

resource conservation, which reduces the cost of production

and operation due to higher energy factor prices, allowing

firms to invest more in product research and development

and reduce their air pollution emissions (Jaramillo and

Muller, 2016). Finally, Environmentally biased technological

advances reduce air pollution emissions by increasing total

factor productivity and reducing resource consumption (An

et al., 2020). Environmentally biased technological advances

introduce green processes at the beginning of production to

reduce air pollution emissions by replacing traditional fossil fuels

with clean fuels, optimising production processes and improving

the efficiency of the use of resources such as water and electricity

(Yasmin and Grundmann, 2019); During the production and

processing process, technological advances improve resource

utilisation, save natural resources and fossil energy inputs, and

reduce air pollution emissions. At the end of consumption, green

product innovation can reduce the amount of waste generated

during and after the consumption of products and facilitate the

recycling of used items, thus technological progress is biased

towards reducing environmental pollution (Purushothaman

et al., 2021). In addition, cities act as important spatial

vehicles for factor mobility, facilitating the movement of

resources between regions. The technological progress bias

directly influences the share of factor allocation through

substitution or complementary relationships between factors,

thus affecting the level of air pollution that flows across

regions. The spatial properties of urban geography dictate that

the impact of Environmentally biased technological progress on

air pollution will inevitably have a spatial spillover effect, thus

affecting neighbouring cities.

Accordingly, this paper proposes the following hypothesis.

Hypothesis H1: Environmentally biased technological

advances can curb air pollution emissions and have spatial

spillover effects.

3.2 Moderating effects of environmental
regulation on environmentally biased
technological progress and air pollution

As a trigger for Environmentally biased technological

progress, environmental regulation can change the direction

of technological progress, steering it in the direction of

cleanliness and helping to reduce air pollution emissions

(Porter and Van der, 1995). Firstly, environmental regulation

influences Environmentally biased technological progress by

adjusting the ratio of factor demand to curb air pollution

emissions (Jaffe et al., 2002). Environmental regulation creates

new demands on firms, which may be in the form of the

introduction of emissions equipment, the absorption of

pollution control personnel, etc. This compliance input has

Environmentally biased technological advances in companies

toward reducing air pollution emissions. When a region has a

distinct factor endowment, technological progress tends to

favour the use of abundant factors to save scarce factors of

production. Environmental regulation in fact restricts the use

of highly polluting factors in regional production, artificially

altering the factor endowment of the region. Not all factors

can be used without restraint. Thus, when environmental

regulation enhances the ability of technology to couple with

capital, labour, energy and intermediate goods, it adapts

technological progress to the factor endowments used in
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production. This explores the optimal way for technological

progress to reduce air pollution (Xu and Xu, 2021). Second,

environmental regulation affects the role of Environmentally

biased technological progress on air pollution emissions by

increasing the prices of factor inputs (Gray and shadbegian,

2003). Increases in the price of an energy factor Environmentally

bias technological progress towards the conservation of that

factor or towards the use of improved and cleaner energy

sources as substitutes for fuel. These measures directly impose

additional costs and burdens on polluters or firms, increasing

transaction and decision costs, which in turn trigger a shift in

technological progress towards something that will reduce that

cost (Kennedy, 1964). Companies have made technological

advances biased towards reducing the cost of corporate

emissions for their own competitiveness. Under environmental

regulation, the barriers to entry for firms are raised and each firm

pays a price for compliance. However, this cost is not the same, and the

cost is smaller for companies that respond promptly or have good

pollution preventionmechanisms. For some non-polluting companies,

even this compliance cost is zero. This creates relative differences in

competitiveness between firms, leading to technological innovation in

the search for new competitiveness, and inducing technological

progress in the direction of reducing air pollution (Shadbegian and

Gray, 2005). Finally, environmental regulation inhibits air pollution

emissions through the technological bias induced by resource efficiency

(Hamamoto, 2006). Improving environmental quality makes firms

demand higher resource efficiency, and this makes the aim of

improving resource efficiency an incentive for firms to innovate

and thus induce Environmentally biased technological progress

(Cao et al., 2020). When resource and environmental policies, such

as environmental regulations, are strengthened, enterprises are induced

to enhance the introduction of carbon-reducing technologies and the

development of cleaner production technologies, thus inducing

technological progress in favour of resource and energy

conservation. This is conducive to more efficient energy use and

lower air pollution emissions. As an important tool for the

government to address environmental issues and achieve green

economic development, environmental regulation, in combination

with energy-biased technological advances, is one of the two main

drivers of China’s commitment to energy conservation and emission

reduction, and the solid promotion of the Blue Sky Defence.

Accordingly, this paper proposes the following hypothesis.

Hypothesis H2: Environmental regulation reinforces the

dampening effect of Environmentally biased technological

progress on air pollution emissions.

3.3 Analysis of the nonlinear effect of
environmental regulation

Most scholars argue that environmental regulation induces a

transition from environmentally biased technological progress to

cleaner production, while some argue that the “crowding out

effect” of environmental regulation causes a “rebound effect” on

firms. That is, environmental regulation hinders technological

progress in favour of pollution reduction (Yang and Li, 2017). On

the one hand, there is often a long time lag between the

application of innovations resulting from environmental

regulation to the production practices of enterprises. It is

difficult to show the impact of innovations on the

technological level, energy efficiency and management

efficiency of enterprises in a short period of time; On the

other hand, technological improvements brought about by

environmental regulations push companies to expand their

production. This leads to more energy consumption, which in

turn causes more serious environmental problems (Fan et al.,

2021). Whether environmental regulation promotes

technological progress and contributes to pollution reduction

is closely related to the type of policy it is and how strongly it is

enforced. In terms of type, environmental regulation is divided

into formal environmental regulation and informal

environmental regulation. Formal environmental regulation

refers to the various means by which governments regulate

environmental resources. The local government has

significantly reduced air pollution emissions through energy

efficiency subsidies, environmental taxes and fees (Zhou et al.,

2019). In contrast, neighbouring regions are not as strongly

influenced by local environmental policies, and the benefits of

energy efficiency subsidies and environmental taxes will not

allow the expected benefits of green technology innovation to

cover their costs, making formal environmental regulation of

air pollution reduction less effective. Informal

environmental regulation refers to environmental

regulation that relies on public participation as society

becomes more environmentally aware. There is no

systematic and dedicated long-term support from local

citizens to monitor the environment, resulting in an effect

that is not significant, although there is some reduction in

emissions. Public participation in environmental regulation

tends to have a bias towards technological progress in

neighbouring areas for a longer period of time, during

which time it may not be effective in reducing air

pollution. Therefore, different types of environmental

regulation can lead to different effects of environmentally

biased technological advances in reducing air pollution. It is

relevant to identify appropriate environmental regulation

implementation strategies that will show greater

effectiveness in curbing environmentally biased

technological advances in air pollution.

Accordingly, this paper proposes the following hypothesis.

Hypothesis H3: There may be a threshold effect of

environmental regulation, i.e., there may be optimal intervals

for environmental regulation to make Environmentally biased

technological progress to curb air pollution emissions.
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4 Model construction and variable
description

4.1 Model construction

4.1.1 Construction of the spatial panel model
PM2.5 is diffusivity and is influenced by wind direction and

climatic conditions to achieve spatial mobility, with a strong

correlation effect in space (Mahmood, 2022). Traditional

econometric models, on the other hand, are mostly “mean

reversion”, which are susceptible to extreme values and

assume that the objects of study are independent of each

other (Mahmood, 2022). In reality, everything is often

spatially correlated, and ignoring spatial correlation can lead

to biased estimates (Baltagi and Li, 2014). Therefore, this paper

draws on Anselin’s (1988) research methodology to construct a

spatial econometric model to reveal the impact of

Environmentally biased technological progress on air pollution

research. The general equation of the SAR econometric model is

set as follows:

PM2.5it � β0 + ρ∑N

j�1WijPM2.5it + β1Biasit + β2∑6

k�1Xit + εit

(1)
where (1), i denote a city and t denotes a year, PM2.5it
denote air pollution level; Biasit denote Environmentally

biased technological progress; Wijdenote spatial weight

matrix; Xitdenotes a series of control variables, including

the level of economic development (GDP), fiscal capacity

(CZ), level of infrastructure (Infra), industrial structure

(Ind), level of openness to the outside world (FDI), and

level of urban greening (GRE); ρ denote the spatial spillover

coefficient of air pollution; β denote the coefficient to be

estimated; εit denote the random disturbance term of the

spatial model.

The above equation tests the direct effect of Environmentally

biased technological progress on air pollution. This paper draws

on Baron and Kenny (1986) and introduces an interaction term

between environmental regulation and Environmentally biased

technological progress to further examine the moderating effect

of environmental regulation on Environmentally biased

technological progress and air pollution, with the moderating

effect model set as follows:

PM2.5it � β0 + ρ∑N

j�1WijPM2.5it + β1Biasit + β2ERit

+ β3ERit × Biasit + β4∑6

k�1Xit + εit (2)

4.1.2 Construction of the spatial weight matrix
The spatial weight matrix also needs to be constructed when

introducing a spatial measurement model. Spatial weight

matrices are used to characterise the interconnections and

dependencies between spatial units (Qu and Lee, 2015). The

selection of an appropriate spatial weight matrix in a

study is crucial in exploring the spatial impact of

Environmentally biased technological advances on air

pollution. The spatial distance weight matrix is based on

the geographical distance between regions, which is in line

with the “first law of geography”, where things are linked to

other things, but more closely to things that are closer

together. Therefore, this paper draws on the method of

Han et al. (2018) and others, and adopts the idea of the

gravitational model to construct the spatial weight matrix

set as follows:

Wij � { 1/d2ij , i ≠ j
0, i � j

(3)

Where dij is the Euclidean distance between the locations of

two different urban geographic centres, calculated by GeoDa

software. It is important to note that the spatial weight

matrices used in the empirical analysis are all row-

standardised spatial weight matrices. The row-

standardised spatial weight matrices are dimensionless

data, which helps to eliminate the influence of units of

measurement and reflects only the spatial correlation

structure between different regions.

4.1.3 Construction of PSTR model
According to the theoretical hypothesis, it is assumed

that the effect of different types of environmental regulations

on the suppression of Environmentally biased technological

progress and air pollution will be different. To explore the

optimal interval of different environmental regulations, so

that Environmentally biased technological progress has been

showing a strengthening effect in the suppression of air

pollution. Drawing on Gonzalez (2017), PSTR model with

environmental regulation as the transformation variable was

constructed with the MATLAB software. The model was

constructed as follows:

TABLE 1 Descriptive statistics of variables.

Variable Obs Mean Std.Dev Min Max

PM2.5 3,780 3.7345 0.3457 2.4522 4.6869

Bias 3,780 −1.6908 1.1284 −4.6357 4.8898

ER1 3,780 −5.8074 0.4748 −9.0782 −4.3909

ER2 3,780 −1.6042 0.4420 −5.1645 −0.3492

GDP 3,780 10.5575 0.6782 4.5951 15.6752

CZ 3,780 0.4271 1.3402 −2.6563 9.3424

Infra 3,780 2.3654 0.5932 −1.1712 6.2519

Ind 3,780 47.4785 10.8598 10.68 90.97

FDI 3,780 −2.5717 1.4404 −8.7787 2.1003

GRE 3,780 3.6699 0.3388 −0.9416 9.4804
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PM2.5it � β0 + β1Biasit +⎛⎝β2Biasit + δitk∑6
k�1

Xitk
⎞⎠pg(ERit; γj; cj)

+ εit

(4)
Of which,g(ERit; γj; cj) � [1 + exp(−γ)∏j� 1mERit−

cj]−1, γ∅0且c1 < c2 </< cmERit is the transformation variable,

denoted as formal environmental regulation (ER1) and informal

environmental regulation (ER2); g(ERit; γj; cj) is a continuous

transformation function with environmental regulation as the

transformation variable and a fluctuation interval of [0,1]; γj is

the slope coefficient of the conversion function.; cj denotes the

position parameter; r is the number of conversion functions and

m is the number of positional parameters in the conversion

function; β0, β1/βndenotes the parameter to be estimated in the

PSTR model and the rest of the variables are consistent with the

above.

4.2 Description of variables

4.2.1 Explanatory variables
Air pollution (PM2.5). PM2.5, as the main component of air

pollution, has a serious impact on economic development, and

seriously endangers human health and quality of life. In this

paper, PM2.5 concentration (μg/m3) is chosen to characterise air

pollution indicators. Drawing on the methodology of Guo et al.

(2021), data from the Atmospheric Composition Analysis Group

(ACAG) of Dalhousie University, Canada, were used. The data

were analyzed using geographically weighted regression (GWR)

from NASA satellites and ground-based monitoring stations

after a comprehensive assessment of the latitude and

longitude raster data, and then using ArcGiS software to

resolve the average PM2.5 concentrations from global satellite

data for 270 prefecture-level cities in China. When the

PM2.5 concentration is higher, it indicates that urban air

pollution emissions are more serious.

4.2.2 Core explanatory variables
Environmentally Biased technological progress (Bias). The

beyond logarithmic production function model reflects the

cumulative factor effects and scale effects. It is more robust,

accurate and realistic than the CES production function. In

contrast, the DEA model only reflects the bias of

technological progress but does not represent the degree of

factor bias. Therefore, this paper draws on Wei et al.’s (2019)

study and adopts the beyond-log production function model to

measure biased technological progress, with the following

equation:

Yit � β0 + βKlnKit + βL ln Lit + βElnEit + βTT + βKK(lnKit)2/2 + βLL(lnLit)2/2 + βEE(lnEit)2/2
+ βTTT2/2
+ βKLlnKit lnLit + βELlnEit lnLit + βKElnKit lnEit + βKTlnKitT + βLTlnLitT + βETlnEitT + vit + uit

(5)

Equation 5, Yit is output, measured using the city’s GDP for

the 2006 base period; Kit represents the amount of capital,

measured using the perpetual inventory method to calculate

the city’s capital stock for the 2006 base period; Lit represents

the labour force, measured using the number of people employed

in the city at the end of the year; Eit represents energy, measured

using the city’s total energy consumption; vit is a random error

TABLE 2 Moran’s I for variables.

Year Bias PM2.5

Moran’s I Z-Value Moran’s I Z-Value

2007 −0.003 0.131 0.200*** 26.648

2008 0.015*** 2.418 0.178*** 23.773

2009 0.017*** 2.723 0.199*** 26.475

2010 0.031*** 4.491 0.212*** 28.234

2011 0.056*** 7.895 0.185*** 24.640

2012 0.053*** 7.392 0.175*** 23.326

2013 0.050*** 7.098 0.183*** 24.385

2014 0.065*** 9.178 0.185*** 24.652

2015 0.044*** 6.201 0.230*** 30.483

2016 0.065*** 9.160 0.229*** 30.322

2017 0.080*** 11.042 0.203*** 26.991

2018 0.047*** 7.565 0.219*** 29.075

2019 0.069*** 9.691 0.221*** 29.332

2020 0.057*** 8.149 0.239*** 31.627

Note: ***, ** and * indicate significant at the 1, 5 and 10% levels of significance respectively.
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FIGURE 2
Scatter diagram of Moran’s I of Bias in China.

FIGURE 3
Scatter diagram of Moran’s I of PM2.5 in China.

TABLE 3 Model setting tests.

Method tests Statistical value p-value Model selection result

Moran’s I 4.283 0.000 Select spatial model

LM-error 2.473 0.116 Select SAR model

LM-error (robust) 1.540 0.215

LM-lag 38.572 0.000

LM-lag (robust) 37.639 0.000

Hausman 721.43 0.000 Selecting fixed effects model
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term and uit is a random vector greater than zero that exhibits the

ineffectiveness of technological innovation; vit and uit are

independent of each other.

According to Eq 5, the three output elasticities of capital,

labour and energy can be obtained as:

εkit � z ln Yit/z ln Kit

� βK + βKKlnKit + βKLlnLit + βKElnEit + βKTT (6)
εLit � z ln Yit/z ln Lit � βL + βLLlnLit + βKLlnKit + βELlnEit + βTLT

(7)
εEit � z ln Yit/z ln Eit

� βE + βEElnEit + βKElnKit + βLElnLit + βETT (8)

εkit represents the rate of change in the quantity of output due to a

change in capital; εLit represents the rate of change in the quantity

of output due to a change in labour; and εEit represents the rate of

change in the quantity of output due to a change in energy. Using

the index formula applied by Diamond et al. (1978) in their

article, Eq 5 is brought into Eqs 6–8 to obtain the biased technical

progress formula as follows:

BiasKL � βTK/εKit − βTL/εLit (9)
BiasKE � βTK/εKit − βTE/εEit (10)
BiasEL � βTH/εKit − βTL/εLit (11)

BiasKL represents the index of biased technological progress

between capital and labour; BiasKE represents the index of

biased technological progress between capital and energy; and

BiasEL represents the index of biased technological progress

between energy and labour. For the main purpose of this

paper, we only need to calculate the magnitude of the

Environmentally biased technical progress in Eq 11. When

BiasEL is positive, it means that the growth rate of output per

unit of additional energy is greater than the growth rate of output

per unit of additional labour because of technological progress.

This is Environmentally biased technological progress, and the

magnitude of the value of BiasEL represents the degree to which

technological progress is biased in favour of energy. On the

contrary, when BiasEL is negative, it means that the increase in

output per unit of energy is less than the increase in output per

unit of labour because of technological progress. The smaller the

TABLE 4 Direct effects regression results.

Variable (1) (2) (3) (4) (5) (6) (7)

Bias −0.0559*** −0.0590*** −0.0593*** −0.0574*** −0.0653*** −0.0628*** −0.0623***

(0.0048) (0.0051) (0.0051) (0.0051) (0.0050) (0.0050) (0.0050)

GDP −0.0137* −0.0124 −0.0328*** −0.0782*** −0.0928*** −0.0904***

(0.0078) (0.0079) (0.0089) (0.0091) (0.0098) (0.0099)

CZ 0.0038 0.0040 0.0057 0.0057 0.0052

(0.0042) (0.0042) (0.0041) (0.0041) (0.0041)

Infra 0.0409*** 0.0345*** 0.0305*** 0.0310***

(0.0084) (0.0081) (0.0082) (0.0082)

Ind 0.0068*** 0.0072*** 0.0071***

(0.0004) (0.0004) (0.0004)

FDI 0.0125*** 0.0125***

(0.0032) (0.0032)

GRE −0.0191

(0.0121)

Direct-Bias −0.0668*** −0.0713*** −0.0715*** −0.0694*** −0.0789*** −0.0762*** −0.0749***

(0.0071) (0.0076) (0.0077) (0.0089) (0.0087) (0.0092) (0.0073)

Indirect-Bias −2.8810*** −3.2538*** −3.2270*** −3.1996* −3.6151** −3.5387* −3.3371***

(1.0451) (1.1799) (1.1901) (1.7486) (1.6958) (1.9640) (1.1042)

Total-Bias −2.9478*** −3.3251*** −3.2985*** −3.2691* −3.6940** −3.6148* −3.4120***

(1.0504) (1.1856) (1.1959) (1.7558) (1.7028) (1.9717) (1.1095)

ρ 0.9797*** 0.9802*** 0.9805*** 0.9807*** 0.9802*** 0.9806*** 0.9805***

(0.0054) (0.0053) (0.0052) (0.0051) (0.0053) (0.0052) (0.0052)

sigma2_e 0.0623*** 0.0623*** 0.0623*** 0.0622*** 0.0583*** 0.0580*** 0.0580***

(0.0014) (0.0014) (0.0014) (0.0014) (0.0013) (0.0013) (0.0013)

R2 0.1066 0.1068 0.0963 0.0982 0.0876 0.1642 0.1649

N 3,780 3,780 3,780 3,780 3,780 3,780 3,780

Note: ***, ** and * indicate significant at the 1, 5 and 10% levels of significance respectively; Standard error in ().
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absolute value of BiasEL, the more favourable it is to the labour

factor.

4.2.3 Transformation variables
1) Formal environmental regulation (ER1): this paper draws on

Luo et al. (2019). First, the government work reports of

270 cities from 2007 to 2020 were collected manually.

Then the government work report texts were word-sorted

to count the frequency of environment-related words and

calculate their proportion of the total word frequency of the

full government reports. The final indicator of formal

environmental regulation for each city was obtained. The

size of the index reflects the importance that each prefecture-

level city government attaches to environmental pollution

issues. The higher the value, the greater the intensity of formal

environmental regulation.

2) Informal environmental regulation (ER2): Informal

environmental regulation mainly emphasizes the impact of

people’s environmental awareness on environmental quality.

Drawing on Pargal and Wheeler‘s (1996) study, this paper

uses the entropy method to calculate a composite indicator of

three variables, namely income level, population density and

education level, to measure informal environmental

regulation. The level of education, measured by the

proportion of the total number of primary, secondary and

tertiary teachers in the total population in the city, the

higher the level of education the more environmentally

aware the group is; the level of income, measured by the

average wage of urban workers on the job, the higher the

income level the higher the public demand for

environmental quality in the area; the population

density, measured by the population density of the

municipal district, the higher the population density in

the city means the more polluted the population is and

therefore more public opposition to these polluting

enterprises. The higher the value of the composite

TABLE 5 Robustness test.

Variable Replacement the space matrix Replacement explanatory
variable

(1) (2) (3) (4) (5) (6)

Bias −0.0692*** −0.0777*** −0.0366*** −0.0358*** −0.2617*** −0.1856***

(0.0057) (0.0059) (0.0026) (0.0028) (0.0185) (0.0186)

GDP −0.1030*** −0.0387*** 0.0940**

(0.0118) (0.0055) (0.0367)

CZ 0.0037 0.0007 −0.0321**

(0.0048) (0.0022) (0.0150)

Infra 0.0461*** 0.0114** 0.2405***

(0.0097) (0.0045) (0.0303)

Ind 0.0086*** 0.0027*** 0.0212***

(0.0005) (0.0002) (0.0016)

FDI 0.0062 0.0124*** 0.0102

(0.0038) (0.0018) (0.0120)

GRE −0.0100 −0.0099 −0.7137***

(0.0143) (0.0066) (0.0446)

Direct-Bias −0.0703*** −0.0788*** −0.0549*** −0.0601*** −0.2698*** −0.1904***

(0.0059) (0.0062) (0.0040) (0.0048) (0.0199) (0.0196)

Indirect-Bias 0.0202*** 0.0217*** −0.2635*** −0.4188*** −2.0896*** −1.2655***

(0.0021) (0.0022) (0.0253) (0.0453) (0.7478) (0.4363)

Total-Bias −0.0501*** −0.0571*** −0.3183*** −0.4788*** −2.3595*** −1.4559***

(0.0044) (0.0047) (0.0287) (0.0493) (0.7551) (0.4437)

ρ −0.3778*** −0.3582*** 0.8859*** 0.9259*** 0.8825*** 0.8652***

(0.0303) (0.0300) (0.0072) (0.0057) (0.0298) (0.0335)

sigma2_e 0.0876*** 0.0808*** 0.0184*** 0.0173*** 0.9302*** 0.7914***

(0.0020) (0.0019) (0.0005) (0.0004) (0.0215) (0.0183)

R2 0.0012 0.1247 0.0359 0.0208 0.1906 0.0370

N 3,780 3,780 3,780 3,780 3,780 3,780

Note: ***, ** and * indicate significant at the 1, 5 and 10% levels of significance respectively; Standard error in ().
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indicator, the greater the intensity of informal

environmental regulation.

4.2.4 Control variables
Level of economic development (GDP). As there are many

studies on EKC. The relationship between income level and

environmental pollution shows an “inverted U″ curve,

suggesting that economic development is also closely related

to air pollution. Refer to Yuan et al. (2015). Using the ratio of

total production to total population at the end of the year in the

city. 2) Fiscal capacity (CZ). Drawing on the study by Yang et al.

(2021), measured the ratio of urban local fiscal general budget

revenues to local fiscal general budget expenditures. 3) Level of

infrastructure (Infra). Referring to CHEN et al. (2018), this paper

uses the ratio of urban paved road area to population to measure

the level of infrastructure. When the area of paved roads per

capita is larger, the infrastructure is higher. 4) Industrial structure

(Ind). Air pollution emissions are mainly associated with the

industrial sector, which is part of the secondary industry.

Therefore, drawing on the study by Cheng et al. (2017), the

total production of the secondary industry as a percentage of the

total production of the total industry was used as a measure in %.

5) Level of openness to the outside world (FDI). Current research

shows that the direction of FDI on environmental quality is not

TABLE 6 Robustness test.

Variable Replacement the space matrix Replacement explanatory
variable

(1) (2) (3) (4) (5) (6)

Bias −0.0692*** −0.0777*** −0.0366*** −0.0358*** −0.2617*** −0.1856***

(0.0057) (0.0059) (0.0026) (0.0028) (0.0185) (0.0186)

GDP −0.1030*** −0.0387*** 0.0940**

(0.0118) (0.0055) (0.0367)

CZ 0.0037 0.0007 −0.0321**

(0.0048) (0.0022) (0.0150)

Infra 0.0461*** 0.0114** 0.2405***

(0.0097) (0.0045) (0.0303)

Ind 0.0086*** 0.0027*** 0.0212***

(0.0005) (0.0002) (0.0016)

FDI 0.0062 0.0124*** 0.0102

(0.0038) (0.0018) (0.0120)

GRE −0.0100 −0.0099 −0.7137***

(0.0143) (0.0066) (0.0446)

Direct-Bias −0.0703*** −0.0788*** −0.0549*** −0.0601*** −0.2698*** −0.1904***

(0.0059) (0.0062) (0.0040) (0.0048) (0.0199) (0.0196)

Indirect-Bias 0.0202*** 0.0217*** −0.2635*** −0.4188*** −2.0896*** −1.2655***

(0.0021) (0.0022) (0.0253) (0.0453) (0.7478) (0.4363)

Total-Bias −0.0501*** −0.0571*** −0.3183*** −0.4788*** −2.3595*** −1.4559***

(0.0044) (0.0047) (0.0287) (0.0493) (0.7551) (0.4437)

ρ −0.3778*** −0.3582*** 0.8859*** 0.9259*** 0.8825*** 0.8652***

(0.0303) (0.0300) (0.0072) (0.0057) (0.0298) (0.0335)

sigma2_e 0.0876*** 0.0808*** 0.0184*** 0.0173*** 0.9302*** 0.7914***

(0.0020) (0.0019) (0.0005) (0.0004) (0.0215) (0.0183)

R2 0.0012 0.1247 0.0359 0.0208 0.1906 0.0370

N 3,780 3,780 3,780 3,780 3,780 3,780

Note: ***, ** and * indicate significant at the 1, 5 and 10% levels of significance respectively; Standard error in ().

TABLE 7 Endogeneity test.

H0: Bias does
not granger-cause PM2.5

9.3664**

(0.025)

H0: PM2.5 does not Granger-cause Bias 2.1489

(0.542)

Note: ***, ** and * indicate significant at the 1, 5 and 10% levels of significance

respectively; p-values in ().
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yet clear. The “pollution halo” hypothesis suggests that FDI can

bring about improvements in environmental quality through the

introduction of environmentally friendly technologies and

products, while the “pollution shelter” hypothesis suggests that

through the transfer of highly polluting industries, FDI will cause

environmental degradation in the host country. The “pollution

shelter” hypothesis suggests that FDI will degrade the

environment in the host country through the transfer of

highly polluting industries. This paper draws on Cheng et al.

(2020) to examine the role of FDI in haze pollution in China,

using a measure of FDI as a proportion of GDP.Where FDI is the

actual amount of foreign capital utilised (USD million)

multiplied by the average exchange rate to obtain the actual

amount of foreign capital utilised (RMB: million) measure. 6)

Urban greening level (GRE). Drawing on the study by Li et al.

(2021), the greening level of cities is measured using the greening

coverage of built-up areas. When the greening coverage of the

built-up area is higher, it indicates the higher greening level of

the city.

4.2.5 Data description and descriptive statistics
This paper uses panel data for 270 prefecture-level cities in

China for the period 2007–2020. The data were obtained from

the China Statistical Yearbook, the China City Statistical

Yearbook, the statistical yearbooks of each city in previous

years, the EPS database and the CSMAR database. All

variables were treated by taking logarithms, except for

industrial structure indicators. For some of the missing data,

interpolation was used to fill in the gaps. The descriptive statistics

of the variables are shown in Table 1.

5 Empirical results and analysis

5.1 Spatial correlation test

When exploring the impact of environmentally biased

technological progress on air pollution through spatial model,

it is first necessary to test whether the core variables are spatially

TABLE 8 Geographical location heterogeneity.

Variable Eastern region Central region Western region

(1) (2) (3) (4) (5) (6)

Bias −0.0736*** −0.0890*** −0.0489*** −0.0526*** −0.0146* −0.0096

(0.0073) (0.0082) (0.0071) (0.0068) (0.0086) (0.0089)

GDP −0.0881*** −0.0738*** −0.0244

(0.0142) (0.0155) (0.0181)

CZ 0.0050 −0.0049 0.0281**

(0.0039) (0.0128) (0.0133)

Infra 0.0866*** −0.0773*** −0.0222

(0.0113) (0.0130) (0.0146)

Ind 0.0062*** 0.0093*** 0.0015*

(0.0007) (0.0006) (0.0008)

FDI −0.0230*** −0.0117** 0.0366***

(0.0060) (0.0053) (0.0060)

GRE −0.0875*** 0.0192 0.1315***

(0.0125) (0.0297) (0.0343)

Direct-Bias −0.1016*** −0.2076*** −0.0613*** −0.0618*** −0.0163 −0.0105

(0.0139) (0.0422) (0.0102) (0.0086) (0.0101) (0.0103)

Indirect-Bias −2.8971*** −10.5067*** −1.2717*** −0.9419*** −0.0913 −0.0565

(1.0452) (3.5316) (0.4916) (0.3145) (0.0703) (0.0592)

Total-Bias −2.9987*** −10.7143*** −1.3329*** −1.0037*** −0.1076 −0.0670

(1.0570) (3.5730) (0.4994) (0.3202) (0.0792) (0.0689)

ρ 0.9738*** 4.1834*** 0.9609*** 0.9446*** 0.8572*** 0.8538***

(0.0069) (0.0084) (0.0103) (0.0144) (0.0362) (0.0371)

sigma2_e 0.0462*** 0.0432*** 0.0562*** 0.0484*** 0.0407*** 0.0381***

(0.0017) (0.0016) (0.0021) (0.0018) (0.0021) (0.0020)

R2 0.1025 0.0020 0.0792 0.2493 0.2081 0.3101

N 1,540 1,540 1,498 1,498 742 742

Note: ***, ** and * indicate significant at the 1, 5 and 10% levels of significance respectively; Standard error in ().
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correlated. The Moran’s I is used to measuring the correlation

and aggregation state of the space, with a range of values of (−1,1)

(Mahmood and Furqan, 2021). Moran’s I value greater than

0 indicates a positive correlation between spatial units, indicating

spatial agglomeration. Moran’s I value of less than 0 indicates a

negative correlation between spatial units, manifesting as spatial

diffusion. Moran’s I value equal to 0 indicates no correlation

between spatial units (Gaver et al., 1992). Therefore, this study

uses Moran’s I to explore the spatial correlation between

Environmentally biased technological progress and air

pollution. The Moran’s I is divided into a global Moran’s I

and a local Moran’s I. The results of the global Moran’s I are

shown in Table 2. Under the geographic distance weight matrix,

Moran’s values for both Environmentally biased technological

progress and air pollution are significantly positive, indicating

that spatial units of similar nature are clustered, strongly rejecting

the original hypothesis of “no spatial correlation” and satisfying

the prerequisites for spatial econometric analysis.

The local Moran’s I can reflect the spatial clustering in the

vicinity of an area. In order to get a clearer picture of the spatial

correlation between regions, this paper calculates the local

Moran’s I for each year of the sample period under a

geographical distance weighting matrix (Mahmood et al.,

2020). The results also indicate the existence of a spatial

correlation between Environmentally biased technological

progress and air pollution. Figures 2, 3 show the Moran

scatter plots for Environmentally biased technological progress

and air pollution in 2008 and 2020 respectively. As can be seen in

Figure 2, the vast majority of cities fall in quadrants one and

three, indicating that there is a positive spatial correlation

between Environmentally biased technological progress, with

cities with high Environmentally biased technological progress

being surrounded by high-value cities and cities with low

Environmentally biased technological progress being

surrounded by low-value cities, with increasing spatial

correlation. As can be seen from Figure 3, most cities are

TABLE 9 City size heterogeneity.

Variable Extra-large-scale city Large-scale city Small and medium-sized
city

(1) (2) (3) (4) (5) (6)

Bias −0.0281*** −0.0509*** −0.0319*** −0.0173*** 0.0501* 0.0522***

(0.0081) (0.0099) (0.0064) (0.0056) (0.0290) (0.0189)

GDP −0.0075 −0.0406*** −0.3151***

(0.0156) (0.0120) (0.0491)

CZ 0.0118** 0.0047 −0.0140

(0.0050) (0.0053) (0.0149)

Infra 0.0493*** −0.0101 −0.0304

(0.0118) (0.0095) (0.0374)

Ind 0.0045*** 0.0066*** 0.0131***

(0.0008) (0.0005) (0.0016)

FDI −0.0480*** 0.0230*** 0.0276***

(0.0066) (0.0034) (0.0092)

GRE 0.2289*** 0.0465** −0.0497***

(0.0442) (0.0206) (0.0161)

Direct-Bias −0.0358*** −0.0648*** −0.0368*** −0.0204*** 0.0514* 0.0534***

(0.0111) (0.0137) (0.0079) (0.0069) (0.0299) (0.0196)

Indirect-Bias −0.7602** −1.3626*** −0.7919** 0.0347*** −0.0016 0.0089

(0.3651) (0.5276) (0.3358) (0.0116) (0.0079) (0.0105)

Total-Bias −0.7960** −1.4273*** −0.8287** 0.0143*** 0.0497* 0.0623**

(0.3742) (0.5382) (0.3414) (0.0048) (0.0296) (0.0251)

ρ 0.9625*** 0.9622*** 0.9591*** 2.1996*** −0.0361 0.1261

(0.0100) (0.0101) (0.0109) (0.0188) (0.1410) (0.1289)

sigma2_e 0.0495*** 0.0446*** 0.0621*** 0.0419*** 0.0857*** 0.0353***

(0.0019) (0.0017) (0.0019) (0.0012) (0.0102) (0.0042)

R2 0.1097 0.0131 0.1158 0.0359 0.0766 0.4658

N 1,372 1,372 2,282 2,282 140 140

Note: ***, ** and * indicate significant at the 1, 5 and 10% levels of significance respectively; Standard error in ().
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located in the first and third quadrants, and air pollution is also

characterised by high and low clustering, with increasing spatial

correlation. From the above analysis, it can be concluded that

there is a positive spatial correlation between both

Environmentally biased technological progress and air

pollution, and if this spatial correlation is ignored, it will lead

to biased measurement results.

5.2 Model setting tests

According to Elhorst (2014), the model selection principle of

“from specific to general” and “from general to specific” was

combined. The results of the mixed OLS test, LM test, Hausman

test are shown in Table 3. Moran’s I is significantly, indicating

that the spatial econometric model is better than the OLS model

and the choice of spatial econometric model is reasonable.

Hausman’s test results indicate that the model setting should

use a fixed effects model. The LM-lag test and LM-lag (robust)

test are significant at the 1% level, but LM-error test and LM-

error (robust) test are not significantly. Therefore, the SARmodel

was chosen for the regression analysis in this paper.

5.3 Analysis of benchmark regression

5.3.1 Direct effects regression results
In this paper, an empirical analysis was conducted using the

SAR model, and regressions on Environmentally biased

technological progress and air pollution were conducted by

adding control variables one by one, and the results are

shown in Table 4. In terms of the spatial effect term for air

pollution, the ρ in columns (1)–(7) are all significantly positive at

the 1% level, indicating that air pollution is strongly spatially

correlated (Mahmood et al., 2018). The coefficients for

Environmentally biased technological progress are all

TABLE 10 Heterogeneity of resource-based cities.

Variable Resource-based cities Non-resource-based cities

(1) (2) (3) (4)

Bias −0.0509*** −0.0397*** −0.0551*** −0.0491***

(0.0080) (0.0074) (0.0061) (0.0055)

GDP −0.1403*** −0.0662***

(0.0159) (0.0105)

CZ 0.0091 0.0112***

(0.0069) (0.0040)

Infra 0.0128 0.0031

(0.0132) (0.0082)

Ind 0.0112*** 0.0052***

(0.0007) (0.0005)

FDI 0.0241*** 0.0195***

(0.0053) (0.0036)

GRE 0.2700*** −0.0652***

(0.0333) (0.0103)

Direct-Bias −0.0608*** −0.0458*** −0.0669*** −0.0568***

(0.0105) (0.0089) (0.0087) (0.0067)

Indirect-Bias −1.0380** −0.6368*** −1.8639*** 0.0956***

(0.4092) (0.2355) (0.6961) (0.0111)

Total-Bias −1.0988*** −0.6826*** −1.9308*** 0.0388***

(0.4167) (0.2416) (0.7025) (0.0046)

ρ 0.9507*** 0.9386*** 0.9695*** 2.2617***

(0.0130) (0.0161) (0.0081) (0.0233)

sigma2_e 0.0693*** 0.0564*** 0.0558*** 0.0357***

(0.0025) (0.0021) (0.0017) (0.0011)

R2 0.0736 0.1958 0.1281 0.0157

N 1,484 1,484 2,296 2,296

Note: ***, ** and * indicate significant at the 1, 5 and 10% levels of significance respectively; Standard error in ().

Frontiers in Environmental Science frontiersin.org15

Meng et al. 10.3389/fenvs.2022.996349

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996349


TABLE 11 Interaction effects regression results.

Variable Formal environmental regulation Informal environmental regulation

(1) (2) (3) (4)

ER1*Bias −0.0077 −0.0162**

(0.0079) (0.0076)

ER2*Bias −0.0152* −0.0083

(0.0081) (0.0069)

ER1 −0.0405*** −0.0520***

(0.0153) (0.0148)

ER2 −0.0004 −0.0049

(0.0170) (0.0144)

Bias −0.1018** −0.1576*** −0.0813*** −0.0534***

(0.0465) (0.0449) (0.0143) (0.0123)

GDP −0.0884*** −0.0507***

(0.0099) (0.0087)

CZ 0.0047 0.0078**

(0.0041) (0.0036)

Infra 0.0313*** −0.0088

(0.0081) (0.0072)

Ind 0.0072*** 0.0047***

(0.0004) (0.0004)

FDI 0.0122*** 0.0241***

(0.0032) (0.0029)

GRE −0.0187 −0.0358***

(0.0120) (0.0106)

Direct-ER1*Bias −0.0089 −0.0192**

(0.0099) (0.0097)

Direct-ER1 −0.0492*** −0.0629***

(0.0189) (0.0184)

Direct-ER2*Bias −0.0178* −0.0091

(0.0100) (0.0080)

Direct-ER2 −0.0005 −0.0056

(0.0206) (0.0162)

Direct-Bias −0.1218** −0.1891*** −0.0980*** −0.0604***

(0.0586) (0.0581) (0.0188) (0.0146)

Indirect-ER1*Bias −0.4130 −0.8858

(0.4923) (0.5909)

Indirect-ER1 −2.2837* −2.8797**

(1.2179) (1.4353)

Indirect-ER2*Bias −0.8200 0.0147

(0.5470) (0.0129)

Indirect-ER2 −0.0258 0.0092

(1.0478) (0.0264)

Indirect-Bias −5.6636* −8.6625* −4.5189** 0.0982***

(3.4111) (4.4429) (1.8061) (0.0234)

Total-ER1*Bias −0.4218 −0.9051

(0.5017) (0.5992)

Total-ER1 −2.3328* −2.9427**

(1.2338) (1.4495)

(Continued on following page)
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significantly negative at the 1% level. To better understand the

impact of spatial spillover effects of Environmentally biased

technological advances on air pollution. The direct effects of

Environmentally biased technological advances on air pollution

were all significantly negative at the 1% level, indicating that

Environmentally biased technological advances in the region had

a significant dampening effect on air pollution at that time; The

indirect effect of Environmentally biased technological advances

on air pollution is significantly negative at least at the 10% level,

indicating that Environmentally biased technological advances in

local areas have a significant dampening effect on neighbouring

air pollution; The overall effect of Environmentally biased

technological advances on air pollution is significantly

negative at least at the 10% level, indicates that spatially and

globally, Environmentally biased technological advances have a

significant dampening effect on air pollution in general.

In terms of the control variables, our main reference is shown

in column (7). The coefficient of the level of economic

development is negative at the 1% significance level, indicating

that a higher level of economic development in a city will

suppress air pollution; The coefficient of financial capacity is

positive, indicating that a stronger level of financial capacity in a

city will promote urban air pollution; The coefficient of

infrastructure is significantly positive, indicating that a higher

level of infrastructure in a city will promote air pollution; The

coefficient of industrial structure is significantly positive,

indicating that the higher the share of secondary industry will

promote air pollution; The coefficient of foreign direct

investment is significantly positive, indicating that the higher

the level of foreign investment in the city will promote air

pollution; The coefficient of urban greening level is negative,

indicating that the higher the level of urban greening will

suppress air pollution emissions.

5.3.2 Robustness test
In order to analyse the accuracy of the conclusions obtained

under the full sample conditions described above, this paper

applies the following two methods to test the robustness of the

results, as shown in Table 6. First, the method of replacing the

spatial matrix is adopted. Columns (1)–(2) are the economic

TABLE 11 (Continued) Interaction effects regression results.

Variable Formal environmental regulation Informal environmental regulation

(1) (2) (3) (4)

Total-ER2*Bias −0.8379 0.0056
(0.5559) (0.0050)

Total-ER2 −0.0263 0.0035

(1.0674) (0.0102)

Total-Bias −5.7854* −8.8515** −4.6169** 0.0378***

(3.4618) (4.4883) (1.8197) (0.0090)

ρ 0.9812*** 0.9803*** 0.9810*** 2.4006***

(0.0050) (0.0053) (0.0051) (0.0193)

sigma2_e 0.0623*** 0.0575*** 0.0623*** 0.0447***

(0.0014) (0.0013) (0.0014) (0.0011)

R2 0.1115 0.1666 0.0928 0.1365

N 3,780 3,780 3,780 3,780

Note: ***, ** and * indicate significant at the 1, 5 and 10% levels of significance respectively; Standard error in ().

TABLE 12 Non-linearity test results.

Model ER1 ER2

LM LMF LRT LM LMF LRT

(1)Non-linearity test: H0: r = 0; H1: r = 1 127.290 (0.000) 8.702 (0.000) 129.482 (0.000) 584.449 (0.000) 45.671 (0.000) 634.906 (0.000)

(2) Residual non-linearity test: H0: r = 1; H1: r = 2 16.487 (0.285) 1.090 (0.361) 16.524 (0.282) 162.072 (0.000) 11.142 (0.000) 165.649 (0.000)

(3) Residual non-linearity test:H0: r = 2; H1: r = 3 31.467 (0.005) 2.084 (0.010) 31.599 (0.005)

(4) Residual non-linearity test: H0: r = 3; H1: r = 4 7.336 (0.921) 0.482 (0.944) 7.343 (0.921)

r 1 3

Note: The corresponding p-values are in ().
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weight matrices, calculated using the inverse of the absolute value

of the difference in GDP per capita between the two cities;

Columns (3)–(4) are the 0–1 weight matrices, with 0 for

neighbouring cities and 1 otherwise. The estimated results

show that the coefficients of Environmentally biased

technological progress are all negative at least at the 1% level

of significance, indicating that the above regression results are

robust. Second, the approach of replacing the explanatory

variables was adopted. The explanatory variable PM2.5 was

replaced with sulphur dioxide emissions (SO2) above, while

the rest remained the same as above. The results are shown in

columns (5)–(6), and the coefficients of the Environmentally

biased technological progress are all negative at least at the 1%

significance level, indicating the robustness of the regression

results above.

5.3.3 Endogenous test
It is clear from the previous section that Environmentally

biased technological progress has a significant inhibitory effect

on urban air pollution. Although the factors affecting air

pollution are included in this paper, there is a possibility that

other influencing factors may be omitted leading to endogeneity

problems and bias in the estimation. To obtain more reliable

estimates, a panel Granger causality test was used to further

confirm the existence of reverse causality. The estimated results

are shown in Table 7. In testing whether Environmentally biased

TABLE 13 PSTR model estimation results.

Variable ER1 ER2

Low High Low Medium Medi-high High

Bias*ER1Low 0.0483***

(0.0130)

Bias*ER1High −0.0503***

(0.0172)

Bias*ER2Low 1.4952***

(0.2320)

Bias*ER2Medi −0.7464***

(0.1166)

Bias*ER2MediHigh −2.2450***

(0.3460)

Bias*ER2High2 0.0000**

(0.0000)

GDP −0.0834*** −0.0412 0.6782*** −0.3386*** −1.0184*** 0.0000*

(0.0276) (0.0350) (0.4313) (0.2190) (0.6553) (0.0000)

CZ 0.0284** 0.0218 0.2712*** −0.1354*** −0.4073*** 0.0000***

(0.0120) (0.0165) (0.0457) (0.0226) (0.0675) (0.0000)

Infra 0.0497* −0.0929** −0.0163 0.0081 0.0244 −0.0000

(0.0271) (0.0374) (0.8023) (0.4033) (1.2124) (0.000)

Ind 0.0059*** 0.0056*** −0.0145*** 0.0072*** 0.0218*** 0.0000***

(0.0013) (0.0018) (0.0021) (0.0019) (0.0042) (0.000)

FDI 0.0346*** −0.0507*** −0.0183** 0.0091** 0.0275** 0.0000

(0.0105) (0.0132) (0.0883) (0.0437) (0.1313) (0.000)

GRE 0.0093 0.0070 −0.7335*** 0.3662*** 1.1014*** -0.0000***

(0.0616) (0.0828) (0.3695) (0.1817) (0.5646) (0.000)

g 0.8235 0.0052

−0.0017

23.0063

c −4.7214 −3.6475

−2.2021

−2.6831

RSS 44.277 36.695

N 3,780 3,780

Note: ***, ** and * indicate significant at the 1, 5 and 10% levels of significance respectively; Standard error in ().

Frontiers in Environmental Science frontiersin.org18

Meng et al. 10.3389/fenvs.2022.996349

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996349


technological progress is a Granger cause of air pollution, a

significance level of 5% was passed. And when testing whether air

pollution is the Granger cause of Environmentally biased

technological progress, a confidence level of 10% was not

reached. As can be seen, the results based on the panel

Granger causality test also support that there is no significant

endogeneity problem between the core explanatory variables and

the explanatory variables in this paper.

5.3.4 Heterogeneity analysis
5.3.4.1 Geographical heterogeneity

China is a vast country, and regression analysis based on the

total sample of cities may mask regional differences. Therefore,

this paper divides the urban panel data into eastern, central and

western regions according to different geographical locations to

examine the differential impact of Environmentally biased

technological progress on air pollution. As shown in Table 8,

the impact of Environmentally biased technological advances on

reducing air pollution was significantly higher in Eastern Region

(8.90%) than in Central Region (1.73%). In Western Region,

Environmentally biased technological advances have a

insignificant negative to air pollution.

5.3.4.2 City size heterogeneity

According to the Notice of the State Council on Adjusting the

Criteria for Classifying City Size, cities with a population of less

than 1 million are classified as small and medium-sized cities,

cities with a population greater than or equal to 1 million and less

than 5 million are classified as large-scale cities, and cities with a

population greater than 5 million are classified as extra-large-

scale cities, using the resident population in 2014 as the criterion.

Therefore, this paper classifies urban panel data into extra-large-

scale cities, large-scale cities and small and medium-sized cities

according to different city sizes, and examines the differential

impact of Environmentally biased technological progress on air

pollution. As shown in Table 9, the impact of Environmentally

biased technological advances on reducing air pollution was

significantly higher in Extra-large-scale-cities (5.09%) than in

Large-scale cities (1.73%). In contrast, in small and medium-

sized cities, Environmentally biased technological advances have

a significant positive contribution to air pollution.

5.3.4.3 Heterogeneity of whether it is a resource-based

city

The cities were divided into resource-based and non-

resource-based cities according to the National Sustainable

Development Plan for Resource-based Cities (2013–2020)

issued by the State Council to examine the differential effects

of examining Environmentally biased technological advances on

air pollution. The results are shown in Table 10. The impact of

Environmentally biased technological advances on air pollution

is significantly negative in both resource and non-resource cities.

However, the effect was better in non-resource cities.

5.4 Interaction impact regression results

To examine whether environmental regulation strengthens

the inhibitory effect of Environmentally biased technological

progress on air pollution. So the cross-multiplication term

between environmental regulation and Environmentally

biased technological progress was added and the regression

results are shown in Table 11. Columns (1)–(2) are the

regression results of Environmentally biased technological

progress on air pollution under formal environmental

regulation. Columns (3)–(4) are the regression results of

Environmentally biased technological progress on air

pollution under informal environmental regulation. The

cross-products of both formal environmental regulation and

Environmentally biased technological progress are significantly

negative at the 5% level; The cross-products of both informal

environmental regulation and Environmentally biased

technological progress are negative. This suggests that

environmental regulation reinforces the dampening effect of

environmentally biased technological advances on air pollution

emissions. This verifies hypothesis H2. The spatial effect term ρ
for air pollution is still significantly positive at the 1% level,

indicating that the spatial spillover characteristics of air

pollution still exist. The direct effect of the interaction term

between formal environmental regulation and environmentally

biased technological progress is significantly negative,

indicating that formal environmental regulation significantly

enhances the dampening effect of environmentally biased

technological progress on air pollution in the region;

Indirect effects are negative, indicating that formal

environmental regulations significantly enhance the

dampening effect of environmentally biased technological

advances on air pollution in neighbouring areas. The direct

effect of the interaction term between informal environmental

regulation and environmentally biased technological progress is

negative, indicating that informal environmental regulations

enhance the dampening effect of environmentally biased

technological progress on air pollution in the region; The

indirect effect is insignificantly positive, suggesting that

informal environmental regulation weakens the dampening

effect of environmentally biased technological progress on

air pollution in neighbouring areas, but not to a significant

degree.

5.5 PSTR model regression results

5.5.1 Non-linearity test
In order to investigate the optimal interval of environmental

regulation on Environmentally biased technological progress

affecting air pollution, this paper uses the PSTR model for

validation. Before proceeding with the estimation of the PSTR

model, the model needs to be tested for non-linearity. As shown
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in Table 12, the study found that: The original hypothesis H0: r =

0 is rejected for the LM, LMF and LRT tests in the ‘non-linearity

test’, regardless of whether formal or informal environmental

regulation is in place. This suggests a non-linear influence of

environmental regulation in the process by which

Environmentally biased technological advances affect air

pollution. When examining the number of r’s in the “residual

non-linearity test”, the LM, LMF and LRT test values in the

formal environmental regulation reject the alternative hypothesis

H1: r = 2, and the number of optimal transition functions is 1.

The LM, LMF and LRT test values in informal environmental

regulation all reject the alternative hypothesis H1: r = 4, and the

number of optimal transition functions is 3.

5.5.2 Estimated results
As shown in Table 13, when formal environmental

regulation is used as the conversion variable, a conversion

function exists for the model. The conversion function is

divided into low and high zones by the location parameter c

(-4.7214). The estimated coefficient of 0.0483 for

Environmentally biased technological progress in the low

zone indicates that Environmentally biased technological

progress has a significant positive impact on air pollution

when formal environmental regulation is below the

threshold of -4.7214; The estimated coefficient of -0.0503 for

Environmentally biased technological progress in the high zone

indicates that Environmentally biased technological progress

has a significant dampening effect on air pollution when it

crosses the inflection point. When informal environmental

regulation is used as the conversion variable, there are three

conversion functions in the model. The conversion function is

divided into four zones by the location parameter c

(−3.6475, −2.2021, −2.6831). When informal environmental

regulation is in the interval (−3.6475,−2.6831),

Environmentally biased technological progress significantly

suppresses air pollution. The above verifies hypothesis H3.

6 Discussion

6.1 Discussion of the benchmark
regression results

As can be seen from Table 4, Environmentally biased

technological advances significantly curb local air pollution

while reducing air pollution in neighbouring areas. Analysis of

the reasons for this may be: Firstly, Environmentally biased

technological progress changes the proportion of factor

allocation, reducing the proportion of highly polluting

industries, promoting the development of high-tech industries,

services and other low-pollution industries, and promoting the

rational allocation and recycling of factor resources (Acemoglu

et al., 2012). Secondly, As the centre of economic development

gradually shifts from primary and secondary industries to

secondary and tertiary industries, clean and green production

processes, pollutant treatment equipment and green and

renewable energy will be continuously introduced into the

production process, resulting in a gradual reduction in the

level of air pollution emissions (Acemoglu et al., 2014). In

addition, biased technological progress affects the relative

price of factors (Hall and Hall, 1984). The increasing scarcity

of resources causes factor prices to rise. In order to save on

production and operating costs, companies invest more money

in product research and development to reduce their air pollution

emissions (Jaramillo and Muller, 2016). Finally, biased

technological progress tends to introduce cleaner production

technologies and improve total factor productivity to reduce

resource consumption and air pollution emissions (An et al.,

2020). Environmentally biased technological advances are more

effective in suppressing air pollution in neighbouring areas. This

may be due to the fact that there are significant knowledge

spillovers from technological progress. Moreover, competition

between prefecture-level cities under the same provincial

jurisdiction is more intense, and policy mimicry is more

pronounced in neighbouring cities in geographic space. When

a region achieves better air pollution reduction through

Environmentally biased technological progress, neighbouring

cities are likely to imitate or even adopt more significant

biased measures of technological progress to achieve air

pollution reduction.

6.2 Discussion of heterogeneity test
results

6.2.1 Discussion of geographical heterogeneity
results

The results in Table 8 show that there is significant

heterogeneity in the impact of Environmentally biased

technological advances on air pollution in different regions.

This may be due to the fact that: The eastern region has both

highly skilled personnel to improve pollution control and

sufficient capital to favour new clean industries, resulting in

the best air pollution control effect of Environmentally biased

technological progress. The economic development level of

the central region is slower than that of the eastern region.

And it has taken over some of the transfer of high-emission

industries from the eastern region. Most production in the

central region still uses traditional techniques, so

technological progress is biased towards weaker air

pollution reduction than in the eastern region. While the

Western region mainly relies on resource consumption as

the cost of traditional industries, and the level of economic

development is lower, industrial development still relies on the

consumption of energy, so the western region is not as

effective in curbing air pollution.
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6.2.2 Discussion of city-size heterogeneity
results

The results in Table 9 show that there is significant

heterogeneity in the impact of Environmentally biased

technological advances on air pollution in cities of different

sizes. This may be due to the fact that: Extra-large-scale cities

are the most economically developed and are the concentration

of high-tech industries such as energy conservation and

environmental protection in China, with a higher level of

technology that enhances resource allocation between regions

and a higher degree and concentration of energy-biased

technological progress, so it can significantly reduce air

pollution. However, for small and medium-sized cities, with

smaller urban populations that do not bring a demographic

dividend, slow economic development and poor infrastructure,

there is no technical support to reduce air pollution but instead

promotes it.

6.2.3 Discussion of whether it is a resource-
based city heterogeneity results

The results in Table 10 show that there is significant

heterogeneity in the impact of Environmentally biased

technological advances on air pollution in ‘resource-based

cities or not’. Environmentally biased technological advances

have a better dampening effect on air pollution in non-resource

cities. This may be due to the fact that: The resource-based city

economy is inherently dependent on resource consumption and

technological progress is biased towards energy consumption.

Non-resource cities may rely on high-tech or clean industries for

their development, so non-resource cities are more effective in

suppressing air pollution.

6.3 Discussion of the influencing
interaction results

As can be seen from the results in Table 11, Formal

environmental regulation enhances the dampening effect of

environmentally biased technological advances on local and

neighbouring air pollution; informal environmental regulation

only enhances the dampening effect of environmentally biased

technological advances on local air pollution, while it contributes,

but not significantly, to neighbouring air pollution. This may be

due to the fact that, firstly, formal environmental regulation

curtails air pollution emissions by adjusting factor demand ratios

through the development of local environmental policies (Jaffe

et al., 2002). Formal environmental regulation imposes higher

requirements on firms to reduce emissions by introducing

emission equipment and absorbing pollution control

personnel to reinforce the effect of environmentally biased

technological advances on air pollution reduction (Xu and Xu,

2021). Moreover, formal environmental regulation restricts the

use of highly polluting elements in regional production through

policy instruments, artificially changing technological progress in

favour of local resource endowments, greatly preventing the

waste of resources and exploring the best way for

technological progress to reduce air pollution (Yang et al.,

2022). Second, formal environmental regulation imposes

additional costs and burdens on polluters by raising the price

of energy factors, increasing transaction and decision costs, and

in order to maximize profits polluters will use improved and

cleaner energy sources as fuel substitutes influencing the role of

environmentally biased technological progress on air pollution

emissions (Gray and Strobl, 2002). Finally, formal environmental

regulation improves energy use efficiency and reduces air

pollution emissions by inducing firms to enhance the

introduction of emission reduction technologies and the

development of cleaner production technologies (Hamamoto,

2006). This leads to formal environmental regulation reinforcing

the dampening effect of environmentally biased technological

advances on local and neighbouring air pollution (Cao et al., 2020).

For informal environmental regulation that relies on public

participation, while public awareness of environmental protection

can also demand higher levels of emissions from businesses, as well

as lateral improvements in energy use, there is no systematic and

dedicated long-term support from local citizens to monitor the

environment, resulting in an insignificant effect on local air pollution

reduction (Kennedy, 1964; Shadbegian and Gray, 2005). The impact

of environmentally biased technological advances generated by

informal environmental regulation is weak and even more

negligible for neighbouring areas. Moreover, the bias in

technological progress generated by informal environmental

regulations tends to exist over a long period of time, resulting in

potentially long periods of time in which informal environmental

regulation does not enhance the dampening effect of

environmentally biased technological progress on air pollution.

6.4 Discussion of PSTR model results

As shown in Table 12, there is an optimal interval for the

effect of environmentally biased technological advances on air

pollution reduction under environmental regulation.

Environmental regulation induces a transition from

environmentally biased technological progress to cleaner

production, while some scholars argue that the ‘crowding out

effect’ of environmental regulation has a ‘rebound effect’ on

firms. That is, environmental regulation hinders technological

progress that facilitates pollution reduction (Yang and Li, 2017).

This may be due to the fact that, on the one hand, there is often a

long time lag for the innovations generated by environmental

regulation to be applied to firms’ production practices, making it

difficult to show the impact of the innovations on firms’

technological level, energy efficiency and management
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efficiency in a short period of time; on the other hand, the

technological improvements brought about by environmental

regulation push firms to expand their production scale, leading to

more energy consumption, which in turn leads to more serious

environmental problems (Fan et al., 2021). Thus, different types

of environmental regulation can lead to different effects of

environmentally biased technological advances in reducing air

pollution. It makes sense to identify appropriate environmental

regulation implementation strategies that show greater

effectiveness in curbing environmentally biased technological

advances in air pollution.

7 Conclusions and policy implications

The article is based on panel data for 270 cities in China from

2007 to 2020. Using a Spatial model, the direct, spillover and

moderating effects of Environmentally biased technological

progress on ‘local-neighbourhood’ urban air pollution are

examined empirically. On this basis, the PSTR model is used

to further explore the non-linear effects of different types of

environmental regulations. The study found that: 1) There is a

significant positive spatial correlation between both air pollution

and Environmentally biased technological progress in China.

Environmentally biased technological progress significantly

suppresses air pollution, with significant spatial spillover

effects, and the conclusions remain robust after a series of

robustness tests. 2) Different types of environmental

regulations reinforce the dampening effect of Environmentally

biased technological progress on air pollution. However,

informal environmental regulation only reinforces the

dampening effect of Environmentally biased technological

progress on air pollution in the local cities. 3) There is a

significant threshold effect of environmental regulation on the

impact of Environmentally biased technological progress on air

pollution. When the level of environmental regulation within a

certain threshold interval, Environmentally biased technological

progress has a dampening effect on air pollution. 4) The more

eastern the city, the larger the city and the non-resource-based

cities, the more significant the air pollution suppression effect of

Environmentally biased technological advances.

Based on the above findings, the following recommendations

are made in order to better reduce air pollution emissions:

1) Governments at all levels should pay attention to the spatial

spillover effect of technological progress and deepen the

construction of a joint prevention and control mechanism

for regional air pollution control. On the one hand, the

responsibilities and subjects of air pollution in each city

should be clarified, a unified system of regulations,

standards and policies for regional environmental

management should be formed, and a mechanism for

pollution compensation and coordination of interests

within each region should be established. On the other

hand, regional joint environmental law enforcement and

supervision should be strengthened, a unified

environmental pollution monitoring platform should be

built, and a regional environmental information sharing

mechanism, a joint early warning mechanism and a

demonstration effect mechanism should be implemented.

2) Establish a multi-faceted environmental regulation policy,

and formulate and implement environmental regulation

policies in accordance with local technological progress

bias. Local governments should take into account the

realities of the region’s technological innovation capacity,

industrial development and environmental pollution. Local

resources should be rationally allocated and factors fully

utilised, so that strengths and weaknesses can be avoided

and precise policies can be implemented. Starting from both

the implementation of environmental protection policies by

the government and environmental protection measures

with the active participation of the public, the

government will guide enterprises with high energy

consumption and high pollution to gradually innovate

their production processes or gradually withdraw from

the market, promote the transformation of industrial

structure and ultimately achieve the goal of reducing air

pollution in each city.

3) To formulate targeted environmental regulation policies and

technological innovation policies according to city size,

geographical location and whether or not the city is a

resource-based city. Since the air pollution reduction

effects of environmental regulation policy adjustment and

technological progress differ significantly by city size,

geographical location and whether or not the city is a

resource-based city, it is important to coordinate and

realize a differentiated development model among cities.

On the one hand, cities in the east and central regions,

extra-large-scale and large-scale cities and non-resource-

based cities should strengthen non-environmental

regulations while fostering a human capital structure that

matches technological innovation. On the other hand, for

western regions, small and medium-sized cities and resource-

based cities there is a need to strengthen the infrastructure for

air pollution emission reduction and to ensure that traditional

industries that are costly in terms of resource consumption

can be transformed into clean industries or improve the

resource efficiency of traditional industries to effectively

control the energy rebound effect.

Although our study is somewhat informative, it still has some

limitations. Environmentally biased technological advances are

an important means of reducing air pollution, but it is worth

noting that the bias for environmental technological advances

may not only lie between capital, labour and energy. In addition,

there are many sources of air pollution other than PM2.5 and
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SO2, and scholars can further examine a wide range of air

pollutants in the future to enrich their research. Finally, there

are multiple pathways through which environmentally biased

technological advances affect air pollution, which can be further

examined by future research.
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