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Due to the impact of climate change and rapid urbanization, issues around global
urban flood control and water environment security have emerged as major global
concerns. As a practical way to address these issues, exploitation of urban rainwater
resources has become a worldwide hotspot for research and application. This paper
1) briefly examined the evolution of rainwater utilization management modes in
advanced countries, 2) classified urban rainwater utilization measures from the
utilization stages into three categories—source control, medium transmission,
and terminal treatment, 3) summarized the advantages, disadvantages, and scope
of the application of these measures, 4) reviewed the benefits, drawbacks, and
application areas of these measures, and 5) conducted a quantitative analysis of their
impact on rainwater pollution and flood control.
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1 Introduction

According to the statistics from the United Nations, in 2018, 55.3% of the world’s
population resided in cities, and by 2030, 60% of all housing will be found in urban areas,
with one in three people residing in a city with a population of at least 500,000. (UN, 2019).
Rapid urbanization has given rise to an increase in impermeable urban surfaces, which has
significantly altered the natural hydrological cycle in urban areas (Damien et al., 2016), making
urban flooding a worldwide problem (Hussain et al., 2019). On the one hand, for instance,
during the rainy season in China, cities like Beijing and Zhengzhou in the north and Guangzhou
and Shenzhen in the south suffered from substantial storm water flooding issues, resulting in
significant financial and human losses (Haghighatafshar et al., 2019; Liu et al., 2021; Zhao et al.,
2021). On the other hand, as a joint result of population growth, low per capita water resources,
and water quality contamination, more than 400 Chinese cities are currently struggling with
acute shortages of water resources and water quality deterioration. Utilization of urban
rainwater resources has become critical and urgent as it is an important means and
method for alleviating urban waterlogging, reducing peak flow, and addressing urban water
shortages.

The concept of urban rainwater resource utilization has been proposed for a long time.
Initially focusing more on the safe management of urban rainwater flooding, it is now given new
and different connotations by different countries based on their specific conditions (Fletcher
et al., 2015).

Developed countries like the Netherlands and the United States are at the forefront
regarding utilization of urban rainwater resources. In the United States, bills have been
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passed by the Congress to assure the collection and storage of
rainwater. Federal laws also mandate “in situ flood storage” for all
new development zones (Cheng et al., 2007). In light of federal laws,
each state has created “rainwater utilization regulations.” For the same
purposes, the United States has also provided economic incentives,
such as general tax controls, issuance of obligation bonds, and federal
and state loans (Steffen et al., 2013). In the Netherlands, people also
have attached great importance to utilization of rainwater resources.
Large buildings there have rainwater collection systems, and the
country has very advanced real-time simulation technologies and
utilization models for rainwater resources. Not only mechanical
methods are used to purify rainwater, but also biochemical
methods are applied to obtain high-quality rainwater treatment,
allowing rainwater to be reused (Schets et al., 2010).

Concerning the issues of urban rainwater resource utilization, this
article sets three objectives: 1) to summarize the histories of relevant
modes adopted by different developed countries; 2) to outline, classify,
and analyze various relevant methods; and 3) to provide a reference for
the application and popularization of relevant measures in the future.

2 Urban rainwater management modes

The practice of rainwater management dates back to 3000 BC
(Fletcher et al., 2015). Since the 1970s, developed countries have
experienced 40 years of development and practice in urban
rainwater and flood management and gradually formed a relatively
complete and mature index system. The purpose of rainwater
management in urban areas is to reduce the risk of urban flooding,
alleviate the shortage of water, and ensure the safety of water resources.
Urban rainwater management has recently developed quickly across
the globe, and it now has an increasing number of modes and
measures (Chen et al., 2016; Qi et al., 2020). Urban rainwater
management requires the integrated management of the water
cycle within a catchment area, combines the management of urban
water supply, groundwater, wastewater, and rainwater (Eyni et al.,
2021), and considers the various facilities and institutions involved in
the urban water cycle roles and interactions involved in the urban
water cycle (Fletcher and Deletic, 2007). It also plays an important role
in legislation, concerning urban water management (Mitchell, 2006).
Different rainwater utilization modes adopted by different countries
are surveyed in the following sections.

2.1 America: Best management practices
(BMPs), low impact development (LID), and
green infrastructure (GI)

In the early 1970s, the United States realized that the traditional
“drainage-based” approach was insufficient to address the problems of
urban rainwater pollution and flooding (Haghighatafshar et al., 2019).
In order to protect the water environment more actively, the term best
management practices (BMPs) was first introduced in the CleanWater
Act enacted in 1972. At first, the primary goal of BMPs was to control
non-point source pollution. Now, BMPs are committed to taking
comprehensive measures to solve the problems regarding water
quality, water volume, and ecology, which significantly reduces
peak flow by using centralized facilities (Ice, 2004). BMPs can
generally be divided into two categories: structured measures and

non-structural measures. Structured measures mainly include
terminal treatment measures, such as rainwater pond, rainwater
wetland, and infiltration facilities, while non-structural measures
refer to various management measures (Che et al., 2014). From
1979 to 1983, the United States Environmental Protection Agency
implemented the national urban runoff plan, which identified four
types of urban rainwater BMPs: detention devices, recharge devices,
housekeeping practices, and others (United States, 1972; United States,
1983). In the United States and Canada, BMPs were promoted in the
cities through the national urban runoff plan in the early 1990s. Later,
the concept of BMPs occurred in rainwater design manuals all over the
United States, and the measures described in BMPs have been
implemented and widely developed there.

The term low impact development (LID) was first coined in a
land-use planning report in Vermont in 1977 (Liu et al., 2016; Mi et al.,
2018). LID is a concept of urban rainwater management based on
BMPs that serves as a supplement to macro-scale BMPs. LID aims to
minimize the negative impact of urbanization or site development on
the water environment from the very beginning, focusing on the use of
small, decentralized eco-technical measures to maintain or restore the
hydrological cycle before site development (Gregoire and Clausen,
2011; Rodak et al., 2019). LID minimizes the cost of rainwater
management and solves the comprehensive problems of rainwater
systems more efficiently and stably (Dietz et al., 2007; Xie et al., 2017).
Specific measures include bio-retention facilities, green roofs, and
grass ditches, which are near the source of runoff. The LID Research
Center was established in 1998, which substantially promoted the
development of the national urban runoff plan. The use of LID became
mainstream in the early 21st century when it was incorporated into
legislation throughout North America (TRCA, 2010).

The concept of green infrastructure (GI) was first introduced in
the 1990s. GI originated from landscape design and landscape ecology,
focusing on the ecological service function of urban greening. Since the
20th century, GI has been widely used by governments all over the
world because of its rainwater management benefits and urban
comfort improvements (Walmsley, 1995). GI is widely used in
decentralized rainwater management networks to reduce rainwater
runoff, improve water quality, and provide ecosystem sustainability
(Fu et al., 2019). Compared with LID, GI involves some larger
facilities, such as landscape water bodies, green corridors, and large
wetlands (Koc et al., 2018), and emphasizes collaboration with urban
planning, landscape design, ecology, and biological protection. GI is
generally used in multi-scale regional planning or design to replace
traditional drainage or gray regulation and storage facilities. It is more
effective in achieving the dual objectives of rainwater control and
protection or restoration of natural hydrological conditions and
ecosystems.

2.2 Britain: Sustainable urban drainage
systems (SUDS)

The drainage network in Britain that discharged sewage into the
sea was built in the 18th century (Brown and Farrelly, 2009). Later,
because the rainwater of the buildings and pavement areas on the
catchment surface of the basin greatly exceeded the capacity of the
drainage pipe network, floods caused by rainstorm and pollution
problems caused by runoff became more and more salient, making it
difficult to meet the national requirements for drainage and ecological
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environment protection (Perales-Momparler, 2015). The concept of
sustainable urban drainage systems (SUDS) was first proposed by Jim
Conlin of Scottish Water in October 1997 (Butler and Parkinson,
1997). SUDS consist of a range of technologies and methods used for
drainage, and the structural measures are essentially the same as that
of LID. The concept of SUDS is based on simulating natural processes,
such as infiltration, evaporation, and filtration, to deal with possible
flood events (Perales-Momparler et al., 2015). At present, the
development of SUDS focuses more on water quality management
to mitigate the adverse effects of climate change (Gimenez-Maranges
et al., 2020).

2.3 Australia: Water-sensitive urban design
(WSUD)

The concept of water-sensitive urban design (WSUD) was first
introduced in Australia in the 1990s (Cook et al., 2019). It was
further refined in the early 21st century when the Australian Joint
Committee on Urban Drainage established a WSUD task force in
2004 to promote the construction of an integrated water system
design in the urban design process, which was an effort that
involved many different industries. The early concept of WSUD
centered around rainwater management, and afterwards it aimed to
minimize the impact of urban development on the surrounding
environment and covered the management of the integrated urban
water cycle, including water supply, pollutant discharge reduction,
water conservation, and rainwater management (Demuzere et al.,
2014; Locatelli et al., 2020). WSUD has many subsets, and one of
the most important subsets is rainwater management, aiming at
flood prevention, flow management, water quality improvement,
rainwater harvest, and non-potable water supplement (Fletcher
et al., 2015).

2.4 China: Sponge city (SPC)

The concept of the sponge city (SPC) was first introduced in China
in 2014. A sponge city has good “elasticity” in adapting to
environmental changes and responding to natural disasters like
a sponge. It absorbs, stores, seeps, and purifies water on rainy days
and releases and uses the stored water when needed. A sponge city
has the flexibility to deal with various disasters. It takes LID as the
main design means and strives to keep the hydrological conditions
untouched after the completion of the site development (Zhu et al.,
2019; Yang et al., 2020). It satisfies the sustainable management
idea of protecting the urban water source ecological environment.
The sponge city requires all cities to establish a new urban
rainwater treatment system that integrates infiltration, storage,
stagnation, use, and drainage to retain about 80% of the
rainwater, so as to conserve water and improve urban ecological
benefits (Fletcher et al., 2015; Sang and Yang, 2017). China has
selected 30 cities as pilot projects to promote sponge city
construction (Hu et al., 2019; Eyni et al., 2021). However, the
development of sponge cities in China is still in the preliminary
stage, and there are still some problems, such as crude utilization
methods, insufficient universality, lack of official standard for
analyzing and assessing the benefits of rainwater utilization,
blind construction of facilities, and lack of adequate planning.

2.5 New Zealand: Low impact urban design
and development (LIUDD)

After about 30 years of research and practice, modern rainwater
management in New Zealand has also formed a relatively complete
system, which is at the forefront in the world and has achieved
remarkable results. Based on BMPs and LID in the United States
and WSUD in Australia, New Zealand puts a special emphasis on
ecology and on respect for nature and coined the term “low impact
urban design and development (LIUDD)” in “sustainable urban
investment and development project” implemented by the
New Zealand Foundation for Research, Science and Technology
(FRST) in 2003. LIUDD combines national laws and plans and
bases itself on the cultural heritage and legislative system. LIUDD
emphasizes the application of local plant communities in urban low
impact design to protect biodiversity, which uses interdisciplinary
rainwater system design methods to simulate the process of natural
ecosystems and highlights the combination of ecological functions and
regional characteristics (Che et al., 2012).

2.6 Scope of application and features of the
rainwater utilization modes

The modes of urban rainwater resource utilization and their
histories in different countries are shown in Figure 1. Moreover,
several typical rainwater utilization modes are compared and
summarized in Table 1. As demonstrated in Table 1, current
rainwater management modes are all improvements based on
traditional drainage systems. BMPs, LID, and SUDS measures
complement the existing drainage infrastructure. GI, WSUD,
LIUDD, and SPC are more prominent in top-level design and
integrated planning and cross-fertilizing and are widely used in
urban planning, landscape design, and other multi-disciplines.
Compared with the traditional rainwater measures, the methods
and measures adopted in the new modes tend to be smaller, more
decentralized, more integrated with the landscape, more protective of
natural resources, and more cost-effective.

3 Construction of urban rainwater
utilization measure systems

3.1 Classification of measures

Urban rainwater utilization measures can be classified along two
dimensions: utilization ways and utilization stages. In terms of
utilization ways, urban rainwater utilization measures can be
divided into collection, transmission, infiltration, saving, and
purification measures.

Collection measures are usually used to collect rainwater from
roofs, roads, and green spaces, occupy small areas, and are easy to
place. Collection measures include green roofs and rainwater tanks.
Transmission measures can transfer the collected rainwater to other
rainwater utilization facilities and municipal drainage systems and
also have a certain collection capacity. Transmission measures mainly
include grass ditches, permeation tubes, and permeation ditches.
Infiltration measures infiltrate and supply groundwater, reduce
surface runoff and the drainage pressure of the municipal pipe
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network, and alleviate urban waterlogging by direct rainwater
infiltration. Infiltration measures mainly include permeable
pavements, rainwater gardens, and infiltration wells. Saving
measures use the naturally formed or artificially constructed water-
storage space to retain or store rainwater and then slowly discharge it
after the flood peak, so as to provide a basis for the reuse of rainwater
resources in time and space, and achieve the role of peak cutting and
peak shifting. The stored rainwater resources can be directly used for
urban greening and irrigation. Saving measures mainly include
impounding reservoirs and wet swales. Purification measures
remove the polluted impurities in rainwater through the filtration
of vegetation and the soil planted with vegetation and improve and
control the water quality, so as to achieve water purification and
environmental beautification. Purification measures mainly include
vegetation buffer strands and bio-retention facilities.

With respect to the stages of rainwater utilization, such measures
can be divided into source control, medium transmission, and
terminal treatment measures. Source control measures are set
before the rainwater enters the municipal pipe network, river
ditches, and other drainage systems, with the purpose of
controlling the water quantity and quality and increasing the
infiltration and storage reuse. The main technical measures include
green roofs, rainwater tanks, permeable pavements, and vegetation
buffer strands. Medium transmission measures are generally set in the
process of runoff confluence, and the overflowing rainwater is
discharged into the municipal ditches and pipe networks after the
rainwater exceeds the processing capacity of the source control
measures. Medium transmission measures aim to intercept,
regulate, and store rainwater, and the treated rainwater will be
discharged or reused. The main technical measures include grass
ditches, permeation tubes, permeation ditches, infiltration wells,
and rainwater gardens. Terminal treatment measures are subjected
to centralized physical, chemical, and biological treatments to remove

pollutants in the rainwater and improve the rainwater quality and
finally directly discharged into the receiving water body or reused after
the rainwater is collected at the end of the drainage system. The main
technical measures include impounding reservoirs, wet swales, and
bio-retention facilities.

3.2 Application analysis of rainwater
utilization measures

Current urban rainwater utilization measures include green roofs,
rainwater tanks, grass ditches, permeation tubes/ditches, permeable
pavements, rainwater gardens, infiltration wells, impounding
reservoirs, wet swales, vegetation buffer strands, and bio-retention
facilities (Li et al., 2014). A diagram of the distribution of the rainwater
measures in cities is displayed in Figure 2.

3.2.1 Source control measures
3.2.1.1 Green roof

Green roofs as an important rainwater utilization measure have
emerged in order to bring the inner urban cycle more harmonious
with nature because modern urban rooftops account for
approximately 20%–25% of the total urban area (Besir and Cuce,
2018). Green roofs, also known as vegetated roofs, eco-roofs, or
natural roofs, are considered a new rainwater utilization technology
integrating architectural art and greening technology, having the
vegetation and the growth medium required for green vegetation
(Vijayaraghavan, 2016). A green roof is composed of a vegetation,
growth substrate, filter fabric, drainage element, protection layer, root
barrier, insulation layer, water-proofing membrane, and roof deck
from the top to bottom (He et al., 2016; Mao et al., 2021). A specific
configuration of the green roofs is shown in Figure 3. Green roofs can
fit in various types of buildings, such as office buildings, hotels,

FIGURE 1
Rainwater utilization modes and developing course.
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TABLE 1 Comparison of typical rainwater utilization modes.

Country Utilization
mode

Feature Target
function

Applicability

Small and
medium
rainfall
control

Storm
water
control

Source
measure

Top-
level
design

Facility
feature

Required
space

Interference
with the site

Landscape
integration
degree

Natural
resource

conservation

Maintenance Cost

— Traditional
drainage
(1900s)

√ Relies on
storm sewer
systems to

solve flooding
problems

Integral *** *** Professional ***

America BMPs (1980s) √ √ √ Peak flow
reduction,
end-of-pipe
control, and
water quality

control

Centralized ** ** * ** Professional **

LID (1990s) √ √ Maintains
natural

hydrology of
the site

Distributed * — *** *** Daily *

GI (2000s) √ √ √ √ Replaces the
utilization of

more
traditional
gray storage
facilities

Decentralized * — *** *** Daily *

Britain SUDS (1990s) √ √ √ Controls
water quality
and ecological
landscape and
end-of-pipe
treatment

Penetration * — *** *** Overall *

Australia WUSD (1990s) √ √ √ √ Reduces the
negative
impact of

natural water
circulation

Integral ** — *** *** Overall **

New Zealand LIUDD (2000s) √ √ √ √ Protects
biodiversity

and
ecosystems

and
minimizes
negative
impact

Distributed * — *** *** Daily *

(Continued on following page)
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residences, schools, and gymnasiums (Shafique et al., 2018). Green
roofs can reduce rainwater runoff, reduce greenhouse gas emissions to
mitigate the urban heat island effect, reduce energy consumption,
improve air and water quality, lower the pH of acid rainwater, provide
better ecological urban living and wildlife habitat, and absorb noise
(Coma et al., 2016; Tang and Qu, 2016; Abu-Zreig et al., 2019).

Wang et al. (2011) showed that the green roofs can effectively
retain the roof rainwater runoff. The water retention rate is between
55%–88% during different seasons and different rainfalls, and the roof
planted with different plants has the best reduction effect on storm
runoff of 62%–80% under the same condition of the building
substrate. Ayub et al. (2015) showed that planting suitable plants
can reduce flood peak flow by 30.5%–67%. Simmons et al. (2008)
showed that the green roofs can delay the peak runoff for 10 min, and
when the rainfall is less than 10 mm, it will be absorbed by the green
roofs. In addition, Wang et al. (2014) showed that the removal rates of
TSS (total suspended solids), TP (total phosphorus), and TN (total
nitrogen) pollution loads by green roofs can reach 40%, 31.6%, and
29.8%, respectively.

3.2.1.2 Permeable pavement
Permeable pavements are a form of pavement coverage that uses

gravel and sand with good permeability and high porosity in the
surface layer, subgrade, and lowest soil foundation, making rainwater
enter the interior of the pavement structure smoothly and penetrate
into the soil base through the drainage pipe inside the pavement, so as
to reduce surface runoff and ground recharge (Qin, 2015). In terms of
surface materials, permeable pavements can be classified into
permeable bricks, permeable asphalt concrete, and permeable
cement concrete pavements. An exact structure of permeable
pavements is shown in Figure 4. The hydrological performance of
permeable pavements depends on the water-storage capacity of the
foundation and the saturated hydraulic conductivity of the foundation
soil (Mullaney and Lucke, 2014; Kuruppu et al., 2019). The major
advantages of permeable pavements lie in their abilities to purify
water, restore natural hydrology, reduce runoff, mitigate urban heat
island effects, and reduce road noise (Al-Rubaei et al., 2014; Yu et al.,
2015; Gülbaz and Kazezyılmaz-Alhan, 2016).

Wang et al. (2019) showed that the total surface runoff of
permeable pavements decreased by 1%–40%, and that the peak
flow decreased by 7%–42%. Liu et al. (2020) found that, in the case
of heavy rainfall, permeable pavements can effectively retain rainwater
runoff, with an average runoff retention of 42.5%–52.5%. Regarding
different materials of permeable pavements, Zhao et al. (2020) showed
that the average peak delay time of structural permeable bricks and
that of ordinary permeable bricks is 6.3 and 16.3 min, respectively. Li
et al. (2018), summarizing several cases, concluded that the removal
rates of TSS, TP, and TN pollution loads by permeable pavements can
reach 56%–96%, 24%–63.4%, and 42%, respectively.

3.2.1.3 Bio-retention facility
Bio-retention facilities are similar to vegetated shallow trenches,

planted in areas with a low terrain, making full utilization of the urban
open space and improving rainwater quality through plant retention
and soil infiltration. It is generally composed of a surface rainwater
retention layer, vegetation planting layer, planting soil layer, sand-
filter layer, and rainwater collection part (Nguyen et al., 2019).

Based on the KOSIM model, Tian et al. (2019) showed the
environmental benefits of bio-retention facilities. The KOSIMTA
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model is a hydrological assessment model developed by Hanover
Water Co., Ltd. As a Windows-based program for analyzing flood
storage and detention areas of the urban drainage system, the KOSIM
model can be used to calculate the performance of combined sewage
overflow, sponge facilities, and rainwater storage tanks. In the case of
large- and medium-sized rainstorms, the runoff retention rate of bio-
retention facilities is 53%–79%. Pollutant removal is the main function
of bio-retention facilities, while bio-retention facilities with different
structures generally have different pollutant removal rates.

3.2.1.4 Vegetation buffer strand
A vegetation buffer strand, which consists of a horizontal water

distributor and vegetation, uses surface plants and soil to intercept
runoff pollutants. It disperses rainwater evenly across the vegetated
area of the slope to promote infiltration and to diffuse runoff in the
slope. Vegetation buffer strand plants are divided into two types: grass
and woodland. The plants with better treatment effects are selected
according to the specific situation. The infiltration and retention of
vegetation are influenced by the slope, length, and plant species of the
strip (Otto et al., 2008). Vegetation buffer strands are suitable for small
areas, around impervious paved areas, parcel boundaries, and both

sides of the roads (Gavrić et al., 2019). A specific structure of
vegetation buffer strands is shown in Figure 5.

Zhang et al. (2022) showed that vegetation buffer strands can play
an important role in preventing and controlling sedimentation, as
their interception rate of sedimentation can reach more than 0.9 based
on VFSMOD (vegetative filter strip modelling). At the same time,
vegetation buffer strands also possess an important function of runoff
regulation as they can completely intercept the runoff generated by
small- and medium-sized rainfalls. Developed by Munoz-Carpena,
VFSMOD estimated the flow and pollutant load in the runoff
catchment area and the reduction of runoff flow and pollutant load
in the buffer zone based on the model of storm and site conditions.

3.2.2 Medium transmission measures
3.2.2.1 Grass ditch

Grass ditches refer to surface ditches planted with vegetation that
are used for collecting, transmitting, purifying rainwater, and
connecting to other low-impact development facilities and
municipal drainage systems. They can be generally divided into
three types: transfer grass ditches, dry grass ditches, and wet grass
ditches (Khadka et al., 2020). A specific configuration of grass ditches
is shown in Figure 6.

Zhang et al. (2017) showed the control effect of different
catchment methods of grass ditches on rainwater runoff flow. The
experimental results showed that the rainwater runoff flow was
reduced by 7.06%–9.51%, the peak reduction rate reached 2.67%–

FIGURE 2
Distribution of rainwater measures in cities.

FIGURE 3
Specific structure of the green roof.

FIGURE 4
Specific structure of the permeable pavement.
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6.44%, and the peak appeared 9.6–12.2 min later. Wang et al. (2011)
showed that the removal rates of TP and TN in grass ditches are
generally 20%–40% and 20%–60%, respectively. Li et al. (2016)
showed the removal ability of suspended solids and COD
(chemical oxygen demand) in rainwater runoff by typical grass
ditches. The experimental results showed that the removal rates of
suspended solids and COD in rainwater runoff by grass ditches can
reach 92.1%–99.3% and 51.72%–86.35%, respectively. Guo et al.
(2015) showed that when the vegetation coverage of grass ditches
reached about 60%, the removal rates of ammonia nitrogen and total
phosphorus in rainwater runoff could be increased by about 10% and
20%, respectively.

3.2.2.2 Permeation tube/ditch
Permeation tubes/ditches refer to rainwater pipes/drains with an

infiltration function, which can be made of a combination of
perforated plastic pipes, sand-free concrete pipes/drains, and
gravels (Bhagu et al., 2012). Permeation ditches, which are used to
collect and store rainwater from a single area, can be set on the ground
to intercept rainwater runoff or supply the phreatic layer underground
as part of the rainwater pipeline. During the construction of
permeation ditches, the influence of the soil infiltration rate and
pollution on aquifers should be mainly considered.

3.2.2.3 Rainwater garden
Rainwater gardens are effective LID practices, usually constructed

in green areas with low terrain. They supply groundwater through
infiltration, remove pollutants before the rainwater enters the local
rivers (Virginia Department of Forestry, 2019), and have landscape
effects and ecological values. The advantages of rainwater gardens
include purifying rainwater quality, delaying rainwater peaks, having
low construction costs, having easy maintenance and management,
and having high popularity (Amur et al., 2020). Although rainwater
gardens retain a significant portion of rainwater and reduce the risk of
flooding, the amount of water reduced during short periods of intense
rainstorms is very small. Therefore, when designing rainwater
gardens, it should be considered that the ability of rainwater
gardens to reduce urban flood is limited (Martine et al., 2014; Guo
et al., 2015). A specific structure of a rainwater garden is shown in
Figure 7.

Tang et al. (2016) showed that the rainwater gardens with
different fillers reduce the amount of rainfall by 9.8%–85.9%
and the peak runoff by 11.2%–93.3%, and the flood peak delay

time is 10–40 min. The urban storm flood process model built
based on SWMM (storm water management model) has a runoff
control rate of 50.9%–84.7% under different design rainfall return
periods. SWMM is a rainstorm flood management model
developed and studied by the United States Environmental
Protection Agency (EPA) in 1971. It is applied to urban rainfall
runoff simulation and is the most widely used urban rainstorm
runoff model at present. For the removal of pollutants, Du et al.
(2021) showed that the reduction rates of TSS, COD, TN, and TP
are 20.8%–93.3%, 28.6%–92.6%, 11.6%–54.8%, and 9.8%–47.3%,
respectively. The longer the recurrence period is, the lower the
runoff control and pollutant reduction rates are.

3.2.2.4 Infiltration well
Infiltration wells are rainwater infiltration devices that can

increase the infiltration effect through rainwater infiltration
facilities on the well wall and on the bottom of the well.
Infiltration wells are buried deeply under the ground, and
horizontal infiltration drainage pipes are set around them to
supplement the groundwater.

3.2.3 Terminal treatment measures
3.2.3.1 Rainwater tank

Rainwater tanks are normally connected to seepage places, such as
rainwater gardens or gravel-filled dry wells, and installed in small
rooms near buildings to collect rainwater flowing down from roof
downpipes for non-potable water utilization, such as cleaning toilets.

FIGURE 5
Specific structure of the vegetation buffer strand.

FIGURE 6
Specific structure of the grass ditch.

FIGURE 7
Specific structure of the rainwater garden.
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The advantages of rainwater tanks include low-cost rainwater
collection and use facilities, high water collection efficiency, simple
setup, and easy maintenance management.

Rainwater tanks, with respect to the installation location, can be
divided into above-ground rainwater tanks and underground
rainwater tanks. A specific structure of rainwater tanks is shown in
Figure 8. Rainwater tanks have a weak purification effect on rainwater
quality, so it is necessary that they are cleaned regularly inside to avoid
pollution, which affects their normal functional effects (Petrucci et al.,
2012; Litofsky et al., 2014). The payback period of rainwater tank
investment is influenced by a combination of tank size, water
consumption, local water prices, location, and lifetime costs
(Nachshon et al., 2016; Sharma and Gardner, 2020).

3.2.3.2 Impounding reservoir
Impounding reservoirs are commonly used facilities for collection

and storage of rainwater. They are also a way to control the total
amount of runoff and reduce the peak flow. Impounding reservoirs
can be divided into reinforced concrete, masonry, and plastic module
impounding reservoirs according to different materials. Urban areas
with limited land utilization mostly use underground impounding
reservoirs, which are built by reinforced concrete, masonry, or other
materials, have good adaptability and save space but require a lot of
excavation, and are more difficult to clean and maintain (Wu et al.,
2020).

3.2.3.3 Wet swale
Most urban wet swales are artificial wet swales that simulate the

structure and function of natural wet swales. Wet swales can efficiently
control the pollution content of surface runoff, integrate ecological
restoration and landscape aesthetic values, have low investment and
simple operation and management, facilitate sedimentation, and have
stable effects. In particular, they can operate reliably under
unfavorable conditions, and their effects do not depend on soil
properties.

Koon (1995) showed that the removal efficiency of TSS in the wet
swales was between 67% and 81%, and the reduction range of TP was
between 17% and 39%. Winston et al. (2012) showed that wet swales
reduced TN in runoff by 40%.

3.3 Comparison of the technical measures of
rainwater utilization

This article summarized the advantages, disadvantages, and
application scope of the aforementioned technical measures, as
shown in Table 2. In addition, this article also selected five typical
measures and quantified their environmental benefits. The comparison
results are shown in Table 3. Considering the control and reduction
efficiency of the measures for runoff and rainfall runoff pollutants, eight
indicators were selected to reflect the environmental benefits of the
measures: the runoff reduction rate, peak reduction rate, rainwater
retention rate, flood peak delay time, total suspended solids (TSS)
reduction rate, total nitrogen (TN) reduction rate, total phosphorus
(TP) reduction rate, and chemical oxygen demand (COD) reduction
rate. The results showed that source control measures, including green
roofs and permeable pavements, perform better regarding runoff
reduction, peak reduction, rainwater retention, and flood peak delay,
while medium transmission and terminal treatment measures,
including grass ditches, rainwater gardens, and wet swales, perform
better in pollutant removal. Green roofs can reduce runoff by 80%,
reduce flood peak by 67%, retain rainwater by 88%, and delay flood peak
time by 10 min. Permeable pavements can reduce runoff by 90%, reduce
flood peak by 80%, retain rainwater by 52.5%, and delay flood peak time
by 16.3 min. Grass ditches, rainwater gardens, and wet swales remove
TSS by over 80%, TP by over 39%, and TN by over 40%.

For other benefits that are not easy to quantify, this article made a
qualitative comparative analysis, and the comparison results are
shown in Table 4. In terms of economic benefits, land areas of
green roofs, permeable pavements, and infiltration wells are small,
and construction costs of grass ditches, permeable pavements, and
infiltration wells are low, and maintenance costs of grass ditches,
permeable pavements, rainwater gardens, and vegetation buffer
strands are low. With respect to the ecological benefits, pollution
control, peak retardation, and total storage of rainwater gardens, wet
swales, and bio-retention facilities show a relatively good performance.
Regarding aesthetic benefits, green roofs stand out to some extent.
Overall, different measures have different advantages and should be
set in different locations in urban design planning, considering the
specific local conditions.

FIGURE 8
Specific structure of the rainwater tank.
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TABLE 2 Advantages, disadvantages, and the scope of application for the technical measures of rainwater utilization.

Measure classification Advantage Disadvantage Scope of application

Source control
measures

Green roof 1) Reduces roof surface runoff and
pollution load

Strict requirements for roof loading,
waterproofing, slope, and space conditions

Suitable for flat roof buildings and sloped roof
buildings with a slope of &15°

2) Saves energy and reduces
emission

3) Has a very good landscape benefit

Permeable
pavement

1) Reduces the urban waterlogging
area and heat island effect

High costs Suitable for pavement, bicycle path, small
garden path, and pedestrian street ground
paving

2) Improves the urban environment
and water quality

Vegetation buffer
strand

1) Reduces the consumption of
energy and resources

High maintenance costs Suitable for small areas, generally less than
2 ha, and constructed around impervious
pavement areas

2) Makes full utilization of the small
urban space

3) Saves infrastructure costs and
creates a good landscape effect

Medium
transmission
measures

Grass ditch 1) Simple construction and low
investment

Requires the shallow plant roots Can be set on any permeable ground, such as
squares in city parks, green areas, and around
buildings

2) Alleviates water on the road

3) Reduces rainwater to
groundwater

Permeation tube/
ditch

1) Occupies a small area Difficult inspection and repair —

2) Simple setup

3) Combines with the rainwater
system to supply groundwater
sources

Rainwater garden 1) Simple construction, low cost,
and easy operation and
management

1) Requires manual maintenance and high
labor costs; 2) Temporary storage of
rainwater

Set in the rainwater collection surface, such as
roads, squares, and buildings in the park

2) Has landscape benefits

3) Collects and reuses purified
rainwater

Infiltration well 1) Occupies a small area Low purification capacity of rainwater Set in the park catchment area with less
rainwater pollution

2) Requires a centralized control and
management

Terminal treatment
measures

Rainwater tank 1) High collection efficiency Weak purification effect Suitable for low-rise residential communities,
commercial areas, and industrial plants

2) Simple setup and easy
installation, maintenance, and
management

3) Collected rainwater can be used
for non-potable water utilization

Impounding
reservoir

1) Large storage volume and good
adaptability

1) Cannot prevent frost and reduce
evaporation; 2) requires extensive excavation

Should be integrated with overall planning
and landscaping design

2) Saves tap water usage and
alleviates the urban water shortage

3) Improves ecological environment

(Continued on following page)
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TABLE 2 (Continued) Advantages, disadvantages, and the scope of application for the technical measures of rainwater utilization.

Measure classification Advantage Disadvantage Scope of application

Wet Swale 1) Low investment and simple
operation and management

High costs and difficult maintenance Suitable for minimum 5 ha and preferably
more than 10 ha area

2) Reliable operation under
unfavorable conditions

3) Reduces suspension and has
landscape and economic benefits

“—” indicates none.

TABLE 3 Comparison of ecological benefits of urban rainwater utilization measures.

Environmental indicator Source control measure Medium transmission measure Terminal treatment measure

Green roof Permeable pavement Grass ditch Rainwater garden Wet swale

Runoff reduction rate (%) 62–80 40–90 7.1–9.5 9.8–85.9 —

Peak reduction rate (%) 30.5–67 20–80 2.7–6.4 11.2–93.3 —

Rainwater retention rate (%) 55–88 42.5–52.5 — 54.9–84.7 —

Flood peak delay time (min) 10 6.3–16.3 9.6–12.2 10–40 —

Pollutant removal rate TSS (%) 40 56–96 92.1–99.3 20.8–93.3 67–81

TP (%) 31.6 24–63.4 20–40 9.8–47.3 17–39

TN (%) 29.8 42 20–60 11.6–54.8 40

COD (%) — — 51.7–86.3 28.6–92.6 —

“—” indicates no data.

TABLE 4 Comparison of other benefits of urban rainwater utilization measures.

Measure classification Economic benefit Ecological benefit Aesthetic
benefit

Land
area

Construction
cost

Maintenance
cost

Pollution
control

Peak
retardation

Total
storage

Source control
measures

Green roof *** ** ** *** * *** ***

Permeable
pavement

*** * * * * *** **

Bio-retention
facility

** *** ** *** *** *** **

Vegetation
buffer strand

** * * ** ** ** *

Medium
transmission
measures

Grass ditch ** * * * * *** **

Permeation
tube/ditch

** ** ** * ** * —

Rainwater
garden

*** ** * ** *** ** **

Infiltration well * * * * * *** —

Terminal
treatment
measures

Rainwater tank * ** ** * * *** *

Impounding
reservoir

** ** * * * *** —

Wet swale *** *** ** *** *** *** **

More “*’s” indicate a higher degree; and “—” indicates none.
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4 Prospects

The article provided an outlook on each of the two blocks:
rainwater management modes and rainwater utilization measures.

4.1 Rainwater management modes

In the past few decades, the urban rainwater management model
has undergone significant changes, from mainly relying on the
traditional gray drainage system to reduce urban waterlogging to
green facilities that combine environmental, health, social, and
economic factors. Countries that have just started rainwater
utilization can learn from rainwater management modes of leading
countries as well as their experience and develop more rainwater
utilization modes.

4.1.1 Establish and improve the relevant law and
regulation system and incentive mechanism of
rainwater management

The implementation of a system cannot be separated from the
support of the legal force. The mature rainwater management mode
has a sound system of laws and regulations related to rainwater
management as well as an effective incentive mechanism. Countries
should strengthen policy guidance, formulate appropriate discharge
standards and charging systems, and ensure the acceleration of the
city’s rainwater management.

4.1.2 Popularize awareness of water conservation
While vigorously developing the economy, countries should also

make people aware of the importance of environmental protection.
Countries should vigorously publicize the importance of rainwater
management and environmental protection. The public should
understand and manifest the understanding in various activities,
change public awareness through various channels, and actively
participate in the construction of a new mode.

4.1.3 Strengthen interdisciplinary and multi-sectoral
cooperation

Urban rainwater management is an extremely complex issue,
involving architecture, planning, landscape, municipal engineering,
environmental engineering, hydraulics, urban water supply and
drainage, social resource management, and other disciplines.
Although the importance of cooperation between various
departments has been repeatedly emphasized when formulating
relevant policies, more adjustments are needed in practice.
Rainwater management personnel should have the basic knowledge
of various disciplines involved in urban rainwater management and
should be able to communicate and cooperate closely in the future
design work, so as to make the drainage system design more scientific.
When necessary, they can also collaborate with leading foreign design
teams to learn advanced experience.

4.1.4 Adapt to national conditions
Each country has different geographical conditions and cultural

customs. Amature rainwater utilization mode is often only suitable for
certain specific conditions, such as abundant water or drought in the
country. For example, the sponge cities in China have developed
rapidly in recent years, and many rainwater management indicators

have been set up, but most of them have not been implemented well
because many indicators are simply copied from the technical
indicators of developed countries in rainwater utilization, having
the problem of lacking rationality. Therefore, each country should
adjust its measures according to the local conditions, base its relevant
works on national conditions, and establish a mode suitable for its own
country.

4.1.5 Establish management systems with clear
division of powers and responsibilities

To solve the urban storm flood problem, not only is it necessary to
build drainage facilities, but also they should bemaintained by relevant
departments and developers in accordance with the rights and
obligations specified in the relevant system. Establishing and
improving the accountability system for rainwater management are
helpful for finding ways to solve problems as soon as possible, which is
beneficial to efficient working of the storm flood management
facilities.

4.2 Rainwater utilization measures

There are many specific measures for rainwater utilization, which
have ecological and sustainable characteristics and broad application
prospects. In reality, rainwater utilization measures are basically
sporadic, and comprehensive planning is needed to give full play to
reap the maximum benefits. The government should carry out
planning at different levels to form a rainwater management
system with master planning, large watershed planning, small
watershed planning, and environmental management planning and
retain and reduce rainwater at all levels to achieve “zero growth” of
regional development before and after runoff. At present, rainwater
utilization measures and technologies are still in the exploratory stage,
lacking extensive engineering applications, and their control and
treatment effects on surface runoff are not stable. Countries should
learn from each other’s successful cases and choose appropriate
rainwater utilization measures according to the local conditions.
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