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Introduction: La Segua is an important wetland in Ecuador, recognized as a
Ramsar site and of great ecological relevance. Currently, La Segua is threatened by
human pressures and unsustainable landscape use associatedwith agriculture and
aquaculture. This study is the first approach to the occurrence of suspended
microplastics (SMPs) in an Ecuadorian lentic waterbody and the estimated
potential threat of these on the filter and suspension feeders in aquatic food webs.

Methods: Surface water samples were collected at 16 sampling points in the
wetland to analyze the occurrence, concentration, and horizontal distribution of
Suspected Suspended Microplastics (SSMPs) and zooplankton.

Results and discussion: SSMPs were found in all sampling sites, and
concentrations were between 313 and 490 particles/liter. Fragments were the
most abundant category, followed by fibers, films, and pellets. The highest
concentration of SSMPs was found in sampled sites on the east coast and in
the middle of the wetland. The frequency and concentration of categories of
SSMps found in surface water largely reflect the reality of local human activity
around the La Segua wetland. Only rotifers and copepod nauplii were found in the
zooplankton. The SSMMPs to zooplankton ratio varied between 0.3 and 441
particles/individuals.The SSMPs/zooplankton ratio indicates that fish and other
filter and suspension feeders of aquatic food webs could be more likely to feed on
suspended microplastics than natural food items around the wetland. SSMPs
indicate that microplastics may represent.
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Introduction

Most studies dealing with microplastic pollution in aquatic
ecosystems are focused on the world’s oceans (Wu et al., 2019;
Talbot & Chang, 2022), and little is known about freshwater
ecosystems (Niaounakis, 2017; Blettler et al., 2018; Lambert &
Wagner, 2018). Οnly about 18% of microplastic-related studies
are associated with freshwaters (Blettler et al., 2018; Li and Liu,
2018), mainly reporting on large surface water bodies (Wagner et al.,
2014). According to Li et al. (2020), the knowledge of the impact of
microplastic pollution in freshwater environments is still in its
infancy when compared to that of marine environments.
Freshwater studies are biased toward rivers (Talbot & Chang, 2022).

The relatively few existing studies demonstrate the magnitude of
this emerging environmental pollution (Wagner et al., 2014; Horton
et al., 2017; Eerkes-Medrano, 2018; Li and Liu, 2018) and draw
attention to the problem that is now closer to people (Niaounakis,
2017) and has a more global character (Free et al., 2014; Zhang et al.,
2016; Shahul Hamid et al., 2018).

Particularly in Neotropical regions, the knowledge of
microplastic pollution in inland water bodies is incipient
(Alfonso et al., 2020; Li et al., 2020; Orona-Návar et al., 2022).
The studies in this region barely represent 11.8% of the total
published papers on the pollution by microplastics in inland
water bodies, and these are concentrated only on Argentina,
Brazil, Colombia, and Chile (Blettler et al., 2018). Only one study
on this issue in Ecuadorian freshwater bodies is known (Donoso &
Ríos-Touma, 2020).

Due to their small size, suspended microplastics (SMPs) are
potentially bioavailable, via ingestion, to a wide range of filter-
feeding consumers and suspended particulate matter feeders, whose
food size range overlaps with the suspended microplastic size
(Scherer et al., 2018; Botterell et al., 2019). Microplastic ingestion
has been observed in freshwater invertebrates and fish (Wagner
et al., 2014; Jeong et al., 2016; Ziajahromi et al., 2017; Sarijan et al.,
2018, Sherer et al., 2018). The existing studies suggest that the
ingestion of microplastics by fish can be harmful and produce
detrimental effects (Silva-Cavalcanti et al., 2017; Raza, 2018).
Also, microplastics can adsorb bacteria, viruses, or other
pollutants (e.g., heavy metals and organic pollutants) (Rodrigues
et al., 2019; Fred-Ahmadu et al., 2020; Santos-Echeandía et al.,
2020). Therefore, microplastic pollution may represent a potential
risk for human consumption (Rochman et al., 2015; Wright & Kelly,
2017; Joon, 2019), the commercial value of fisheries (Vázquez-Rowe
et al., 2021; Masiá et al., 2022), aquaculture activities (Chen et al.,
2021; Zhou et al., 2021), and other ecosystem services of water
bodies (Prata et al., 2021; Sridharan et al., 2021).

This paper presents an empirical assessment of SMPs and the
threat that represents to filter and suspended particulate matter
feeders in a freshwater wetland in a dry coastal region of Ecuador.
For this assessment, we used only visual examination of
microplastics by microscopy and the ratio between microplastics
and zooplankton.

Visual examination of microplastics by microscopy is
commonly used to quantify and characterize microplastics. It has
been used as either a stand-alone tool or as a first step for analysis
(Lusher et al., 2020; Kotar et al., 2022). Limitations related to the size
and nature of the particles may affect the identification of

microplastics, and extra steps for chemical characterization have
been included for more accuracy. Additional techniques include
Fourier transform infrared (FTIR) spectroscopy, Raman
spectroscopy, and pyrolysis–gas chromatography with mass
spectrometry (Py-GCMS) (Cowger et al., 2020; Primpke et al.,
2020). Some studies skip microscopy entirely and fully automate
spectroscopy via scanning and mapping (Primpke et al., 2020).

These additional protocols make laboratory procedures more
complicated. They are an important limitation for most tropical
countries, where research funds, availability of trained technicians,
and lack of modern equipment can result in great obstacles to be
overcome. This is particularly true in African (Robarts & Zohary,
2018) and Latin American countries (Orova-Návar et al., 2022).
Throughout this paper, we will refer to the suspended microplastic
particles examined as suspected suspended microplastics (SSMPs)
because chemical determination analyses nor the “hot needle test”
was performed to confirm the nature of the particles.

On the other hand, the ratio of suspended microplastics/
zooplankton indicates the degree of interaction between
microplastics and zooplankton. This ratio permits the estimation
of how microplastic contamination levels may affect organisms that
feed on suspended particles in aquatic food webs (Collignon et al.,
2014). A high ratio of microplastics to zooplankton implicates a
relatively high number of microplastics that may cause visual
confusion with natural food for filter and suspension consumers
(Rose, 2019).

This empirical approach has been frequently used in marine
environments (Moore et al., 2001; 2002; Collignon et al., 2012; 2014;
Frias et al., 2014; Gorokhova, 2015; Panti et al., 2015; Di Mauro et al.,
2017; Vasilopoulou et al., 2021), but, to the best of our knowledge, it
never has been used in freshwater environments.

Considering the gaps in the knowledge of microplastics in
Neotropical freshwater environments (Orona-Návar et al., 2022)
and only visual examination as the first step to assess microplastic
pollution (Kotar et al., 2022), we try to address the following
questions:

1. What leads to the occurrence of SSMPs and how are these
associated with zooplankton abundances throughout the
wetland?

2. What are the categories of SSMPs and can these give information
on the origin/sources of the material?

3. Can microplastic pollution threaten the wetland’s food webs and
ecosystem services?

Study site

La Segua is a freshwater wetland located in the coastal region of
Ecuador, northeast of Manabí Province (0° 42.5′–0° 44.3′S and 80°

09′–80° 12.2′W) (Figure 1). It has a total area of 18.36 km2 and an
altitude of 5 m.a.s.l. La Segua consists of a central swamp, which
forms a large floodplain covered by water in the rainy months
(December–April) (IUCN, 2000). Its terrestrial and aquatic fauna
has become a regional economic engine with commercial fisheries
and aquaculture activities (Montilla-Pacheco, 2017). The types of
soil found in this region are sandy, silty, and/or clay-silty, with deep
sedimentary deposits. A total of 164 bird species are temporary or
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permanent residents of this wetland, representing a high potential
for the development of tourist activities, for e.g., bird watching
(Montilla-Pacheco, 2017).

This freshwater body is the fifth most important wetland in
Ecuador, and since 2000, it has been designated as a Ramsar site for
its environmental and ecological importance. Even though the
wetland is covered by the Ramsar Convention (www.ramsar.org),
it has complex problems related to eutrophication and the use of
agrochemicals, soil pollution, increased sedimentation, reduced
water levels, and changes in biodiversity, especially in the
ichthyofauna which seems to be suffering a marked decrease in
their diversity (Montilla-Pacheco, 2017; Noles et al., 2017). At
present, 5–12 fish species have been identified in this area, and
the native Dormitator latifrons (Richardson) and invaders
Oreochromis niloticus L. and O. mossambicus (Peters) constitute
the base of artisanal fisheries and aquaculture activities, which are
the means of livelihood for the inhabitants of the surrounding area
(Montilla-Pacheco, 2017; Noles et al., 2017). Both species are highly
vulnerable to microplastic pollution because they are considered
omnivorous and filter-feeding (Basto-Rosales et al., 2020; Vega-
Villasante et al., 2021).

Methods

Sampling procedure

Surface water samples to analyze both zooplankton and SSMPs
were collected at 16 sampling points from the wetland on 23 April

2019 (Figure 1). For quantitative plankton samples, 40 L of surface
water collected using a metal bucket at a depth of about 20 cm was
filtered through a 65-μm plankton net. All the samples were
preserved in glass bottles with metal lips filled with Lugol’s solution.

In the laboratory, the samples were fixed with a formalin
solution (4% final concentration) and filtered through a 5-mm
metal sieve to remove larger particles. The contamination risks
were avoided as far as possible during the laboratory procedures
following suggestions from Vasilopoulou et al. (2021), such as
cleaning all the materials used with bi-distilled water (i.e., glass
pipettes, glass–metal counting cameras, and steel needles) and by
working under controlled conditions while wearing cotton lab coats
and nitrile gloves. The samples were covered under a glass camera
(inverted glass aquariums), except during microscopic investigation.
Airborne contamination was not estimated.

Temperature (T, oC), pH, total suspended solids (TSSs, mg l−1),
and conductivity (Cond, μS.cm−1) of water collected using a bucket
were measured simultaneously with plankton collection using a
multiparameter portable probe (PCSTestr 35) without cables. Site
sampling depth (D, m) was measured using a marked rod. Water
transparency (t, m) was estimated using a Secchi disk (Cole, 1994).

Identification and counting

To separate the SSMPs from zooplankton, samples in a formalin
solution with 4% final concentration were sedimented for 24 h in 1-L
graduated glass cylinders and washed out to prevent particles from
sticking to the side and top of the cylinder under a glass camera to

FIGURE 1
Location of La Segua wetland and sampling sites.
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pervert air contamination before microscopic analysis. The top and
bottom portions were observed in a Sedwick–Rafter chamber under
an Olympus CX photo-microscope at 40 ×magnification with a light
background. These represent particles with less densities.

SSMPs were picked using a glass pipette and were categorized into
fragments, fibers (monofilament line), films, and pellets, according to
Li et al. (2014). SSMPs with slender and greatly elongated shapes were
defined as fibers; SSMPs with a spherical shape were defined as pellets;
SSMPs with a small and very thin layer were defined as films; and an
isolated or incomplete part of a large plastic was defined as a fragment.
No color or size analyses were performed.

Zooplankton individuals were picked up from the bottom
portion using a glass pipette and were identified under the
microscope only to group into levels (i.e., rotifers and copepod
nauplius), while the other particles were not counted. SSMPs and
zooplankton were counted separately. In both cases, as many
cameras as possible were used to reach a sufficient total count of
300 or more SSMPs or zooplanktons.

Data analysis

For each sample, the occurrence of zooplankton and SSMPs,
concentration (particles/liter) of SSMP categories and abundance of
zooplankton groups (individuals/liter), and the ratio of SSMPs to
zooplankton were estimated using the principle of the ratio SMPs/
zooplankton (Moore et al., 2001; 2002; Collignon et al., 2014).

Pearson’s correlation analysis (r) was performed to assess the
relations between zooplankton abundance, rotifer abundance,
nauplius abundance, total concentration of SSMPs, concentration
of each category of SSMPs, and each environmental variable. The
analyses were carried out in R version 3.5.1 (R Core Team, 2018).

Results

At the sampling time, the water depth varied from 1.0 to 2.1 m.
Higher conductivity and total suspended solids were found in sites
located in the middle of the wetland. The water transparency
remained below 0.8 m in all sampled points (Table 1).

SSMPs were found in all sites (Figure 2). The concentration of
these particles ranged from 313 to 490 particles/liter, showing small
variations throughout the wetland (Figure 2) with an average value
of 384.3 ± 52.0 particles/liter. The highest concentration of SSMPs
was recorded at points located near the west coast and in the middle
of the wetland (Figure 2).

The categories of SSMPs in surface water are shown in Figure 3.
These categories vary between 1 and 4, with an average value of 2.6 ±
0.9 categories of SSMPs per sample. Fragments were the most
abundant and frequent category, followed by fibers and films,
while pellets were the least represented. Selected photographs of
fragments and fibers are shown in Supplementary Material S1.

Zooplankton was present in 68.8% of the samples (Figure 2) and
was represented only by rotifers and copepod nauplii. Zooplankton

TABLE 1 Summary of limnological variables in the La Segua wetland as on 23 April 2019.

Station Water transparency (m) pH Conductivity (μS / cm) TSS (mg/L) Temperature (°C)

1 0.63 7.47 213 1.09 30.00

2 0.68 7.67 224 1.09 32.60

3 0.63 7.61 222 1.11 32.10

4 0.52 7.65 198 0.90 31.50

5 0.63 7.89 219 1.12 31.20

6 0.75 7.86 222 1.07 31.90

7 0.66 7.76 232 1.16 32.70

8 0.50 7.92 232 1.16 31.10

9 7.97 222 1.04 32.10

10 0.60 7.82 228 1.14 32.20

11 0.60 8.00 209 1.12 32.60

12 0.62 8.03 232 1.16 31.00

13 7.91 224 1.13 32.50

14 7.77 225 1.13 32.90

15 7.69 225 1.11 31.70

16 7.70 229 1.01 32.20

Mean 0.6 7.8 220 1.1 31.9

SD 0.1 0.2 0.1 0.1 0.8
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abundance ranged from 1 to 1,182 individuals/liter, and the number
of taxa was between 1 and 8. The highest abundance and number of
taxa were observed toward the east coast and in the middle zone of
the wetland (Figure 2).

The SSMP-to-zooplankton ratio varied between 0.3 and
441 particles/individuals (Figure 2), except in one sampling site,
where the concentration of SSMPs markedly exceeded the
abundance of zooplankton. The correlation between SSMP
concentration, the concentration of each category of SSMPs,
zooplankton abundance and rotifers and nauplius abundance,
and each environmental variable was not significant (p>0.44).

Discussion

Although the procedures used included accuracy improvements
related to the use of volumetric samples and not nets, where the
determination of the filtered volume is usually inaccurate (Moore
et al., 2001; Collignon et al., 2012; 2014; Frias et al., 2014; Gorokhova,
2015; Panti et al., 2015; Di Mauro et al., 2017; Vasilopoulou et al.,
2021), the results found can be considered an underestimate of the
concentrations of SSMPs in the wetland. This is because we did not
use filtration, which would have allowed the identification of smaller
particles not detectable by optical microscopy (Lindeque et al., 2020),
and only less-dense particles were counted. However, we also did not
use acid digestion or “hot needle test,” to avoid confusion between
plastic particles and other types of particles, and other analytical
techniques that would identify microplastics (for example, SEM/EDS)

FIGURE 2
Horizontal variations of the ratio of SSMPs/zooplankton (i) in the La Segua wetland.

FIGURE 3
Horizontal variations of pellets, films, fragments, and fibers in
sampling sites of the La Segua wetland.
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such as infrared (IR), Raman spectroscopy, and pyrolysis–gas
chromatography with mass spectrometry (Py-GCMS) (Cowger
et al., 2020; Primpke et al., 2020). Therefore, overestimation values
should also be expected by using only visual examination by
microscopy (Kotar et al., 2022).

Taking these biases into account, our results showed the occurrence
of SSMPs in a range of concentrations (>300 particles/liter) and
indicated that SSMPs may highly pollute La Segua. The recorded
concentrations of microplastics in freshwater systems worldwide are
less than 1–270 particles/liter (e.g., Horton et al., 2017; Wu et al., 2019;
Ríos Mendoza, 2020). Because one of the greatest difficulties that
currently exist is the heterogeneity of the methods used for the
collection and identification of microplastics, the results of the
concentration of microplastics must be compared with great care.

The results showing the predominance of fragments suggested
that urban population activities are the main source of SSMP
pollution in this water body (Kumar et al., 2021). Fragments are
secondary particles derived from the degradation of larger plastic
products (Wu et al., 2019) by photodegradation (UV radiation) and
physical abrasion, which produces small particles that fall into the
micro- or even nanoparticle size ranges (Ríos Mendoza, 2020).
Origins of fragments include the breakdown of plastic bags,
bottles, cups, food wraps, plastic films used to cover agricultural
soil and crops, foam insulation materials, and automobile tires (Duis
& Coors, 2016; Lambert &Wagner, 2018; RíosMendoza, 2020). This
microplastic category has been linked to waste from regions with
high urban population densities (Faure et al., 2012; Tang et al., 2021)
and low urban population densities, where waste management is
incipient or non-existent (Free et al., 2014; Tang et al., 2021). In the
case of the towns of Chone and Tosagua, located upriver of La Segua
wetland, populations are relatively low, but there are only sanitary
landfills and open dumps as solid waste management treatments.
One of the environmental problems threatening the La Segua
wetland ecosystem is the dumping of solid waste (Smith &
Maltby, 2003). Government reports indicate that 70% of the
houses of the four communities that reside on the margins of the
wetland burn or bury the garbage, while the remaining 30% deposit
it in landfills. According to He et al. (2019) and Golwala and Zhang
(2021), landfills are the major repository and disseminators of
microplastics, including primary and secondary microplastics.
Therefore, around La Segua, sources of plastic contamination can
be exacerbated. Plastics may be dragged into the wetland mainly by
runoff waters and tributary rivers and wind and are deposited and
degraded in the wetland.

Fishery activities in the area may also produce some significant
sources of plastic debris, such as polystyrene buoys, nylon ropes, and
fragments of lines or gill nets (Cardozo et al., 2018; Xue et al., 2020;
Zhan et al., 2021). Similarly, in La Segua, nylon ropes and buoys are
used extensively in aquaculture activities and can be lost,
inappropriately discarded, or damaged during use. Therefore,
categories of SSMPs found in the water surface largely reflect the
reality of local human activity around La Segua wetland.

These results of the occurrence and identification of sources of
microplastics demonstrated the attributes of the present empirical
assessment as a suitable and relatively simple approach and a first step
to assess microplastics floating in shallow water bodies, especially in
regions with poor research funds, no modern equipment, and limited
specialized personnel, as in most tropical countries (Robarts &

Zohary, 2018; Orova-Návar et al., 2022). Recent studies by Kotar
et al. (2022) indicated that despite the limitations in characterizing
microplastics of smaller sizes (less than 20 µm), the visualization by
microscopy alone can result in relatively good quantification and
characterization of larger-sized microplastics. The microscopical
characterization of microplastics in combination with a ratio of
zooplankton/SSMPs is a relatively inexpensive, reliable, and widely
accessible method. In addition, the method can provide estimates of
SSMP concentration, size, color, and morphology, indicate about the
risk to wildlife (Bucci & Rochman, 2022), and provide information on
source apportionment (Zhu et al., 2021).

The high SSMPs/zooplankton ratio of only SSMP particles in
some sampled sites suggested that fishes and other filter or
suspension feeders in the food web could be more likely to feed
on suspended microplastics than natural planktonic prey around the
whole wetland. The small size of microplastic particles and their
appealing coloration and buoyancy allow for easy picking and
ingestion by fish (Jovanović, 2017; Kumar et al., 2020). Fish are
visual predators and are more likely to confuse particles and prey
items. Laboratory experiments indicate that fish larvae feed
preferentially on plastic particles when exposed to microplastics
and natural food (De Sá et al., 2015).

Aquatic invertebrates such as protozoans, rotifers, cladocerans,
and mussels, being suspension and filter feeders, are assumed to be
especially prone to microplastic ingestion, as shown in numerous
studies (Scherer et al., 2018; Wong et al., 2020). Moreover, both fish
and invertebrates may unintentionally ingest microplastics if
microplastics are already present inside or adhered to their prey
(Jovanović, 2017; Wong et al., 2020). Particularly, D. latifrons and
tilapia species, found in La Segua are considered omnivorous and
filter-feeding (Basto-Rosales et al., 2020; Vega-Villasante et al.,
2021). These conditions do not allow them to have optical
selectivity on their prey, suggesting that microplastic ingestion is
predominantly accidental. Filter-feeding fishes are generally
believed to be more susceptible to microplastic ingestion due to
their unselective feeding strategy (Wesch et al., 2016; Mizraji et al.,
2017). Additionally, omnivorous fish, because they consume a wide
variety of resources, have increased chances of intaking
microplastics actively or accidentally (Mizraji et al., 2017).
Therefore, the SSMP ingestion would be expected in these fish
populations, as recently found by Isea et al. (2022). These authors
reported the stomach contents of D. latifrons specimens collected in
La Segua and found a frequency of occurrence (FO) of plastics of
50% and a plastic load (PL) between 5 and 55 particles per
individual. They also reported that 97% of plastic particles were
microplastics (less than 5.0 mm) and 3% were larger. Similarly, high
values of FO and PL have been found in tilapia specimens (Acosta,
unpublished data.)

According to Parker et al. (2021), controlled microplastic exposure
studies highlight various effects on fish physiology, biochemistry, and
behavior that are often complex, unpredictable, species-specific, and non-
linear concerning dose–response relationships. Egestion is typically rapid
and effective, although particles of a particular shape and/or size may
remain or translocate across the intestinal wall to other organs via blood.

In the La Segua wetland, microplastic pollution may be an
evident threat to the stability and efficiency of food webs
involving filter and suspension feeders as trophic components. It
may negatively affect fisheries and aquaculture activities and other
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ecosystem services. According to Markic et al. (2019), the impact of
the ingestion of plastics is due to physical effects, toxicological
effects, and the combination of these with other local stressors.
Various types of pollutants in water, such as antibiotics (Quan et al.,
2019), polycyclic aromatic hydrocarbons (Zhang S. et al., 2019;
Zhang P. et al., 2019; Zhang W. et al., 2019), heavy metals (Tang N.
et al., 2020; Tang S. et al., 2020; Dong et al., 2020; Guo et al., 2020)
and organic compounds (Tang et al., 2021), and bacteria and viruses
(Rodrigues et al., 2019; Fred-Ahmadu et al., 2020; Santos-Echeandía
et al., 2020), are adsorbed by microplastics in water. The La Segua
wetland faces complex environmental problems related to multiple
local stressors, such as the use of pesticides, fertilizers, and the
absence of solid and water waste management (Montilla-Pacheco,
2017; Noles et al., 2017). Microplastics add to the potential health
risk posed by these environmental conditions to human consumers
and to other components of the aquatic food web (Huang et al.,
2021; Rahman et al., 2021).

The results, as a first step to understanding microplastic pollution
and its threat to food webs in La Segua, indicated that high microplastic
pollution associated with anthropogenic activities may be affecting food
webs. However, additional and more complete studies are needed: a.
Visual examination of microplastics must be complemented with other
protocols to increase data accuracy, such as chemical analyses (Kotar
et al., 2022) and other procedures that allow the inclusion of particles
smaller than 65 μm, microplastic particles of higher density, and their
distinction from other types of particles. b. Size and color must be
examined to understand their origins and pathways. c. Spatial variation
must be analyzed because they may be affected by physical watershed
characteristics such as slope and elevation (Talbot & Chang, 2022;
Talbot et al., 2022). d. Temporal variables of influence include wind,
precipitation, and stormwater runoff, and water flow/discharge must be
estimated (Talbot & Chang, 2022; Talbot et al., 2022). Both c and d
would allow us to explain the variations in the present study’s horizontal
distribution and identify the pathways in the wetland. e. The presence of
plastics in sediments and different components of the aquatic biota
must be assessed (Bhutto & You, 2022; Yıldız et al., 2022).
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