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Lake Ulansuhai, a typical shallow lake in an arid area that is economically and
ecologically important along the Yellow River, is currently eutrophic. Long-term
(2010–2020) data on chlorophyll-a, nutrient, and environmental factors were
obtained from three Lake Ulansuhai monitoring stations. The temporal and spatial
distribution characteristics of Chl-a were analyzed. Additionally, a hybrid
evolutionary algorithm was established to simulate and predict Chl-a, and
sensitivity analysis revealed the interaction between environmental factors and
eutrophication. The results indicated that (1) the seasonal variation of
eutrophication showed an obvious trend of spring > summer > autumn > winter,
and the concentration of Chl-a in the inlet was significantly higher than that in the
outlet; (2) The inlet, center, and outlet of Ulansuhai Lake are satisfactorily affected by
HEA in the best suited method. The fitting coefficients (R2) of the optimal models
were 0.58, 0.59, and 0.62 for the threemonitoring stations, and the rootmean square
errors (RMSE) were 3.89, 3.21, and 3.56, respectively; (3) under certain range and
threshold conditions, Chl-a increased with the increase of permanganate index,
water temperature, dissolved oxygen concentration, and ammonia nitrogen
concentration, but decreased with the increase of water depth, Secchi disk
depth, pH, and fluoride concentration. The results indicate that the HEA can
simulate and predict the dynamics of Chl-a, and identify and quantify the
relationships between eutrophication and the threshold data. The research results
provide theoretical basis and technical support for the prediction and have great
significance for the improvement of water quality and environmental protection in
arid and semi-arid inland lakes.
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1 Introduction

Eutrophication is one of the most challenging environmental
problems in freshwater ecosystems around the world (Huisman
et al., 2018; Li and Sang, 2021). In 2018, lakes and reservoirs in
China were under severe threat from harmful algal blooms, which
reached 775.4 km2 (Huang et al., 2020). Phytoplankton is an
important primary producer in lake ecosystems, and changes in its
composition and biomass will directly affect the structure, function,
and stability of aquatic ecosystems. Chlorophyll-a (Chl-a) as an
indicator of phytoplankton abundance and biomass amongst
primary food producers in aquatic ecosystems can indicate the
degree of lake eutrophication (Padisák et al., 2006). Therefore,
measuring and predicting the levels of Chl-a and understanding
the impact of environmental drivers on Chl-a are vital part of
monitoring lake water quality and lake management programs.
Modeling of Chl-a level in lakes is considered as one of the most
important analytical tool for biological and ecological investigations
(Di Toro et al., 1971; Tufffford and McKeller, 1999).

As the degree of lake eutrophication and the relationships between
environmental factors are often complicated, researchers have used
numerous non-linear methods (Recknagel et al., 1997). The complex
non-linear dynamics of phytoplankton which is closely related to lake
eutrophication and environmental factors can be accurately simulated
using neural interpretation diagrams and the connection weight
method in the artificial neural network model (Recknagel, 2001;
Shi et al., 2020). The non-linear response relationship between Chl-
a and environmental factors can be evaluated using generalized
additive models (GAMs) (Quan et al., 2020). It is also of practical
significance to establish a random forest model to evaluate the
predictability of Chl-a and compare the relative importance of
driving factors at different time scales (Shi et al., 2021). However,
due to the long time series of water quality in Ulansuhai and the
complex environmental changes in the watershed, we chose to use
evolutionary simulation and genetic selection to determine the
relationship between Chl-a concentration and other corresponding
factors. Since pioneering work on evolutionary algorithms
applications for ecological modelling by Whigham and Recknagel
(2001), Cao et al. (2006) have developed the hybrid evolutionary
algorithm (HEA) that is now applied for data-driven modelling of
phytoplankton in lakes and rivers worldwide (Chan et al., 2007; Kim
et al., 2007). The HEA model can use genetic evolutionary calculation
methods to inductively reason and predict multivariate non-linear
data. And the temporal changes of the data are used to reveal the
ecological relationship, and the threshold of the data is calculated.
Finally, both explanatory and predictive validity of the resulting are
tested by comparisons between predicted and measured data as well as
sensitivity analyses. The HEA model has a high level of fitting and
prediction and has been successfully applied in the data-driven
modeling of cyanobacteria blooms in lakes and rivers around the
world (Recknagel et al., 2006b; Guallar et al., 2016; Kim. et al., 2019;
Recknagel et al., 2017).

Lake Ulansuhai is the biggest lake along the Yellow River, which
plays a unique ecological and environmental role in maintaining the
ecosystem services of the whole watershed (Chan et al., 2007).
However, this lake lies on the Hetao Irrigation District and is part
of this largest irrigation district along the Yellow River. In recent years,
the massive non-point agricultural waste water empties into the lake,
resulting in increasingly serious eutrophication in Lake Ulansuhai

(Koebbing et al., 2014), which then flows into the Yellow River and
damages the aquatic ecosystem of the Yellow River.

To explore the driving effects of water quality physicochemical
parameters on phytoplankton biomass in shallow lakes of arid area,
water quality samples from Ulansuhai, a shallow lake in arid areas of
Inner Mongolia, China, were collected and analyzed. We assumed that
phytoplankton biomass was primarily affected by single or multiple
water quality physicochemical parameters. Moreover, there is a
complex non-linear relationship between them. This study aimed
to: (1) study the temporal and spatial distribution characteristics of
Chl-a concentration in Ulansuhai; (2) explore the ecological threshold
and quantitative relationship model of water quality physicochemical
parameters on Chl-a concentration in Ulansuhai; and (3) assess the
promoting and inhibiting effects of water quality physicochemical
parameters on Chl-a concentration through the sensitivity analysis of
HEA. This study can predict the occurrence of algal blooms and
provide data support for eutrophication management in Lake
Ulansuhai. In the same time, it is of great significance to reveal the
main controlling factors and seasonal variation of eutrophication in
Lake Ulansuhai for water quality improvement, eutrophication
management, and environmental protection in the Yellow River Basin.

2 Materials and methods

2.1 Study area and data sets

Lake Ulansuhai (40°36′–41°03′N, 108°43′–108°57′E) is situated in
the northwest part of Inner Mongolia (Figure 1), with a surface area of
293 km2. It is one of the eight largest freshwater lakes in China (Sun
et al., 2006), as well as the largest freshwater lake region of its latitude.
In recent years, with the development of industry and agriculture, the
water quality of Lake Ulansuhai has deteriorated (Han et al., 2020). It
has been in the eutrophication state, which has evolved into a shallow
lake characterized by algal overgrowth. The watershed boundaries was
extracted from ASTER GDEM elevation data from remote sensing
image in the study area by ArcGIS10.2.

The data in this study were obtained from environmental
monitoring stations, including the time series from 2010 to 2020 of
three monitoring stations at the inlet, center and outlet of the lake.
These data contained average monthly water quality monitoring data.
The spatial distribution of each monitoring point had a good
correspondence with the water flow pattern, water depth, water
planting cover, and the spatial positions of the inlet and outlet
points of the water flow in the lake. Table 1 summarises
limnological variables of the 11-year period that has been utilized
for modeling at the three monitoring sites. Because the interpolation
method does not affect the model results (Cao et al., 2014), for the sake
of simplicity, a linear interpolation method was used for the
limnological properties data and the daily input data, and obtain
the daily interpolation data. To allow for 7-day-ahead forecasting, the
interpolated daily input data were shifted by 7 days against the daily
output data of three monitoring sites.

2.2 Modeling framework

HEA can discover rule sets from ecological time series data
through genetic programming and optimize the parameters of a
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FIGURE 1
Geographical location of monitoring points in Lake Ulansuhai.

TABLE 1 Limnological data of Lake Ulansuhai measured from 2010 to 2020.

Limnological variables Unit Lake inlet Lake center Lake outlet

Mean/Min/Max

Water temperature (WT) °C 14.31/0.50/28.50 13.89/0.30/29.8 14.04/0.20/27.6

Water depth (WD) m 1.86/0.50/2.80 2.39/1.40/4.10 2.35/0.50/3.80

pH - 8.13/6.54/9.27 8.23/7.20/9.01 8.23/7.23/8.96

Electrical conductivity (EC) ms/m 325.04/91.30/995.50 397.79/103.34/573.70 457.80/113.90/647.50

Secchi depth cm 46.21/20.10/103.00 80.00/50.00/173.00 79.65/15.20/175.00

Dissolved oxygen (DO) mg/L 8.13/1.30/15.70 7.18/1.30/11.40 6.91/0.80/11.80

Permanganate index (CODMn) mg/L 7.72/2.00/28.50 7.75/2.00/14.10 7.82/1.70/13.90

Biochemical Oxygen Demand (BOD5) mg/L 6.07/0.60/16.60 5.30/1.01/13.20 5.89/0.50/11.90

Chemical Oxygen Demand (COD) mg/L 36.84/10.00/97.00 35.20/7.00/57 40.87/17.00/86.10

Total nitrogen (TN) mg/L 4.50/0.31/11.10 1.67/0.36/3.62 1.91/0.22/5.69

Ammonia nitrogen (NH4_N) mg/L 2.02/0.01/8.25 0.31/0.05/0.84 0.32/0.06/1.78

Total phosphorous (TP) mg/L 0.22/0.02/0.62 0.05/0.01/0.62 0.06/0.01/0.18

Fluoride (F) mg/L 0.73/0.19/1.41 0.75/0.26/1.41 0.76/0.26/1.37

Chlorophyll-a (Chl-a) mg/m3 16.35/0.23/32.2 6.71/0.70/12.36 7.27/0.12/13.96
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rule set by the genetic algorithm. The parameters of the model were
optimized by the hill climbing (HC) method. HC originally is a local
search technique which starts with a random solution, and iteratively
makes small changes to the solution and each time improving it a little.
When the algorithm cannot see any improvement anymore, it will
terminates. Finally, the “IF-THEN-ELSE” rule sets were constructed
according to the model with the highest fitting degree, where “IF” is
the ecological threshold of the model. These rule sets provided high
transparency in the ecological driving forces and relationships driving
Chl-a concentration. In addition, HEA can automatically perform the
sensitivity analysis for the input variables of each discovered model. It
computes the output trajectories for each input range (mean ± SD)
separately by keeping the average value of the input variables constant.
Moreover, the resulting sensitivity curve outputs the visual trace as a
percentage (0%–100%) within their range of each input.

Numerous studies have demonstrated that HEA can discover rule
sets that provide good predictions of unseen data and represent causal
relationships between physical and chemical variables and lake
eutrophication (Cao et al., 2006; Cao et al., 2014; Kim. et al., 2019).
Figure 2 shows a conceptual diagram of HEA based on water-quality
data as an input and Chl-a concentration as an output.

We define the root mean square error (RMSE) as the fitness
function:

Fitness �
�������������
1
m
∑m
i�1

ŷi − yi( )2,√

where m is the number of data points, and yi ŷi are the i th observed
value and the i th predicted value of the output variable, respectively.
In addition to the RMSE of each rule sets, the total R2 value between
the predicted and measured values of a whole data set was also
calculated to measure the accuracy of the algorithm.

The whole data were divided into training data and test data. To
improve the validity and stability of the model, the bootstrap method
was used to select the training and testing data sets randomly based on
a predefined division percentage (75% in this study). That is, during

each run, the computer randomly selected 75% of the total data as
training data and the remaining data as test data. Using this approach,
a wider variety of models with greater robustness be obtained and the
optimal model can be evaluated based on the validation results on the
whole data set.

From 2010 to 2020, the daily interpolation values of water
temperature (WT), water depth (WD), pH, Secchi disk depth,
permanganate index (CODMn), fluoride concentration (F),
ammonia nitrogen concentration (NH4_N), dissolved oxygen
concentration (DO), and total phosphorus (TP) as the input
variables as well as Chl-a concentration as the output variable, the
optimal fitting prediction model of Chl-a in Lake Ulansuhai was
established, and the content of Chl-a in Lake Ulansuhai was simulated
and predicted. Sixty models were evolved by HEA to explore the Chl-a
concentration at each monitoring point based on repeated bootstrap
runs. Finally, the prediction model with the best fitting degree was
determined by the “IF-THEN-ELSE” single rule set of HEA through
multiple linear methods based on crossover and recombination. HC
parameter settings of HEA for structure optimization were popsize =
100, maximum tree depth = 4, andmaximum number of generations =
80 by using the programming language C++. The selection of these
hyperparameters was based on repeated training and reference to
previous studies (Cao et al., 2013; Cao et al., 2014).

3 Results

3.1 Temporal and spatial distribution of Chl-a
concentration in Lake Ulansuhai

From 2010 to 2020, according to the evaluation standard of lake
eutrophication in China (Shu, 1990), the entire lake was in a moderate
eutrophication state, and the concentration of Chl-a exceeded the
standard. The spatiotemporal distribution and the significant
differences in Chl-a concentration from 2010 to 2020 in Lake
Ulansuhai were retrieved, as showed in Figure 3.

FFIGURE 2
Conceptual diagram of the hybrid evolutionary algorithm (HEA) for evolving the IF-THEN-ELSE rule models.
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The Chl-a concentration in Lake Ulansuhai peaked in 2010 and
2017. During these 2 years, the water quality of the lake was in a state
of eutrophication. The concentration of Chl-a in the other years was
kept at about 10 mg/m3, which was considered a state of moderate
eutrophication. From the perspective of the season, Chl-a
concentration showed an obvious trend of spring > summer >
autumn > winter, but there was no significant difference.

In terms of spatial distribution characteristics, the Chl-a of the lake
inlet was higher than that in the center of the lake and that of the lake
outlet, and the difference was significant, except for during winter
(ANOVA, p < 0.05).

3.2 Establishment and optimization of
simulation and prediction model for Chl-a
concentration in Lake Ulansuhai

3.2.1 In the lake inlet
At the lake inlet, the input variables of the best fitting and

prediction model included CODMn, TP, WD, F, and Secchi disk

depth. The fitting degree of the lake inlet model was high, and its
R2 = 0.58, RMSE = 3.89. The concentration of Chl-a fluctuated, mostly
around 20 mg/m3. From 2010 to 2020, it showed a decreasing trend
year by year, and the decreasing speed gradually accelerated. As can be
seen from the residual plot, the model fluctuated greatly from 2016 to
2018 (Figure 4).

According to fitting formulas below, the ecological threshold of
Chl-a concentration change in the lake inlet area was
CODMn<8.02 mg/L (formula (1)). When CODMn was less than
8.02 mg/L, the concentration of Chl-a was related to CODMn, TP,
andWD. The concentration of Chl-a was directly proportional to WD
and CODMn and inversely proportional to TP (formula (2)). When
CODMn was greater than 8.02 mg/L, the concentration of Chl-a was
related to WD, Secchi disk depth, F, and TP (formula (3)). Chl-a
concentration was inversely proportional to the four variables:

IF CODMn < 8.02( ) (1)
Then

Chl − a � 2.05 + 2.51 · CODMn − TP · 18.34 −WD( )( ) (2)

FIGURE 3
(A) Interannual variation of chlorophyll-a (Chl-a) concentration from 2010 to 2020. (B) Significant differences in the temporal and spatial distribution of
Chl-a in Lake Ulansuhai. Valuesmarkedwith different lowercase letters differ significantly at p < 0.05, after using Duncan’s tests for post hoc comparisons. The
non-significant differences are not marked by any letters.

FIGURE 4
Diagram of chlorophyll-a (Chl-a) concentration prediction model
and residual at the lake inlet.

FIGURE 5
Diagram of chlorophyll-a (Chl-a) concentration prediction model
and residual in the lake center.
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Else

Chl − a � 2.05 + 1463

Secchi · ln WD( )WD · F + TP( ) (3)

3.2.2 In the lake center
In the lake center, the input variables for the fitting model of Chl-a

concentration were Secchi disk depth, NH4_N, CODMn, F, and WT.
The model fitting coefficient was R2 = 0.59, RMSE = 3.21. During
2010–2020, the concentration of Chl-a remained basically stable, and
the overall concentration remained at about 7 mg/m3. The model
residuals from 2010 to 2020 were small, indicating a high degree of
fitting (Figure 5).

According to fitting formulas below, the ecological threshold of
Chl-a concentration change in the lake center was determined by the
concentration of Secchi disk depth. When Secchi ≥64.71 cm (formula
(4)), Chl-a concentration was calculated by the THEN branch
(formula (5)), which was proportional to NH4_N and CODMn.
Conversely, Chl-a concentration was calculated by the ELSE branch
(formula (6)), which was proportional to WT and inversely
proportional to F:

IF Secchi> � 64.71( ) (4)
Then

Chl − a � 4.81 + 29.3 · e2NH4_N−5.17 + eCODMN−15.91( ) (5)
Else

Chl − a � 1 + 29.3 · e−41.82F + 0.02WT( ) (6)

3.2.3 In the lake outlet
In the outlet of the lake, the input variables of the prediction model

for Chl-a concentration were CODMn, pH, DO, Secchi, WT, and F,
and the model fitting coefficient R2 = 0.62, RMSE = 3.56. From 2010 to
2020, the concentration of Chl-a in 2017 was significantly higher than
that in other years, with the maximum value reaching 76 mg/m3. In
other years, the concentration of Chl-a remained at about 7 mg/m3

and showed an increasing trend. It can be seen from the residual figure

that there is a large residual between the individual fitted values and
the measured values from 2016 to 2018 (Figure 6).

According to fitting formulas below, the ecological threshold of
Chl-a concentration in the outlet of Lake Ulansuhai was determined
by F concentration. When F > 0.68 mg/L (formula (7)), Chl-a
concentration was calculated by THEN branch (formula (8)),
which was inversely proportional to F and directly proportional to
CODMn. Instead (formula (9)), it was proportional to the DO and
Secchi and inversely proportional to the pH and WT in the water:

IF F> 0.68( ) (7)
Then

Chl − a � 1.21 + 65.1 · e 2.84· pH
F−CODMn( )( )

(8)
Else

Chl − a �1.21 + 65.12 · 46.3 · DO + Secchi −WT − 225.7( )/
e 2·pH−9.1( ) (9)

3.3 Sensitivity analysis of chl-a concentration
simulation and prediction models in Lake
Ulansuhai

3.3.1 In the lake inlet
Sensitivity analysis of the HEA model in Lake Ulansuhai inlet

showed that CODMn, TP, WD, F, and Secchi disk depth all affected
Chl-a concentration, while IF (CODMn<8.02 mg/L) was determined
by the THEN branch ecological relationship. Within a certain range,
with the increase of the input variable CODMn, the concentration of
Chl-a also increased, and with the increase of input variable TP, the
concentration of Chl-a gradually decreased, but the changes in Chl-a
concentration and WD were not obvious. Conversely, determined by
the ELSE branch, Chl-a concentration was inversely proportional to
WD, Secchi, and F, and was not significantly correlated with TP
(Figure 7).

3.3.2 In the lake center
Sensitivity analysis of the HEA model on the center of Lake

Ulansuhai showed that CODMn, NH4_N, WT, and F all affected
the concentration of Chl-a, while IF (Secchi ≥64.71 cm) was
determined by the ecological relationship of the THEN branch.
Within a certain range, with the increase of CODMn and NH4_N
input, the concentration of Chl-a also increased. On the contrary, the
concentration of Chl-a was proportional to WT as measured by the
ELSE branch, and did not change significantly with the concentration
of F (Figure 8).

3.3.3 In the lake outlet
The sensitivity analysis of the HEA model on the outlet of Lake

Ulansuhai showed that CODMn, pH, WT, Secchi, and DO all affected
the concentration of Chl-a, and when the ecological threshold F >
0.68 mg/L, the concentration of Chl-a was determined by the THEN
branch ecological relationship. In a certain range, with the increase of
CODMn input, the concentration of Chl-a also increased. But with the
increase of pH and F, the Chl-a concentration gradually decreased. In
contrast, determined by the ELSE branch, the Chl-a concentration was

FIGURE 6
Diagram of chlorophyll-a (Chl-a) concentration prediction model
and residual in the lake outlet.
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FIGURE 7
Sensitivity analysis of the THEN branch and ELSE branch in the lake inlet. The THEN branch on the left, and the ELSE branch on the right.

FIGURE 8
Sensitivity analysis of THEN branch and ELSE branch in the lake center. The THEN branch on the left; the ELSE branch on the right.

FIGURE 9
Sensitivity analysis of the THEN branch and ELSE branch in the lake outlet. The THEN branch is on the left, and the ELSE branch is on the right.
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directly proportional to Secchi and DO and inversely proportional to
the pH, but the change of WT had no significant effect on the Chl-a
concentration (Figure 9).

4 Discussion

4.1 Temporal and spatial distribution of Chl-a
in Lake Ulansuhai

The seasonal variation trend of Chl-a concentration in Lake
Ulansuhai showed the highest in spring, followed by summer, and
lower in autumn and winter. The causes of this trend were mainly
related to the inflow load, precipitation, and the growth cycle of
aquatic plants and algae. Water temperature rose in spring, and the
decomposition of plant residues in the lake in addition to the frequent
material exchange between the sediment and water column led to
serious secondary pollution. Moreover, there were more sandstorms in
spring, which accelerated water exchange (Guo et al., 2015). In
summer, vegetation growth in the lake was stable and the biomass
of phytoplankton increased rapidly, which maintained the
concentration of Chl-a at a high level. In early autumn, many
submerged plants grew in the surrounding shallow water and
lakeshore buffer zones. These plants could purify the water quality
and reduce the eutrophication degree gradually. This research result
was consistent with the fitting result of the multiple linear regression
model of the eutrophication state of Lake Ulansuhai established in
previous research (Du et al., 2019), and was consistent with the kriging
spatial interpolation of eutrophication index conducted in an earlier
study (Li et al., 2011) on the spatiotemporal variation rule of the
eutrophication of Lake Ulansuhai.

From the perspective of spatial distribution, the concentration of
Chl-a in Lake Ulansuhai showed significant differences and decreased
gradually from north to south. The concentration in the lake inlet was
significantly higher than that in the lake outlet, reflecting the self-
purification ability of the lake. This research result was consistent with
the analysis conducted byMao andWei (2015) on the spatial variation
law of 20 water quality monitoring points in Lake Ulansuhai. A great
number of nutrients were absorbed, deposited, and degraded by
aquatic plants during the flow from north to south, thus affecting
the reproduction and growth of algae, which resulted in significant
differences in the spatial distribution of Chl-a in Lake Ulansuhai (Luo
and Li, 2011).

4.2 Relationship between chl-a concentration
and environmental factors in Lake Ulansuhai

The seasonal variations of Chl-a were also potentially influenced
by the physicochemical parameters of water, such as WT, DO and
pH (Recknagel et al., 2006a; Jiang et al., 2018). Below certain nutrient
levels, the increase in WT promotes the metabolic rate and cell
division of phytoplankton, and increases productivity. Furthermore,
the concentration of Chl-a was increased and the eutrophication of the
lake was intensified (Kim et al., 2019). ELSE branch of sensitivity
analysis of the HEAmodel in the center of Ulansuhai showed that Chl-
a concentration increased continuously with the increase of WT. This
result is consistent with Cha’s study on Chl-a and WT in four major
rivers in South Korea (Cha et al., 2017). In addition, ELSE branch of

HEA model in the outlet of Ulansuhai showed that DO is significantly
positively correlated with Chl-a, which may have been due to
phytoplankton absorbing CO2 and release O2, leading to an
increase in DO (Cui et al., 2021). At the same time, high
concentration of Chl-a will enhance the photosynthetic capacity of
phytoplankton. Thus increasing the level of DO in the water. This
result is consistent with the results of Jiang’s stepwise regression of
Chl-a in Lake Ulansuhai (Jiang et al., 2019).

Chl-a showed an inhibitory relationships with pH. The pH value
mainly affects the release of carbon, nitrogen, and phosphorus and the
photosynthesis of aquatic plants by influencing the form of the carbon
source and acid-base reactions (He et al., 2008), thus profoundly
affecting the eutrophication process. Meanwhile, an increase in WT
also leads to an increase in pH, which limits the growth of algae. The
results of this study are the same as those of previous studies (Guo
et al., 2015; Mao and Wei, 2015). The alkaline environment is
conducive to algae reproduction and growth (Li et al., 2011). The
HEA model in this study showed that Chl-a has a significant negative
correlation with Secchi disk, because the low transparency of the water
will reduce the photosynthesis of phytoplankton and slow down the
growth rate. On the contrary, the transparency of the water will also be
reduced due to the algal blooms (Deng, 2020). Many studies have
shown that there was a strong correlation between Chl-a
concentration and TP concentration in Lake Ulansuhai (Huang
et al., 2020; Xu et al., 2020). According to the HEA at the entrance
of Ulansuhai, TP showed an obvious decreasing trend with the
increase of Chl-a in the two branches of THEN and ELSE, which
was different from previous research results (Cao et al., 2013). This is
due to the large-scale growth of reeds in Lake Ulansuhai inlet, shallow
water depth and slow flow of lake water, which enable reeds to absorb
nutrients. In addition, the absorption of submerged plants and the self
purification of lake water lead to the gradual reduction of TP
concentration. However, some research results show that TP has
no significant effect on Chl-a (Peng et al., 2021). It can be seen
that the relationship between TP and Chl-a concentration may be
affected by lake morphology, land use types, climate and other factors.
The fluorine element is closely related to human health. However,
there have been few studies on fluorine in lakes in recent years. The
relationship between variations in fluoride concentration and lake
eutrophication needs to be further discussed while considering the
influences of land use, landform, climate, and human activities.

5 Conclusion

HEA method was applied to establish the model of 7-day-ahead
forecasting results of Chl-a and assess the relationship between the
Chl-a and environmental factors of Lake Ulansuhai in this study.
The results showed that the fitting coefficients (R2) of the optimal
models are 0.56, 0.51 and 0.52 for the lake inlet, center and the lake
outlet, respectively. Lake eutrophication is influenced by multiple
environmental factors, and it is a long-term and complex change
process. Under certain range and threshold conditions, Chl-a
concentration increased with the increase of COD, CODMn, TP,
and NH4_N, but decreased with the increase of water depth, Secchi
disk, pH and F. Meanwhile, the concentration of Chl-a showed a
strong spatial distribution difference, and it in the lake inlet it was
significantly higher than that in the lake outlet, reflecting the self-
purification ability of the lake, which indicated that Lake Ulansuhai
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was a grass and algae type lake with obvious spatial heterogeneity.
The temporal distribution of lake eutrophication showed a trend of
spring > summer > autumn > winter, which proved that climate
factors also had a great influence on lake eutrophication. In the
future, the model integration of single rule and multiple rule
combinations can be considered, and the time series length of
data and the number of monitoring points can be increased to
further improve the prediction accuracy of rule sets. At the same
time, the zooplankter data can be increased to reveal the internal
mechanism of eutrophication in Lake Ulansuhai in a more
systematic and comprehensive way.
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