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The wide application of the evapotranspiration (ET) products has deepened our
understanding of thewater, energy and carbon cycles, driving increased interest in
regional and global assessments of their performance. However, evaluating ET
products at a global scale with varying levels of dryness and vegetation greenness
poses challenges due to a relative lack of reference data and potential water
imbalance. Here, we evaluated the performance of eight state-of-the-art ET
products derived from remote sensing, Land Surface Models, and machine
learning methods. Specifically, we assessed their ability to capture ET
magnitude, variability, and trend, using 1,381 global watershed water balance
ET as a baseline. Furthermore, we created aridity and vegetation categories to
investigate performance differences among products under varying
environmental conditions. Our results demonstrate that the spatial and
temporal performances of the ET products were strongly affected by aridity
and vegetation greenness. The poorer performances, such as underestimation
of interannual variability and misjudged trend, tend to occur in abundant humidity
and vegetation. Our findings emphasize the significance of considering aridity and
vegetation greenness into ET product generation, especially in the context of
ongoing global warming and greening. Which hopefully will contribute to the
directional optimizations and effective applications of ET simulations.
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1 Introduction

Terrestrial evapotranspiration (ET), as a pivotal element of such land-atmosphere
interaction processes as what happens to water, carbon, and energy cycle, is constituted
of soil evaporation, vegetation transpiration and water surface evaporation (Gao et al., 2016;
Tramontana et al., 2016; Zhang et al., 2016; Liu et al., 2021). On the land surface, 60% of
precipitation (Pre) is returned to the atmosphere through ET, consuming half of the solar
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energy reaching at the surface (Pan et al., 2020). Consequently, ET
draws significant interest from hydrology to climate disciplines.
Researchers aim to understand the allocation of energy and water at
the land and its feedbacks (Zhang et al., 2017), identify dominant
control factors of ET variation across regions (She et al., 2017; Zhang
et al., 2021), and investigate the impact of ET on the hydrological
cycle under climate change (Gu et al., 2020; Weerasinghe et al.,
2020). Hence, accurate estimation of ET is crucial for various
scientific communities such as hydrology, ecology, climatology,
and agriculture.

There is no denying that existing ET products have considerable
potential to facilitate the estimation of hydrological and energetic
components and their inherent hydroclimatic variability. For
instance, global ET estimates at arbitrary spatial and temporal
scales can be compiled by the conventional flux formula (or
Land Surface Model (LSM)) and the remote sensing observations
about surface temperature, soil moisture and vegetation cover ratio
(Wang et al., 2016; Miao and Wang, 2020). Recently, the boom in
machine learning methods has also facilitated the acquisition of
global ET datasets (Jimenez et al., 2011; Alemohammad et al., 2017;
Jung et al., 2017), such as model tree, random forest, or artificial
neural networks combining observed flux data as inputs. However,
these products simultaneously involve some uncertainties derived
from the model structural flaws, input-datasets errors (e.g.,
meteorological forcing, land surface, and parameters related to
vegetation), model-parameter errors and scale-scaling issues
(Badgley et al., 2015; Michel et al., 2016; Miralles et al., 2016).

However, the existing terrestrial ET products widely vary in
performance and even oppose long-term trends, indicating the non-
negligible uncertainties. For instance, it has been reported that while
potential evapotranspiration (PET) trends have declined over the
last 50 years, ET has shown an increasing trend according to the
evapotranspiration paradox (Mao et al., 2015; Zhang et al., 2015;
Zeng et al., 2018). However, Jung et al. (2010) added that the increase
in global terrestrial ET has ceased or even reversed from 1998 to
2008. Therefore, a comprehensive evaluation of ET products is a
prerequisite for model optimizations and global climate-change
research, especially, on a regional scale.

ET measurements from the Eddy Current Covariance (EC) site
have become typical reference data to validate ET products at the point
scale. Nevertheless, EC systems generally suffer from energy imbalance,
which resulting in ETmeasurement errors. And themismatch in spatial
scale between EC observations and ET estimates (points and grid cells)
is another limitation. Furthermore, EC sites sparsely spread over spaces,
which challenges the evaluation of ET products on a regional scale (Pan
et al., 2020; Xie et al., 2022). An alternative approach is terrestrial water
balance method, i.e., ET calculated from the terrestrial water balance
(observed Pre minus the sum of runoff (Q) and total water storage
change (TWSC)) is applied as the truth value to validate ET products at
the basin scale (Liu et al., 2016). Over the last 2 decades, considerable
attention has focused on the regional scale (US, African, and Qinghai-
Tibetan Plateau), while less on the global scale. For example, Vinukollu
et al. (2011) conducted a global evaluation on the ET estimates derived
from three process-based models (Surface Energy Balance System (Su,
2002), Penman–Monteith–Mu algorithm (Penman, 1948; Mu et al.,
2007), and Priestly–Taylor–Fisher of Jet Propulsion Laboratory
algorithm (Priestley and Taylor, 1972; Fisher et al., 2008) based on
26 basins worldwide, and suggested a root mean squared difference

(RMSD) of 118–194 mm/yr and a deviation of −132 to 53 mm/yr
between the water balance ET and the estimated annual ET.

However, the total water storage change (TWSC) at the annual
scale has often been disregarded in previous studies (Pre directly minus
Q), yet the water budget is unbalanced due to human abstraction, glacial
snowmelt, and other activities affecting water storage (Liu et al., 2016;
Zhong et al., 2020). For example, Zeng et al. (2012) found that the
TWSC cannot be ignored in estimating ET at an annual scale, especially
in regions with relatively low ET values. As a result, the annual reference
ETmust take into account TWSC. Although the Gravity Recovery and
Climate Experiment (GRACE) satellite launched in 2002 offers a
promising future to the TWSC, the limited GRACE satellite data
right now makes it problematic to assess ET products with long-
time data, especially the pre-2002 data, and subsequently difficult to
exploreET trends. Recently, the reconstruction ofGRACE facilitates the
evaluation on long-time series of ET products. More importantly, the
deficiencies exist in the simultaneous evaluation of ET products at the
global scale with various levels of dryness and vegetation greenness. The
ET variation in different regions is closely related to local conditions: ET
is limited by water in dry conditions and by energy in wet conditions;
ET is higher in highly-vegetated areas and lower in sparsely-vegetated
areas.We postulate that these conditions may affect the performance of
ET products. For example, Majozi et al. (2017) assessed the accuracy
and precision of four ET products in two South African ecoregions and
showed that no one ET product performed best in both zones; Ershadi
et al. (2014) found that the performance of European and North
American ET models varied among zones and the models with
relatively high accuracy differed across zones; Kim et al. (2012)
concluded that the Moderate Resolution Imaging Spectrometer
(MODIS) MOD16 ET for Asian woodland cover was more accurate
than for other biomes. Consequently, there is a need to fully understand
the simulation capacity of ET products under heterogeneous conditions
(areas with different levels of aridity and vegetation greenness), which
will be favorable to developing strategies for adapting to the climate
change.

Here, the current study is not to compare the variousmodels, but to
investigate how the performances of eight global ET products vary with
water and energy conditions or vegetation greenness over 1981–2010.
In doing so, the globally distributed 1,381 basins were taken into
consideration and segmented according to their aridity and vegetation
conditions. Then, we illustrated differences in the performance of the
products changing with aridity and vegetation based on the terrestrial
water balance ET. The model performance of the ET product was
evaluated using newly popular metric–Kling-Gupta efficiency (KGE),
considering the magnitude, variability of the ET and its coefficient to
the product. Additionally, the 1981–2010 period was selected, for the
knowledge about this period is relatively lacking and the reconstructed
the total water storage anomaly (TWSA) products are reliable before
2002. Finally, we discussed the potential reasons for our results.

2 Datasets and methods

2.1 Datasets

2.1.1 Runoff (Q) datasets
To comprehensively assess the ET products, the daily Q

observed at 31,133 hydrological stations across the globe were
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collected from 11 databases, as listed in Table 1 (Holmes
et al., 2013; Arsenault et al., 2016; Awange et al., 2019;
Arsenault et al., 2020; Chagas et al., 2020; Coxon et al.,
2020; Almagro et al., 2021; Fowler et al., 2021; Klingler et al.,
2021).

Considering that the Q dataset is derived from different sources;
several criteria were implemented to control the dataset quality with
reference to some well–established data processing methods (Beck
et al., 2015). The details related to the criteria used in this study are as
follows:

1 The final database retains a hydrological station only once, based
on the latitude and longitude information of hydrological station;
2 If a station has missing data for more than 15% per day from
1981 to 2010, the station was removed;
3 The basin area controlled by the hydrological station must be
able to cover two or more 0.5° grids.

Finally, 1,381 stations met these criteria. The global distribution
of 1,381 hydrological stations is shown in Figure 1.

2.1.2 Precipitation and GRACE datasets
To reduce the uncertainties in precipitation data, we selected

three global gridded precipitation datasets (GPCC, CPC-Unified,
and CRU TS4.05) at 0.5° resolution based on precipitation gauges.
GPCC precipitation dataset, was selected, for it is widely considered
as the precipitation reference dataset (Becker et al., 2013). More
importantly, CPC-Unified gauge-based analysis of global daily
precipitation at 0.5° resolution (1979-present) was interpolated
from the QC station reports, which incorporates the effects of
topography (Chen et al., 2008).

Total water storage anomalies (TWSA), monitored by NASA’s
GRACE satellites via satellite gravimetry, are currently used for
retrieving the exclusive data of TWSC in hydrological and climatic
applications (Landerer and Swenson, 2012; Long et al., 2014; Jing
et al., 2020a). Notably, the GRACE TWSA observation data only
covers the period 2002–2017 (Jing et al., 2020b). Consequently, the
two constructed TWSA datasets (i.e., GRACE-REC and GRID-CSR-
GRACE-REC) were chosen, covering the data from 1981–2010 at a
spatial resolution of 0.5°. GRACE-REC datasets were generated,
using a statistical model trained with GRACE observations,
consisting of six reconstructed TWSA datasets derived from two
different GRACE observation products and three different
meteorological forcing datasets (Humphrey and Gudmundsson,
2019). As for GRID-CSR-GRACE-REC, Li et al. (2021)
reconstructed the GRACE observations by developing a
methodological framework to compare three methods, including

TABLE 1 Summary of Q observation sources for 11 databases of Q observation sources.

Number Source Website or reference

222 stations Australian edition of the catchment attributes and meteorology for large-sample studies
(CAMELS-AUS)

https://doi.org/10.1594/PANGAEA.921850

1,529 stations Australian bureau of meteorology (Bom) https://portal.wsapi.cloud.bom.gov.au

735 stations catchments attributes for brazil (CABRA) https://thecabradataset.shinyapps.io/CABra/

3,679 stations Brazil edition of the catchment attributes and meteorology for large-sample studies (CAMELS-BR) https://doi.org/10.5281/

698 stations Canadian model parameter experiment database (CANOPEX) http://canopex.etsmtl.net

14,425 stations Hydrometeorological Sandbox—École de technologie supérieure (HYSETS) https://doi.org/10.6084/m9.figshare.12600281

859 stations Large-sample data for hydrology: big data für die hydrologie und umweltwissenschaften (LAMAH) https://doi.org/10.5281/

671 stations Great britain edition of the catchment attributes and meteorology for large-sample studies
(CAMELS-GB)

https://catalogue.ceh.ac.uk

140 stations Ministry of water resources of china and national hydrology almanac of china http://mwr.gov.cn/

15 stations Arctic great rivers observatory https://arcticgreatrivers.org/

8,160 stations Global runoff data centre https://www.bafg.de/GRDC/

FIGURE 1
Spatial patterns of AI and LAI (A, B) of global 1,381 basins from
1981–2010. The histograms in (A, B) present AI and LAI at different
levels corresponding to the color bars.
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the multiple linear regression (MLR), autoregressive exogenous
(ARX) approaches, and artificial neural network (ANN), using as
inputs Pre, sea and land surface temperature, surface and subsurface
runoff, soil moisture, evaporation, and several climate indices. Please
note that the Pre- TWSC for each basin was derived from the
arithmetic mean value of six datasets-combination: GPCC minus
GRACE-REC, CPC-Unified minus GRACE-REC, CRU
TS4.05 minus GRACE-REC, GPCC minus GRID-CSR-GRACE-
REC, CPC-Unified minus GRID-CSR-GRACE-REC, and CRU
TS4.05 minus GRID-CSR-GRACE-REC. The basic information of
the Pre and TWSA products is shown in Table 2.

2.1.3 ET products
Eight ET products using different methods were collected in this

study: one remote sensing product (GLASS), two reanalysis products
(ERA5-Land and MERRA-2), four LSM-based products (GLEAM-
3.5a, E2O-En, PML and GLDAS2.0-Noah), and one machine
learning-based product (MTE). The basic information of the ET
products is shown in Table 2.

To estimate terrestrial ET, Global LAnd Surface Satellite
(GLASS) ET products used the Bayesian model averaging
(BMA) method to ensemble five process-based ET algorithms
(Yao et al., 2014; Xie et al., 2022), i.e., MODIS ET product
algorithm (Penman, 1948; Mu et al., 2007; Mu et al., 2011),
revised remote-sensing-based Penman-Monteith ET algorithm
(Yuan et al., 2010), Priestly–Taylor–Fisher of Jet Propulsion
Laboratory ET algorithm (Fisher et al., 2008), modified
Satellite-Based Priestley-Taylor ET algorithm (Yao et al.,
2013), and semi–empirical Penman ET algorithm of the
University of Maryland (Wang et al., 2010). It outperforms the
five algorithms by using ground-based data of
2000–2009 collected from 240 EC gauges worldwide on all
continents except for Antarctica. The ensemble algorithms,
integrating multiple algorithms to generate the product,
reduces the uncertainties of a single algorithm and ensures the

accuracy of the product. The dataset used in this study is the
product with the longest time series and the finest grid, spanning
from 1982 to 2018 at a grid of 0.05°.

ERA5-Land (Muñoz-Sabater et al., 2021), an enhanced
global dataset for the land component of the fifth generation
of European ReAnalysis (ERA5), was published by the European
Centre for Medium-Range Weather Forecasts (ECMWF)
in 2021. The core of ERA5-Land is the ECMWF surface
model: the Carbon Hydrology-Tiled ECMWF Scheme for
Surface Exchanges over Land (CHTESSEL). Four
meteorological state fields (i.e., temperature, humidity, wind
speed, and pressure at the surface) are available in the ERA5,
from the lowest level of the model (level 137), which is 10 m
above the surface. Surface fluxes involve downward shortwave,
longwave radiation and total liquid, and solid precipitation.
Compared with latent heat data from 65 EC gauges
worldwide, ERA5-Land ET performs better than previous
versions such as ERA5 and ERA-Interim (Albergel et al.,
2018), benefiting from the enhancements on the ECMWF
surface model. The dataset used in this study spans the
period from 1979 to 2021 and has a grid of 0.1°.

The second Modern Era Retrospective-Analysis for Research
and Applications (MERRA-2) reanalysis (Rodell et al., 2011), a
widely used atmospheric reanalysis dataset, is provided by Global
Modeling and Assimilation Office (GMAO) in NASA. It is
produced by the upgraded Goddard Earth Observing System
model Version 5 (GEOS-5), along with its associated data
assimilation system (DAS) Version 5.12.4, which replaced the
original MERRA and MERRA-Land reanalysis. MERRA-2
alleviates some of the deficiencies of the MERRA and MERRA-
Land product, such as certain biases and imbalances in the water
cycle as well as the false trends and jumps in precipitation
associated with changes in the observing system. The dataset
used in this study spans from 1980 to 2021 and has a grid of
0.58° × 0.625°.

TABLE 2 Hydrological-component information of used products.

Variables Products Methods Time span/Resolution Website

Pre GPCC Gauge-based interpolation 1901–2010 0.5°/Monthly https://climatedataguide.ucar.edu/

CPC-Unified 1979-present 0.5°/Daily https://climatedataguide.ucar.edu/

CRU TS4.05 1901–2020 0.5°/Monthly https://data.ceda.ac.uk/badc/cru/data/

TWSA GRACE-REC Machine learning 1901–2019 0.5°/Monthly https://doi.org/10.6084/m9.figshare.7670849

GRID-CSR-GRACE-REC 1979–2020 0.5°/Monthly https://doi.org/10.5061/dryad.z612jm6bt

ET GLASS BMA 1982–2018 0.05°/8 Day http://www.glass.umd.edu/

ERA5-Land ECMWF 1979–2021 0.1°/Daily https://cds.climate.copernicus.eu/

MERRA-2 GEOS-5 (Penman-Monteith) 1980–2021 0.58° × 0.625°/Hourly https://disc.gsfc.nasa.gov/

GLEAM-3.5a Priestley-Taylor equation 1980–2020 0.25°/Daily https://www.gleam.eu/

E2O-En GHMs (LSMs、WBM) 1979–2012 0.5°/Monthly http://www.earth2observe.eu/

PML Penman-Monteith-Leuning 1981–2012 0.5°/Monthly https://data.csiro.au/collection

GLDAS2.0-Noah Noah (Penman-Monteith) 1948–2014 1.0°/Monthly https://ldas.gsfc.nasa.gov/gldas/

MTE Upscaling 1982–2011 0.5°/Monthly https://www.bgc-jena.mpg.de/
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The Global Land Evaporation Amsterdam Model (GLEAM), a
set of algorithms, including a potential evaporation module, stress
module, and rainfall interception module, dedicates to estimating
the terrestrial evaporation and root-zone soil moisture from the
satellite data, which consists of soil evaporation, canopy
transpiration, interception loss, snow sublimation, and open-
water evaporation (Martens et al., 2017). Among these modules,
the potential evaporation module uses the Priestley–Taylor
equation, and the stress module is represented by the semi-
empirical relationship between vegetation optical depth and root-
zone soil moisture. A vital feature of this product is that the Gash
analytical model is used to estimate interception loss.

To develop the global water reanalysis on the multi-scale water
resource assessment and related research projects, the
EartH2Observe (E2O) project also used the reanalysis-based
forcing data to drive ten models: five global hydrological models
(GHMs), four Land Surface Models (LSMs) with extended
hydrological scenarios, and one simple water balance model
(WBM) (Schellekens et al., 2017). The forcing dataset is an
adjustment of the ERA reanalysis dataset combining the
terrestrial meteorological element observations and Climate
Research Unit (CRU) datasets. The E2O-En product has proven
to be an accurate reanalysis data and been widely used for the multi-
scale water resource applications (Schellekens et al., 2017). The
generated data from ten models were arithmetically averaged to
alleviate the potential errors and uncertainties of the individual
model.

The GLDAS is a global assimilation and modeling system
developed jointly by NASA, Goddard Space Flight Center
(GSFC), and NOAA (Rodell et al., 2004; Rodell et al., 2011). The
system provides the near real-time land-surface information from
ground and satellite observations, by driving four LSMs. Here, the
ET product derived from GLDAS2.0-Noah is adopted in our study.

The Model Tree Ensemble (MTE) product, a data-driven
estimate (Jung et al., 2009), was compiled using a global
monitoring network (the database of the FLUXNET), the
meteorological and remote-sensing observations, and a machine-
learning algorithm. Its forcing data include a harmonized the
Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR) product from three sensors (AVHRR (Tucker et al.,
2005), SeaWiFS (Gobron et al., 2006), MERIS (Gobron et al.,
2008), a remote-sensing-based global land-use, and products of
climate variables based on observations. However, the lack of
measurements makes it impossible to calculate ET in cold and
dry deserts; this may result in a slight underestimation of global ET.

2.1.4 AI and LAI data
Another monthly Pre and potential ET dataset (1901–2020) was

chosen from CRU TS4.05, to calculate the aridity index (AI): the
ratio of Pre and potential ET. GLASS LAI product was compiled by
AVHRR from 1981–2000 and by MODIS from 2001 to 2018 (Xiao
et al., 2013). To generate continuous and smooth data, GLASS LAI
used a temporal-spatial filtering algorithm to remove cloud
contamination from the reflectance data. The vital component of
this product is the algorithm to train a general regression neural
networks (GRNNs), using fused LAI from MODIS and CYCLOPES
products and reprocessed MODIS reflectance for each vegetation
type on observation sites (Xu et al., 2018). The dataset spans the

period from 1981 to 2018 and has a grid of 0.05°. Please note that all
gridded datasets were aggregated to an annual temporal resolution
and a spatial resolution of 0.5°. The spatial patterns of AI and LAI of
global 1,381 basins are shown in Figure 1.

2.2 Methods

2.2.1 Water balance ET
Eight ET products were assessed, using water balance equations.

The water-balance- based ET is often considered a reference for
validating ET products on the annual scale. ET can be calculated
based on precipitation (Pre), runoff (Q) and total water storage
change (TWSC) in the basin, using the following equation:

water balance ET � Pre − Q − TWSC (1)
Due to high correlations with static gravity fields, GRACE does

not provide the estimates of total continental water content. In this
aspect, TWSA is defined as the residual water content at a given
time, which is relative to the water content at a reference epoch. The
reference storage corresponds to the average water storage during
the early phases of the GRACE mission (Han et al., 2005; Yang et al.,
2020). Hence, yearly TWSC is the difference between the December
anomaly observation of the current year and that of the previous
year, i.e., the yearly TWSC equation is as follows:

TWSCi � TWSAi,Dec − TWSAi−1,Dec (2)
where i and Dec denote the year (ranging from 1981–2010) and the
December, respectively.

2.2.2 Evaluation metrics
Kling-Gupta efficiency (KGE) and its three components are used

to further evaluate the eight ET products (Kling et al., 2012). KGE is
an objective performance metric, which comprehensively combines
the components of the key performance statistics (correlation, bias
and variability). The KGE formulation is defined as follows:

KGE � 1–
������������������������
R − 1( )2 + β − 1( )2 + γ − 1( )2

√
(3)

where R is Pearson’s correlation coefficient, β is the bias (the ratio of
the estimates and observation means), γ is the variability [the ratio of
the coefficients of variation (CV)].

β � μe
μo

(4)

γ � σe/μe
σo/μo (5)

where μ and σ denote the mean and the standard deviation,
respectively; e and o denote the estimate and the observation.
Note that the ranges of KGE, R, β and γ with the optimum value
of 1.0 are −∞–1.0, −1.0–1.0, −∞–+∞ and −∞–+∞, respectively. A
comprehensive diagnosis was carried out on the performance of ET
products in capturing ET characteristics at the temporal and spatial
scale. Please note that the hit of ET trend directions for each product
was also evaluated, using the ratio of truly captured ET trend
directions including positive and negative trends. For example,
TPR (FPR, TNR, FNR) denotes the ratio between the number of
basins that the ET products truly (falsely, truly, falsely) identify the
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observed positive (positive, negative, negative) ET trend as positive
(negative, negative, positive) ET trend and the number of all basins.
The sum of TPR, FPR, TNP, and FNR is equal to 100%. To
systematically assess the spatial and temporal capture
performance of the ET products, we assessed both the spatial
dynamic of ET climatological value, temporal variability and
trends, and the temporal dynamic of ET for each basin.

2.2.3 Aridity and vegetation categories
If global basins are diagnosed in overall terms, the information

about the performance of ET products under given conditions will
be lost. Meanwhile, it is important to examine how ET products vary
with water and energy conditions or vegetation greenness, since the
ET process is affected by the complex mechanisms of energy, water
cycle and vegetation and the strong variability in both space and
time. Therefore, the aridity and vegetation categories were created
without considering their changes during the evaluation period, for
the sake of simplicity. Specifically, the aridity index (AI) is
characterized by the long -term climatic aridity condition of a
region, for example, the higher AI value indicates the drier
condition. The threshold of multiyear-average AI was set at 1.5,
based on the conventional definition, i.e., basins with AI>1.5 are
classified as the dry basins and those with AI≤1.5 are classified as the
wet basins (Liu et al., 2016). As for vegetation, the LAI is widely
applied as the proxy of vegetation greenness, with high values
suggesting high greenness. Based on the LAI value for each basin
at the evaluation period, the evaluation metrics were re-classified in
three categories, i.e., LAI<1, 1 ≤ LAI<2 and LAI≥2, which were
defined as the LAI-I, LAI-II, and LAI-III, respectively (Jimenez et al.,
2011; McCabe et al., 2016), with regard to the intensity of greenness
(from brown to green).

3 Results

3.1 Overall assessment of ET products

Figure 2A shows the spatial pattern of the mean annual value of
ET during 1981–2010. The high values (>1,000 mm) mainly existed
in the Brazilian coast, the GulfofMexico and Atlantic coasts in
America, the African coast, and the Oceania East coast.
Specifically, the ET decreased from east (west) to west (east)
across the North (South) America, and from southeast to
northwest across China. By contrast, the spatial variability of ET
CV was not line with the ET value: the high ET occurred in the
Amazonian Plain and Brazilian plateau, whereas high ET CV
occurred in South China (Figure 2B). Additionally, the ET
tended to increase in the Eurasia and Brazilian plateau, while
decreasing in the Amazonian Plain (Figure 2C). Overall, about
20% of basins showed the significant trends, and the significant
increases were mainly in the Northwest China, Europe, and the
midwest U.S, while the significant decreases were mainly in the
Congo Basin and Amazonian Plain) (Figure 2D). In conclusion, ET
regarding magnitude, temporal variability and trend showed the
high spatio-temporal heterogeneity.

All ET products could reproduce the spatial distribution for
climatological values of ET with high spatial R values ≥ 0.90
(Table 3). Among these products, the PML performed slightly
better than the other products with the highest and R value of
0.96, though not with optimal β and γ. The β values for most ET
products were consistently around the optimal value of 1.0, except
for GLASS (1.27 for β) and MERRA-2 (1.22 for β), suggesting that
the magnitudes of climatological values were well captured by most
ET products. However, the spatial variabilities of ET tended to be

FIGURE 2
Spatial patterns of water balance ET at global 1,381 basins during 1981–2010. Small letters (A–D) represent the mean annual value, CV, trend, and
significance level (p < 0.05) of trend, respectively. The histograms in (A–D) present the ET of different levels corresponding to the color bars.
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underestimated by most ET products with 0.7< γ <1.0, especially for
ERA5-Land with a γ of 0.74. The values of R, β and γ for capturing
the ET by the products converged to the optimum value of 1.0,
resulting in KGE values of integrative performances that outweighed
0.71. Notably, the model-based products had higher overall
performance (KGE ≥ 0.81) in reproducing the climatological ET,
compared to the reanalysis products (0.71 ≤ KGE < 0.81).
Regarding the temporal variability, all ET products generally
underestimated the CV (0.34≤ β ≤0.89), but evidently
overestimated its spatial variability (1.21≤ γ ≤2.39). Moreover,
the spatial distribution of ET CV were poorly captured be most
ET products, with GLEAM-3.5a having the maximum R value of
0.25 among the eight ET products. Overall, the KGE values were
mostly negative, ranging from −0.80 (MTE) to 0.04 (MERRA-2),
indicating that most ET products had limited KGE-based ability
to simulate ET temporal variability. In the view of the ET trend,
the directions (i.e., upward and downward) could be hit by most
products, with 59.29% for PML ≤ TPR + TNR≤65.66% for
MERRA-2. However, the FPR, near to and even larger than
the TNR, suggested that the negative trends would be
misidentified as positive trends, especially for GLASS (39.68%
versus 3.04%). The R values ranged from 0.09 (MTE) to 0.36
(MERRA-2) indicating that GLASS and MERRA-2 with values
above 0.30 could capture the ET trends in space. Except for
reanalysis products underestimating the ET trend, all others
overestimated the ET trend, with β larger than 1.0. By
contrast, all products underestimated the spatial variability of
the ET trend, with −0.19 (MERRA-2)≤ γ ≤0.18 (GLEAM-3.5a).
All KGE values were negative, indicating that these poor overall
performance of these ET products in capturing the ET trend.

Figure 3 shows the metrics of β, γ, R, and KGE for 1,381 basins.
The majority of ET products overestimated ET at more than 50% of
basins, especially GLASS and MERRA-2 which overestimated ET at
above 92% of basins (Figure 3A). However, PML, GLDAS2.0-Noah
and MTE underestimated the ET at more than 50% of basins.
Spatially, the β values displayed evident spatial differences, with
most of ET products greatly overestimated the ET in China, Europe,
and North America. Considering the metric of γ (Figure 3B), all ET
products tended to underestimate the ET temporal variabilities at
over 70% of basins. When γ <0.2, ET products, especially MTE and
GLASS, underestimated the ET temporal variabilities at around 30%
of basins worldwide. Additionally, the overestimates of ET temporal
variabilities tended to be at American Midwest. About the spatial
patterns of β and γ, it is worth noting that the higher ET magnitude
estimates were accompanied by lower ET variability estimates, since
the ratio of basins having β >1.0 outweighed the ratio of basins
having γ <1.0 for most ET products except PML, GLDAS2.0-Noah,
and MTE (Figures 3A,B). Regarding temporal fluctuation
(Figure 3C), positive R values were observed for 59.30%
(MERRA-2) to 84.50% (ERA5-Land) of basins, especially
MERRA-2 with R > 0.6 at nearly 20% of basins, indicating that
ET products had a broad R-based ability to simulate ET temporal
fluctuation. High R values (around 0.8) mainly appeared in the
Midwest United States, South Africa, Western Australia. However,
the average R values for all ET products were slightly low, ranging
from 0.06 for GLDAS2.0-Noah–0.24 for ERA5-Land. Based on KGE
(Figure 3D), negative KGE values were found in 47.65% (E2O-En) to
71.76% (MTE) of basins, with general negative basin-averaged KGE
values (−0.14 (GLASS) to 0.03 (E2O-En)), indicating that all ET
products had the limited overall performance for temporal scale.

TABLE 3 The evaluation results of eight ET products against water balance ET during 1981–2010 from global 1,381 basins. Bold numbers in the table represent the
optimal results corresponding to each metric.

Characteristics Metrics GLASS ERA5-land MERRA-2 GLEAM-3.5a E2O-En PML GLDAS2.0-Noah MTE

Mean annual value β 1.27 1.09 1.22 1.00 1.03 0.94 0.98 0.97

γ 1.01 0.74 0.95 0.86 0.82 1.08 0.83 0.88

R 0.89 0.92 0.92 0.92 0.95 0.96 0.92 0.94

KGE 0.71 0.71 0.76 0.83 0.81 0.89 0.81 0.86

CV β 0.34 0.57 0.89 0.61 0.62 0.62 0.64 0.26

γ 1.21 2.13 1.57 2.09 1.77 1.66 1.65 2.39

R 0.05 0.23 0.23 0.25 0.18 0.01 0.14 0.13

KGE −0.17 −0.43 0.04 −0.38 −0.18 −0.24 −0.14 −0.80

Trend β 21.01 −5.25 −5.14 3.20 5.72 7.03 10.07 4.66

γ 0.04 −0.13 −0.19 0.18 0.09 0.08 0.06 0.05

R 0.31 0.25 0.36 0.24 0.19 0.21 0.23 0.09

KGE −19.05 −5.04 −5.29 −1.47 −3.87 −5.15 −8.15 −2.88

TPR (%) 55.11 28.53 36.41 41.27 40.77 41.85 44.46 48.22

FPR (%) 39.68 13.32 13.47 23.03 27.37 26.29 31.79 29.62

TNR (%) 3.04 29.40 29.25 19.70 15.35 16.44 10.93 13.11

FNR (%) 2.17 28.75 22.67 16.00 16.51 15.42 12.82 9.05
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Relatively, the KGE > 0.2 mainly existed at Australia and Midwest
America.

3.2 Validation by aridity regimes

In terms of the climatological values of ET under dry and wet
conditions (Figure 4), except GLASS under all conditions and
MERRA-2 under wet condition, the ET products could reproduce
the magnitudes of ET with 0.86 for PML≤ β ≤1.17 for ERA5-Land
under dry condition and with 0.96 for MTE≤ β ≤1.07 for ERA5-
Land under wet condition, which was consistent with the results

presented in Section 3.1 (Table 3). In particular, most of the ET
products underestimated the water balance ET above 1,200 mm
(Figure 4), whichmainly occurred in Amazonian Plain and Brazilian
Plateau (Figure 2). As for γ, most of the ET products could generally
detect the spatial variability for the climatological values of ET under
dry and wet conditions, corresponding to a range of 0.69 (ERA5-
Land)≤ γ ≤1.32 (GLASS) and 0.72 (ERA5-Land)≤ γ ≤1.07 (GLASS),
respectively. Broadly, the spatial variability estimates of ET under
dry condition tended to be higher than those under wet condition
(represented as γ dry > γ wet) except ERA5-Land and MTE.
Regarding R, the ET products had a high R-based ability to
simulate spatial distribution of ET with R > 0.8 under dry and

FIGURE 3
Spatial patterns of validation metrics at global 1,381 basins. The histograms in (A–D) present the values of KGE and its components R, β and γ at
different levels corresponding to the color bars.
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FIGURE 4
Scatterplots of water balance ET versus ET simulated by ET products for wet and dry basins, accompanied by various validation criteria (KGE and its
components R, β and γ) at the bottomof each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En, PML, GLDAS2.0-Noah and
MTE, respectively. The blue and red represent wet and dry basins, respectively.

FIGURE 5
Scatterplots of water balance ET CV versus ET CV simulated by ET products for wet and dry basins, accompanied by various validation criteria (KGE
and its components R, β and γ) at the top of each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En, PML, GLDAS2.0-Noah
and MTE, respectively. The blue and red represent wet and dry basins, respectively.
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wet conditions. Meanwhile, the ET products could better represent
the spatial distribution of climatological ET (except for GLASS,
ERA5-Land, and MTE) under dry basins than wet basins
(represented as R_dry > R_wet). As for KGE, ET products
exhibited the high overall performance on climatological ET
conditioned by aridity, especially generating the highest KGE
values for GLDAS2.0-Noah (0.89) under dry condition and PML
(0.94) under wet condition.

With β at ~ 1.0, the magnitude of temporal variability of ET
tended to be more easily simulated under dry condition, compared
with wet condition (Figure 5). As for γ, the spatial variability of ET
temporal variability was generally overestimated by ET products
under all aridity conditions, with 0.87 for GLDAS2.0-Noah≤
γ ≤1.47 for ERA5-Land under dry condition, and 0.79 for
GLASS≤ γ ≤1.95 for PML under wet condition. As for R, the ET
products could detect the spatial distribution of ET CV under dry
basins, of which the highest R value was 0.76 forMERRA-2, followed
by 0.69 for E2O-En. However, under wet condition, the ET products
presented a contrasting performance, compared with dry condition,
with R values ranging from −0.07 to 0.12. Considering KGE, similar
to R, the ET products could not simulate the ET CV under wet
condition, whereas, under dry condition, ERA5-land, MERRA-2,
GLEAM3.5a, E2O-En and GLDAS2.0-Noah showed better overall
performances, generating a KGE above 0.40.

Taking the ET trend into consideration (Figure 6), more than 50%
of the total number of basins were located in the first and third
quadrants, with 46.89% for ERA5-Land ≤ TPR + TNR≤78.00% for
MERRA-2 under dry condition and 54.20% for GLASS ≤ TPR +
TNR≤63.26% for ERA5-Land under wet condition. This indicates that

most of the ET products can capture the ET trend directions. Despite
that, it is worth noting that FPRs outweighed the TNRs under wet
condition. This suggested that under the wet condition, these products
tended to change the negative ET trends to the positive ET trends.
Based on β, under wet condition, most of the ET products (except
ERA5-Land and MERRA-2) tended to underestimate the magnitude
of ET trend, with −19.63 for GLASS≤ β ≤-4.93 for GLEAM-3.5a. By
contrast, under dry condition, the underestimations of the ET trend
got relieved, with −2.06 for ERA5-Land≤ β ≤4.76 for GLASS, except
that general underestimations still existed in dry condition. In
addition, ET products underestimated the extreme ET trends over
the wet basins (<−5 and >5 mm yr−1), which mainly occurred in the
Amazonian Plain and Brazilian Plateau (Figure 2). As for the spatial
variability of ET trend, the γ values were around zero for all ET
products under wet condition, ranging from −0.09 (GLEAM-3.5a) to
0.18 (ERA5-Land), while the γ values were more deviated from
optimal value (1.0) for most ET products under dry condition,
ranging from −23.21 for GLEAM-3.5a to 23.53 for E2O-En.
Overall, all ET products exhibited limited R-based ability to
simulate spatial distribution of the ET trend, with 0.09 for
GLASS ≤ R ≤ 0.65 for MERRA-2 under dry condition and
0.05 for MTE ≤ R ≤ 0.33 for GLASS under wet condition.
Furthermore, the overall performance for each ET product under
all aridity conditions was poor with −23.25 (GLEAM-3.5a)≤KGE ≤
0.44 (MERRA-2) under dry condition and −19.66
(GLASS)≤KGE ≤ −1.05 (ERA5-Land) under wet condition.
Notably, the overall performances were generally worse for the latter.

Temporally, as shown in Figure 7A, regarding β, except PML,
GLDAS2.0-Noah, and MTE, the magnitudes of ET were

FIGURE 6
Scatterplots of water balance ET trend versus ET trend simulated by ET products for wet and dry basins, accompanied by various validation criteria
(KGE and its components R, β and γ) at the top of each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En, PML, GLDAS2.0-
Noah andMTE, respectively. The blue and red represent wet and dry basins, respectively. The percentages in the first-fourth quadrants represent the TPR,
FPR, TNP, and FNR, respectively. The sum of the percentage values in four quadrants is equal to 100 (%).
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FiGURE 7
Box plots of evaluation metrics for ET products under wet and dry basins. (A–D) represent the KGE and its components R, β and γ, respectively. The
blue and red represent wet and dry basins, respectively. The dashed lines represent the average value.

FIGURE 8
Scatterplots of water balance ET CV versus ET CV simulated by ET products under LAI-I, LAI-II, and LAI-III conditions, accompanied by various
validation criteria (KGE and its components R, β and γ) at the top of each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En,
PML, GLDAS2.0-Noah andMTE, respectively. The red, blue and green represent the vegetation greenness levels of LAI-I (LAI<1), LAI-II (1 ≤ LAI<2) and LAI-
III (LAI≥2) respectively.
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overestimated at 51.33% for GLEAM-3.5a to 98.89% for GLASS of
dry basins, and at 51.66% for GLEAM-3.5a to 96.46% for MERRA-2
of wet basins. The basin-averaged β values for the ET products
(except GLASS and MERRA-2) were both near to 1.0 under dry and
wet conditions (Figure 7B). The basin-averaged γ values under dry
condition were also close to 1.0 for most products, while under wet
condition the values were overwhelmingly low, ranging from
0.17 for MTE to 0.72 for MERRA-2. As for R (Figure 7C), more
than 50% of basins exhibited a value over zero for most products
under all conditions. Despite that, each ET product showed a higher
R-based ability to simulate ET temporal fluctuation under dry
condition than wet condition, with average R values ranging
from 0.15 for GLDAS2.0-Noah to 0.46 for MERRA-2 under dry
condition and −0.03 forMERRA-2 to 0.17 for ERA5-Land under wet
condition. As for KGE (Figure 7D), compared with the R-based
ability, the overall performance of ET products under wet conditions
worsened. For example, 64.12% (ERA5-Land) to 93.88% (MTE) of
basins showed negative KGE values under wet conditions, whereas
63.11% (GLDAS2.0-Noah) to 87.33% (E2O-En) of basins exhibited
positive KGE values under dry conditions. Furthermore, all ET
products showed a negative average KGE value under wet
conditions, while most products, except for GLASS, showed a
positive average KGE value under dry conditions.

3.3 Validation by vegetation conditions

From perspective of climatological ET, the magnitude and
spatial variability of ET could be represented by most of the ET

products across all vegetation conditions (Figure 8), with both β and
γ around 1.0. However, most of the ET products (excluding GLASS)
also underestimated the ET values above 1,200 mm under LAI-III
condition, which mainly exist in Amazonian Plain and Brazilian
Plateau (Figure 2). Concerning R, the capacity to simulate the spatial
distribution of climatological ET increased first, and then decreased
as vegetation became greener for most ET products except
GLDAS2.0-Noah, In terms of KGE, most ET products show good
KGE-based performance. In addition, GLASS, ERA5-Land,
MERRA-2, E2O-En, PML, and MTE showed that the KGE-based
performance was the best under LAI-II condition.

In terms of the ET CV (Figure 9), most ET products (except
GLASS and MTE) reasonably estimated ET magnitude under LAI-I
condition, with 0.86 for PML≤ β ≤1.34 for ERA5-Land. However,
the β values were limited for other vegetation conditions, with
0.22 for MTE≤ β ≤0.62 for PML under LAI-II condition and
0.14 for PML≤ β ≤0.67 for MERRA-2 under LAI-III condition.
The β values for the ET temporal variability decreased as the
vegetation turned green for each ET product. And the γ values
for the spatial variability of ET temporal variability tended to be
overestimated under all vegetation conditions. For R, all the ET
products (except PML) had the limited R-based ability to simulate
the spatial distribution of ET temporal variability, with vegetation
greening. For example, the R values under LAI-I, LAI-II, LAI-III
conditions ranged from 0.24 to 0.69, 0.24 to 0.38, and −0.09 to 0.13,
respectively. Similar trends were occurred to KGE, except that the
overall performance of KGE was even worse than that of R-capacity.

In the view of ET trend (Figure 10), its condition is similar to the
aridity condition. The ET products could hit the ET trend directions,

FIGURE 9
Scatterplots of water balance ET CV versus ET CV simulated by ET products under LAI-I, LAI-II, and LAI-III conditions, accompanied by various
validation criteria (KGE and its components R, β and γ) at the top of each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En,
PML, GLDAS2.0-Noah andMTE, respectively. The red, blue and green represent the vegetation greenness levels of LAI-I (LAI<1), LAI-II (1 ≤ LAI<2) and LAI-
III (LAI≥2), respectively.
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FIGURE 10
Scatterplots of water balance ET trend versus ET trend simulated by ET products under LAI-I, LAI-II, and LAI-III conditions, accompanied by various
validation criteria (KGE and its components R, β and γ) at the top of each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En,
PML, GLDAS2.0-Noah andMTE, respectively. The red, blue and green represent the vegetation greenness levels of LAI-I (LAI<1), LAI-II (1 ≤ LAI<2) and LAI-
III (LAI≥2), respectively. The percentages in the first-fourth quadrants represent the TPR, FPR, TNP, and FNR, respectively. The sumof the percentage
values in four quadrants is equal to 100 (%).

FIGURE 11
Box plots of evaluation metrics for ET products under LAI-I, LAI-II, and LAI-III conditions. (A–D) represent the KGE and its components R, β and γ,
respectively. The blue, red and green represent LAI-I, LAI-II, and LAI-III conditions, respectively. The dashed lines represent the basin-averaged value.
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with 50.73% for PML ≤ TPR + TNR79.88% for MERRA-2 under
LAI-I condition, 52.58% for GLASS ≤ TPR + TNR≤66.39% for PML
under LAI-II condition, and 52.09% for PML ≤ TPR + TNR≤66.85%
for ERA5-Land under LAI-III condition. Additionally, FPRs
outweighed the TNRs for ET products (except ERA5-Land and
MERRA-2) under LAI-II and LAI-III conditions, for example, for
GLDAS2.0-Noah, FPR versus TNR was 39.27% versus 8.82% under
LAI-II condition, and 40.96% versus 7.32% under LAI-III condition,
indicating that the ET products tended to misidentify the negative
ET trends as positive ET trends. Based on β, except ERA5-Land and
MERRA-2, the ET products tended to seriously underestimate the
magnitudes of ET under LAI-III condition, with −8.21 for GLASS≤ β

≤-3.15 for MTE. And the values of β were much larger than
1.0 under LAI-II condition (excluding ERA5-Land and MERRA-
2), suggesting that the overestimation occurred in LAI-II condition.
As for γ, all the ET products underestimated the spatial variability of
the trends (excluding MERRA-2, GLEAM-3.5a, E2O-En and MTE
for LAI-I condition). As for R values, the ET products (except
GLASS, MTE and PML) showed lower correlations with the
greening of vegetation. Interestingly, the ET trends were
remarkably overestimated by most products in LAI-II condition,
and slightly underestimated under LAI-I and LAI-III conditions. As
for KGE, most of the ET products had bad performance with
negative values under all conditions. Especially under LAI-II and
LAI-III conditions, they had almost no simulability.

Temporally, the basin-averaged β values were around the 1.0 for
all vegetation conditions (Figure 11A), though the temporal
magnitudes of ET were either overestimated or underestimated
by the ET products. Considering γ (Figure 11B), the basin-
averaged values for all the ET products significantly decreased
with the vegetation turning green, and were overestimated under
LAI-I condition, but underestimated under the other vegetation
conditions. It is worth noting that as vegetation was getting greener,
the R-based ability for all the ET products was significantly
constrained (Figure 11C). Specifically, all the ET products
consistently performed, and the average R value and the basin
percentages of the R values over zero decreased with vegetation
greening. Figure 11D clearly shows that, like R-based ability, the
basin-averaged overall performances of all the ET products
decreased, as the vegetation was getting greener, except that the
KGE values were lower than R values.

4 Discussion

4.1 Validation by dynamic aridity or
vegetation conditions

In this study, the simulations of ET derived from the eight
methods were evaluated by the water balance ET of global
1,381 basins under various water, energy, and vegetation
conditions. Since water, energy, and vegetation are crucial for
accurately simulating ET, the lack of sufficient their information,
caused by the lack of ET algorithm, forcing data and calibration
methods, affects the performance of ET simulation (Xu et al., 2019;
Elnashar et al., 2021; Li et al., 2022; Yu et al., 2022). As is shown, the
comprehensive performance of ET products (Figures 7, 11) and the
capture of ET variance (Figures 5, 9) regularly decrease, with the

humidity and vegetation greenness increasing. These phenomena
imply that the accuracy of the ET simulations may decrease, when
the regional climate is wetting and the global vegetation is greening
(Mankin et al., 2017; Lian et al., 2021; Zhang et al., 2022).
Additionally, the ET products tend to misidentify the negative
trends as the positive trends, especially under wet and LAI-III
conditions, implying that the estimates of ET trends may be
overestimated across the globe or in wet and LAI-III conditions
(Figures 6, 10). These issues will be further discussed in the
following.

In terms of the impact of water and energy denoted by AI, ET
process in dry or wet regions can be conceptualized as a water- or
energy-limited process, respectively: ET under dry conditions is
water-limited, in that it is constrained by the soil moisture available
for ET, while ET under wet conditions is energy limited, since there
is sufficient soil moisture available for ET. Therefore, the maximum
rate and temporal variations of ET proceeds are determined by
atmospheric water demand (potential evapotranspiration) rather
than soil moisture (Draper et al., 2018). All the ET products could
better capture the mean annual value of all aridity conditions.
However, the ET CV in wet basins tend to be more remarkably
underestimated than in dry basins, by the ET products except
GLASS and PML (Figures 5, 7). Indeed, wet zones have more
active land-atmosphere coupling than dry zones, in that the
inevitable ET algorithm errors or data forcing errors magnify the
uncertainties under wet zones. For instance, Penman-Monteith
method (GLDAS2.0-Noah, MERRA-2 and PML) is primarily
driven by net radiation (Rn) under wet zones using a linearized
approximate solution (Gao, 1988; Grignon, 1992; Leca et al., 2011),
which is sensitive to low vapor pressure deficit (VPD) and may
induce considerable problems in the extreme conditions (such as the
water balance ET higher 1,200 mm (Figure 4) and extreme ET trends
(Figure 6) and the soil evaporative term (Bai and Liu, 2018;
Blatchford et al., 2020). More importantly, the presence or
absence of ET products TWSC components in simulating ET
under dry and wet areas cannot be ignored. However, most ET
methods do not have an aquifer storage component, and LSMs lack a
good representation of groundwater withdrawal for agricultural
depletion, such as irrigation (Liu et al., 2016; Zeng and Cai,
2018). Additionally, the errors in the ET estimates and
differences among the ET products are also mainly dependent on
various inputs (Li et al., 2018).

The surface variables also control the ET process, especially
vegetation (Wang et al., 2022; Zheng et al., 2022). Similarly, the
response of ET products to vegetation was investigated. Regarding
the mean annual value, we found that the simulability of datasets
first increased and then decreased, with the increase of vegetation
density (Figure 8), in line with the Lu et al. (2021). In addition, we
also confirmed that the comprehensive performance (KGE) of ET
products decreases as the vegetation is getting greener (Figures 8,
10). The first reason for this is that whether ET algorithms take the
LAI or vegetation dynamics into consideration. For example,
GLEAM-3.5a model lacks vegetation-related information, though
it considers the vegetation optical depth, which may result in lower
accuracy in high vegetation regions (Martens et al., 2017; Xu et al.,
2019; Qiu et al., 2022). Another reason is that the ET algorithm do
not comprehensively consider the vegetation process in hydrology
or energy cycle. MERRA-2 overestimates the interception loss
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fraction defined as the fraction of rainfall, i.e., rainfall intercepted by
the canopy and reevaporating back into the atmosphere without
infiltrating into the soil or causing surface runoff (Reichle et al.,
2011; Bosilovich et al., 2017; Gelaro et al., 2017; Reichle et al., 2017;
Hinkelman, 2019), which could explain why the MERRA-2
generally has the highest β under various LAI conditions among
the eight ET products (Figures 8, 11, and Lv et al. (2020)). The last
easily neglected issue is related to the model forcing data. One aspect
of the issue is the forcing data errors. The accuracy of LAI dataset is
impacted by the leaf shadowing (Mehrez et al., 1992), especially tall
and dense vegetations. Besides, shaded leaves are not light-saturated,
leading to diffuse sunlight conditions and then having a higher
fraction of FAPAR (the fraction of photosynthetically active
radiation absorbed by the canopy) (Jimenez et al., 2011; He et al.,
2013; Xu et al., 2019). Another aspect of the issue is the forcing data
settings, for instance, MTE ET product was generated frommachine
learning method by compiling the 253 globally distributed flux
towers data and remote sensing data, including vegetation
information (FAPAR). We speculated that the varying
performance of MTE product with various LAI conditions was
probably driven by data settings. For example, the vegetation was
used to do split not regression, which results in inadequate
vegetation information (Jung et al., 2010). Or ERA5-Land was
used to generate land elements data including ET, by using a
static monthly climatology of a fixed land use and leaf area index
(LAI) (Muñoz-Sabater et al., 2021). And GLDAS2.0-Noah also uses
a static land use, though with high spatial resolution (Rodell et al.,
2004). Therefore, they ignored the change of land cover and cities,
and lost more frequent LAI anomalies during the reanalysis period
(Muñoz-Sabater et al., 2021).

The model calibration methods also have a significant impact on
the performance of ET simulation. One problem concerning the
methods is that the ET simulations are often calibrated with the
mean annual value not the variance and trend of actual ET, though
considering multiple calibration metrics. Another problem is that
the data used for calibration are often EC site data that are not
representative of the regional scale (Bai and Liu, 2018; Xu et al.,
2019). In addition, as far as we know, the ET products except GLASS
and MTE are accompanied by component data such as soil

evaporation, vegetation evapotranspiration and water surface
evaporation, but these data are not calibrated with sufficient
actual measurements (Swanson, 1994; Brunel et al., 1997; Chen
et al., 2014).

4.2 Uncertainties

The uncertainties in Pre and TWSA products are the largest
source of uncertainties in assessing the ET products (Liu et al., 2016).
According to the water balance budget, the assessment of global-
scale ET products needs to rely on grid-scale Pre and TWSA
products, although the global-scale observatory data is difficult to
collect. As for the three Pre products selected in this study (GPCC,
CPC-Unified, and CRU TS4.05), the uncertainties derive from the
number of stations used, the time homogeneity and the quality
control procedures (Trenberth et al., 2014; Sun et al., 2018).
However, these products are interpolated from an unprecedented
number of station data and are the most reliable precipitation
products currently available (Sun et al., 2018). Regarding the
TWSA data (GRACE-REC and GRID-CSR-GRACE-REC), the
uncertainties arise mainly from the models used for the
reconstruction (pre-2002) and the driving data (Gyawali et al.,
2022). However, the correlation of GRACE-REC with yearly
streamflow anomalies have median value of around 0.60 over
1981–2010 (Humphrey and Gudmundsson, 2019); the GRID-
CSR-GRACE-REC has high correlation with Global Mean Sea
level with R of 0.91 (Li et al., 2021). We further investigated the
uncertainties in water balance evapotranspiration defined as the CV
of the six Pre-TWSC-Q combinations, and found that most of the
basins with uncertainties of <0.10 and uncertainties above 0.10 were
located mainly in the Midwest USA and Southwest China (rainfall
gauges are more sparsely distributed in high mountain areas) and
the Arctic (Figure 12). In addition,Q data may be affected by human
harvesting of deep groundwater and inter-basin water transfers (Liu
et al., 2016). However, TWSC can reasonably take into account the
impact of human activities on Q. Moreover, in validating the model,
only the terrestrial water balance (not the atmospheric water
balance) is considered, and the measured evapotranspiration

FIGURE 12
Spatial pattern of uncertainties of water balance ET at global 1,381 basins. The histogram presents uncertainty values at different levels
corresponding to the color bars.
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values lack the cross-validation to further reduce the error with the
true values (Li et al., 2019). The generalizability of our results to
other regions of the world may be subject to additional uncertainty,
as the basins included in this study do not cover the entire globe.
However, it is important to note that the performance of
evapotranspiration products varies with dryness and vegetation
greenness, and it is necessary to ensure that all types of dryness
and vegetation greenness are covered (Figure 1). To minimize errors
caused by different spatial resolutions, all ET products were re-
interpolated linearly to 0.5° before evaluation. Furthermore, our
analysis is based on observed ET using the water balance method,
which represents the average ET of watersheds controlled by
hydrological stations, reducing the uncertainty caused by a single
grid point to some extent. The scale effect on ET product
performance related to aridity and vegetation greenness response
needs further exploration in future research.

5 Conclusion

This study conducted a comprehensive assessment of terrestrial
ET products to improve ET products. In this study, drawing on the
data of water balance ET from 1981–2010 collected from
1,381 basins, we examined eight ET products: one remote sensing
product (GLASS), two reanalysis products (ERA5-Land and
MERRA-2), four LSM-based products (GLEAM-3.5a, E2O-En,
PML and GLDAS2.0-Noah), and one machine learning-based
product (MTE). Besides, to gain a deeper insight into the eight
ET estimates under various conditions, the potential impact of
aridity and vegetation greenness were taken in consideration. The
evaluation results are summarized below:

(1) In view of the performance at the global scale, the ET products
had advantages in capturing the mean annual value of ET, with
relatively high KGE values, among which the PML performed
the best with 0.89 for KGE. Despite that, the ET products had
limited KGE-ability to simulate the ET variability with highest
KGE of 0.04 for MERRA-2 and the trend with highest KGE
of −1.47 for GLEAM-3.5a. In addition, the ET products tended
to underestimate the ET temporal variability and overestimate
its spatial dynamics, while they tended to overestimate the ET
trend and underestimate its spatial dynamics. It is worth noting
that the ET products tended to misidentify the negative ET trend
as positive trend.

(2) For each basin, the ET products always overestimated the ET
values and underestimated the ET temporal variability at more
than 50% of basins. And the ET products had a wide R-based
ability to simulate the ET temporal fluctuation, for the ET
products had positive R values at 59.30% (MERRA-2)—
84.50% (ERA5-Land) of basins. The high R values mainly
appeared in the Midwest United States, South Africa,
Western Australia. However, all ET products showed the
limited KGE-ability at the temporal scale.

(3) As for different aridity regimes, the performances of ET
products were completely opposite in dry and wet areas.
Spatially, the ET products showed lower ability to capture
the temporal variability and the trend of ET under wet
condition than dry condition. And overall, the ET products

tended to misidentify the negative ET trend as positive trend,
which only existed in wet condition. Temporally, the overall
performances of ET products were limited under wet condition,
for the ET products performed the negative KGE values under
wet condition, and the positive KGE values under dry condition
at more than 60% of basins.

(4) Considering the dynamic performances with varying vegetation,
the spatial and temporal performances of ET products were
strongly affected by vegetation greenness, which is similar to the
situation with aridity regimes. Spatially, as vegetation became
greener, the performance of simulated climatological ET
increased first and then decreased, and gradually limited the
ability to simulate the spatial distribution of ET temporal
variability. Meanwhile, the ET products tended to misidentify
the negative ET trend as positive trend under lush vegetation
condition. Temporally, the basin-averaged overall performances of
all the ET products decreased, as the vegetation was getting greener.

Overall, the performances of ET products were poor in wet or
vegetated areas, suggesting that the accuracy of ET products may
decline in the future when the climate becomes wetter and the
vegetation becomes greener. Therefore, this work is hopefully to
improve our understanding about the spatio-temporal performance
of the ET products, and contribute to the directional optimizations
and effective applications of ET products.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

Data curation, HW, CT, YX, and DL; conceptualization, GY,
HW, and CT; methodology, HW; visualization, HW, CT, and YX;
writing–original draft, HW, writing–review and editing, GY, XL,
and CT; investigation, JW, DL, and FY; software, PZ;
supervision, GY.

Funding

This study was supported by the National Natural Science
Foundation of China (Grant NO. 42075189), the Natural Science
Foundation of Jiangsu Province, China (Grant No. BK20200096),
Hubei Branch of China National Tobacco Corporation (Grant No.
027Y2021021), and Jiangsu Provincial Bureau of Hydrology and
Water Resources Survey (Grant Nos. 2211052001601 and
2211052101801).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Environmental Science frontiersin.org16

Wang et al. 10.3389/fenvs.2023.1079520

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1079520


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., De Rosnay, P.,
et al. (2018). ERA-5 and ERA-interim driven ISBA land surface model simulations:
Which one performs better?Hydrology Earth Syst. Sci. 22, 3515–3532. doi:10.5194/hess-
22-3515-2018

Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., et al.
(2017). Water, energy, and carbon with artificial neural networks (WECANN): A
statistically based estimate of global surface turbulent fluxes and gross primary
productivity using solar-induced fluorescence. Biogeosciences 14, 4101–4124. doi:10.
5194/bg-14-4101-2017

Almagro, A., Oliveira, P. T. S., Meira Neto, A. A., Roy, T., Troch, P. J. H., and Sciences,
E. S. (2021). CABra: A novel large-sample dataset for Brazilian catchments. Hydrology
Earth Syst. Sci. 25, 3105–3135. doi:10.5194/hess-25-3105-2021

Arsenault, R., Bazile, R., Ouellet Dallaire, C., and Brissette, F. J. H. P. (2016). Canopex:
A Canadian hydrometeorological watershed database. Hydrol. Process. 30, 2734–2736.
doi:10.1002/hyp.10880

Arsenault, R., Brissette, F., Martel, J.-L., Troin, M., Lévesque, G., Davidson-Chaput, J., et al.
(2020). A comprehensive, multisource database for hydrometeorological modeling of
14,425 North American watersheds. Sci. Data 7, 243–312. doi:10.1038/s41597-020-00583-2

Awange, J., Hu, K., and Khaki, M. (2019). The newly merged satellite remotely sensed,
gauge and reanalysis-based Multi-SourceWeighted-Ensemble Precipitation: Evaluation
over Australia and Africa (1981–2016). Sci. total Environ. 670, 448–465. doi:10.1016/j.
scitotenv.2019.03.148

Badgley, G., Fisher, J. B., Jiménez, C., Tu, K. P., and Vinukollu, R. (2015). On
uncertainty in global terrestrial evapotranspiration estimates from choice of input
forcing datasets. J. Hydrometeorol. 16, 1449–1455. doi:10.1175/JHM-D-14-0040.1

Bai, P., and Liu, X. (2018). Intercomparison and evaluation of three global high-
resolution evapotranspiration products across China. J. hydrology 566, 743–755. doi:10.
1016/j.jhydrol.2018.09.065

Beck, H. E., De Roo, A., and Van Dijk, A. I. (2015). Global maps of streamflow
characteristics based on observations from several thousand catchments.
J. Hydrometeorol. 16, 1478–1501. doi:10.1175/JHM-D-14-0155.1

Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U.,
et al. (2013). A description of the global land-surface precipitation data products of the
Global Precipitation Climatology Centre with sample applications including centennial
(trend) analysis from 1901–present. Earth Syst. Sci. Data 5, 71–99. doi:10.5194/essd-5-
71-2013

Blatchford, M. L., Mannaerts, C. M., Njuki, S. M., Nouri, H., Zeng, Y., Pelgrum, H.,
et al. (2020). Evaluation of WaPOR V2 evapotranspiration products across Africa.
Hydrol. Process. 34, 3200–3221. doi:10.1002/hyp.13791

Bosilovich, M. G., Robertson, F. R., Takacs, L., Molod, A., and Mocko, D. (2017).
Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Clim. 30,
1177–1196. doi:10.1175/JCLI-D-16-0338.1

Brunel, J.-P., Walker, G., Dighton, J., andMonteny, B. (1997). Use of stable isotopes of
water to determine the origin of water used by the vegetation and to partition
evapotranspiration. A case study from HAPEX-Sahel. J. hydrology 188, 466–481.
doi:10.1016/S0022-1694(96)03188-5

Chagas, V. B., Chaffe, P. L., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C., et al.
(2020). CAMELS-BR: Hydrometeorological time series and landscape attributes for
897 catchments in Brazil. Earth Syst. Sci. Data 12, 2075–2096. doi:10.5194/essd-12-2075-2020

Chen, M., Shi, W., Xie, P., Silva, V. B., Kousky, V. E., Wayne Higgins, R., et al. (2008).
Assessing objective techniques for gauge-based analyses of global daily precipitation.
J. Geophys. Res. Atmos. 113, D04110–D04113. doi:10.1029/2007JD009132

Chen, Y., Xia, J., Liang, S., Feng, J., Fisher, J. B., Li, X., et al. (2014). Comparison of
satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote
Sens. Environ. 140, 279–293. doi:10.1016/j.rse.2013.08.045

Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., et al. (2020).
CAMELS-GB: Hydrometeorological time series and landscape attributes for
671 catchments in Great Britain. Earth Syst. Sci. Data 12, 2459–2483. doi:10.5194/
essd-12-2459-2020

Draper, C. S., Reichle, R. H., and Koster, R. D. (2018). Assessment of MERRA-2
land surface energy flux estimates. J. Clim. 31, 671–691. doi:10.1175/JCLI-D-17-
0121.1

Elnashar, A., Wang, L., Wu, B., Zhu, W., and Zeng, H. (2021). Synthesis of global
actual evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data 13, 447–480. doi:10.
5194/essd-13-447-2021

Ershadi, A., Mccabe, M., Evans, J. P., Chaney, N. W., and Wood, E. F. (2014). Multi-
site evaluation of terrestrial evaporation models using FLUXNET data. Agric. For.
Meteorology 187, 46–61. doi:10.1016/j.agrformet.2013.11.008

Fisher, J. B., Tu, K. P., and Baldocchi, D. D. (2008). Global estimates of the
land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data,
validated at 16 FLUXNET sites. Remote Sens. Environ. 112, 901–919. doi:10.1016/j.
rse.2007.06.025

Fowler, K. J., Acharya, S. C., Addor, N., Chou, C., and Peel, M. C. J. E. S. S. D. (2021).
CAMELS-AUS: Hydrometeorological time series and landscape attributes for
222 catchments in Australia. Earth Syst. Sci. Data 13, 3847–3867. doi:10.5194/essd-
13-3847-2021

Gao, G., Fu, B., Wang, S., Liang, W., and Jiang, X. (2016). Determining the
hydrological responses to climate variability and land use/cover change in the Loess
Plateau with the Budyko framework. Sci. Total Environ. 557, 331–342. doi:10.1016/j.
scitotenv.2016.03.019

Gao, W. (1988). Applications of solutions to non-linear energy budget equations.
Agric. For. Meteorology 43, 121–145. doi:10.1016/0168-1923(88)90087-1

Gelaro, R., Mccarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al.
(2017). The modern-era retrospective analysis for research and applications, version
2 (MERRA-2). J. Clim. 30, 5419–5454. doi:10.1175/JCLI-D-16-0758.1

Gobron, N., Pinty, B., Aussedat, O., Chen, J. M., Cohen, W. B., Fensholt, R., et al.
(2006). Evaluation of fraction of absorbed photosynthetically active radiation
products for different canopy radiation transfer regimes: Methodology and results
using Joint Research Center products derived from SeaWiFS against ground-based
estimations. J. Geophys. Res. Atmos. 111, D13110–D13115. doi:10.1029/
2005JD006511

Gobron, N., Pinty, B., Aussedat, O., Taberner, M., Faber, O., Mélin, F., et al.
(2008). Uncertainty estimates for the FAPAR operational products derived
from MERIS—impact of top-of-atmosphere radiance uncertainties and
validation with field data. Remote Sens. Environ. 112, 1871–1883. doi:10.1016/j.
rse.2007.09.011

Grignon, F. (1992). A discussion of the Penman form equations and comparisons of
some equations to estimate latent energy flux density. Agric. For. meteorology 57,
297–304. doi:10.1016/0168-1923(92)90125-N

Gu, L., Chen, J., Yin, J., Xu, C. Y., and Zhou, J. (2020). Responses of precipitation and
runoff to climate warming and implications for future drought changes in China.
Earth’s Future 8, e2020EF001718. doi:10.1029/2020EF001718

Gyawali, B., Ahmed, M., Murgulet, D., andWiese, D. N. (2022). Filling temporal gaps
within and between GRACE and GRACE-FO terrestrial water storage records: An
innovative approach. Remote Sens. 14, 1565. doi:10.3390/rs14071565

Han, S.-C., Shum, C., and Braun, A. (2005). High-resolution continental water storage
recovery from low–low satellite-to-satellite tracking. J. Geodyn. 39, 11–28. doi:10.1016/j.
jog.2004.08.002

He, M., Ju, W., Zhou, Y., Chen, J., He, H., Wang, S., et al. (2013). Development of a
two-leaf light use efficiency model for improving the calculation of terrestrial gross
primary productivity. Agric. For. meteorology 173, 28–39. doi:10.1016/j.agrformet.
2013.01.003

Hinkelman, L. M. (2019). The global radiative energy budget in MERRA and
MERRA-2: Evaluation with respect to CERES EBAF data. J. Clim. 32, 1973–1994.
doi:10.1175/JCLI-D-18-0445.1

Holmes, R. M., Coe, M. T., Fiske, G. J., Gurtovaya, T., Mcclelland, J. W.,
Shiklomanov, A. I., et al. (2013). “Climate change impacts on the hydrology and
biogeochemistry of Arctic rivers,” in Climatic change and global warming of inland
waters (Hoboken, New Jersey, United States: Wiley), 1–26. doi:10.1002/
9781118470596.ch1

Humphrey, V., and Gudmundsson, L. J. E. S. S. D. (2019). GRACE-REC: A
reconstruction of climate-driven water storage changes over the last century. Earth
Syst. Sci. Data 11, 1153–1170. doi:10.5194/essd-11-1153-2019

Jimenez, C., Prigent, C., Mueller, B., Seneviratne, S. I., Mccabe, M., Wood, E. F., et al.
(2011). Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res.
Atmos. 116, D02102–D02127. doi:10.1029/2010JD014545

Jing, W., Di, L., Zhao, X., Yao, L., Xia, X., Liu, Y., et al. (2020a). A data-driven
approach to generate past GRACE-like terrestrial water storage solution by calibrating
the land surface model simulations. Adv. Water Resour. 143, 103683. doi:10.1016/j.
advwatres.2020.103683

Frontiers in Environmental Science frontiersin.org17

Wang et al. 10.3389/fenvs.2023.1079520

https://doi.org/10.5194/hess-22-3515-2018
https://doi.org/10.5194/hess-22-3515-2018
https://doi.org/10.5194/bg-14-4101-2017
https://doi.org/10.5194/bg-14-4101-2017
https://doi.org/10.5194/hess-25-3105-2021
https://doi.org/10.1002/hyp.10880
https://doi.org/10.1038/s41597-020-00583-2
https://doi.org/10.1016/j.scitotenv.2019.03.148
https://doi.org/10.1016/j.scitotenv.2019.03.148
https://doi.org/10.1175/JHM-D-14-0040.1
https://doi.org/10.1016/j.jhydrol.2018.09.065
https://doi.org/10.1016/j.jhydrol.2018.09.065
https://doi.org/10.1175/JHM-D-14-0155.1
https://doi.org/10.5194/essd-5-71-2013
https://doi.org/10.5194/essd-5-71-2013
https://doi.org/10.1002/hyp.13791
https://doi.org/10.1175/JCLI-D-16-0338.1
https://doi.org/10.1016/S0022-1694(96)03188-5
https://doi.org/10.5194/essd-12-2075-2020
https://doi.org/10.1029/2007JD009132
https://doi.org/10.1016/j.rse.2013.08.045
https://doi.org/10.5194/essd-12-2459-2020
https://doi.org/10.5194/essd-12-2459-2020
https://doi.org/10.1175/JCLI-D-17-0121.1
https://doi.org/10.1175/JCLI-D-17-0121.1
https://doi.org/10.5194/essd-13-447-2021
https://doi.org/10.5194/essd-13-447-2021
https://doi.org/10.1016/j.agrformet.2013.11.008
https://doi.org/10.1016/j.rse.2007.06.025
https://doi.org/10.1016/j.rse.2007.06.025
https://doi.org/10.5194/essd-13-3847-2021
https://doi.org/10.5194/essd-13-3847-2021
https://doi.org/10.1016/j.scitotenv.2016.03.019
https://doi.org/10.1016/j.scitotenv.2016.03.019
https://doi.org/10.1016/0168-1923(88)90087-1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1029/2005JD006511
https://doi.org/10.1029/2005JD006511
https://doi.org/10.1016/j.rse.2007.09.011
https://doi.org/10.1016/j.rse.2007.09.011
https://doi.org/10.1016/0168-1923(92)90125-N
https://doi.org/10.1029/2020EF001718
https://doi.org/10.3390/rs14071565
https://doi.org/10.1016/j.jog.2004.08.002
https://doi.org/10.1016/j.jog.2004.08.002
https://doi.org/10.1016/j.agrformet.2013.01.003
https://doi.org/10.1016/j.agrformet.2013.01.003
https://doi.org/10.1175/JCLI-D-18-0445.1
https://doi.org/10.1002/9781118470596.ch1
https://doi.org/10.1002/9781118470596.ch1
https://doi.org/10.5194/essd-11-1153-2019
https://doi.org/10.1029/2010JD014545
https://doi.org/10.1016/j.advwatres.2020.103683
https://doi.org/10.1016/j.advwatres.2020.103683
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1079520


Jing, W., Zhang, P., Zhao, X., Yang, Y., Jiang, H., Xu, J., et al. (2020b). Extending
GRACE terrestrial water storage anomalies by combining the random forest regression
and a spatially moving window structure. J. Hydrology 590, 125239. doi:10.1016/j.
jhydrol.2020.125239

Jung, H. C., Getirana, A., Policelli, F., Mcnally, A., Arsenault, K. R., Kumar, S., et al.
(2017). Upper Blue Nile basin water budget from a multi-model perspective.
J. hydrology 555, 535–546. doi:10.1016/j.jhydrol.2017.10.040

Jung, M., Reichstein, M., and Bondeau, A. J. B. (2009). Towards global empirical
upscaling of FLUXNET eddy covariance observations: Validation of a model tree
ensemble approach using a biosphere model. Biogeosciences 6, 2001–2013. doi:10.5194/
bg-6-2001-2009

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., et al.
(2010). Recent decline in the global land evapotranspiration trend due to limited
moisture supply. Nature 467, 951–954. doi:10.1038/nature09396

Kim, H.W., Hwang, K., Mu, Q., Lee, S. O., and Choi, M. (2012). Validation of MODIS
16 global terrestrial evapotranspiration products in various climates and land cover
types in Asia. KSCE J. Civ. Eng. 16, 229–238. doi:10.1007/s12205-012-0006-1

Kling, H., Fuchs, M., and Paulin, M. (2012). Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios. J. hydrology 424, 264–277. doi:10.
1016/j.jhydrol.2012.01.011

Klingler, C., Schulz, K., and Herrnegger, M. J. Ö. W.-U. A. (2021). LamaH |
Large-Sample Data for Hydrology: Big data für die Hydrologie und
Umweltwissenschaften. Österreichische Wasser- Abfallwirtsch. 73, 244–269.
doi:10.1007/s00506-021-00769-x

Landerer, F. W., and Swenson, S. (2012). Accuracy of scaled GRACE terrestrial water
storage estimates. Water Resour. Res. 48, 1–11. doi:10.1029/2011WR011453

Leca, A., Parisi, L., Lacointe, A., and Saudreau, M. (2011). Comparison of
Penman–Monteith and non-linear energy balance approaches for estimating leaf
wetness duration and apple scab infection. Agric. For. meteorology 151, 1158–1162.
doi:10.1016/j.agrformet.2011.04.010

Li, C., Yang, H., Yang, W., Liu, Z., Jia, Y., Li, S., et al. (2022). Camele: Collocation-
analyzed multi-source ensembled land evapotranspiration data. Earth Syst. Sci. Data
Discuss. 2022, 1–45. doi:10.5194/essd-2021-456

Li, F., Kusche, J., Chao, N., Wang, Z., and Löcher, A. (2021). Long-Term (1979-
Present) total water storage anomalies over the global land derived by reconstructing
GRACE data. Geophys. Res. Lett. 48, e2021GL093492. doi:10.1029/2021GL093492

Li, S., Wang, G., Sun, S., Chen, H., Bai, P., Zhou, S., et al. (2018). Assessment of multi-
source evapotranspiration products over China using eddy covariance observations.
Remote Sens. 10, 1692. doi:10.3390/rs10111692

Li, X., Long, D., Han, Z., Scanlon, B. R., Sun, Z., Han, P., et al. (2019).
Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint
terrestrial and atmospheric water balances and multisource remote sensing. Water
Resour. Res. 55, 8608–8630. doi:10.1029/2019WR025196

Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L. Z., et al. (2021). Multifaceted
characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ.
2, 232–250. doi:10.1038/s43017-021-00144-0

Liu, J., You, Y., Zhang, Q., and Gu, X. (2021). Attribution of streamflow changes
across the globe based on the Budyko framework. Sci. Total Environ. 794, 148662.
doi:10.1016/j.scitotenv.2021.148662

Liu, W., Wang, L., Zhou, J., Li, Y., Sun, F., Fu, G., et al. (2016). A worldwide evaluation
of basin-scale evapotranspiration estimates against the water balance method.
J. Hydrology 538, 82–95. doi:10.1016/j.jhydrol.2016.04.006

Long, D., Shen, Y., Sun, A., Hong, Y., Longuevergne, L., Yang, Y., et al. (2014).
Drought and flood monitoring for a large karst plateau in Southwest China using
extended GRACE data. Remote Sens. Environ. 155, 145–160. doi:10.1016/j.rse.2014.
08.006

Lu, J., Wang, G., Chen, T., Li, S., Hagan, D. F. T., Kattel, G., et al. (2021). A
harmonized global land evaporation dataset from model-based products covering
1980–2017. Earth Syst. Sci. Data 13, 5879–5898. doi:10.5194/essd-13-5879-2021

Lv, M., Xu, Z., and Lv, M. (2020). Evaluating hydrological processes of the
atmosphere–vegetation interaction model and MERRA-2 at global scale. Atmosphere
12, 16. doi:10.3390/atmos12010016

Majozi, N. P., Mannaerts, C. M., Ramoelo, A., Mathieu, R., Mudau, A. E., and
Verhoef, W. (2017). An intercomparison of satellite-based daily evapotranspiration
estimates under different eco-climatic regions in South Africa. Remote Sens. 9, 307.
doi:10.3390/rs9040307

Mankin, J. S., Smerdon, J. E., Cook, B. I., Williams, A. P., and Seager, R. (2017). The
curious case of projected twenty-first-century drying but greening in the American
West. J. Clim. 30, 8689–8710. doi:10.1175/JCLI-D-17-0213.1

Mao, J., Fu, W., Shi, X., Ricciuto, D. M., Fisher, J. B., Dickinson, R. E., et al. (2015).
Disentangling climatic and anthropogenic controls on global terrestrial
evapotranspiration trends. Environ. Res. Lett. 10, 094008. doi:10.1088/1748-9326/10/
9/094008

Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A.,
Fernández-Prieto, D., et al. (2017). GLEAM v3: Satellite-based land evaporation and

root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925. doi:10.5194/gmd-10-
1903-2017

Mccabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel, D., and Wood, E. F.
(2016). The GEWEX LandFlux project: Evaluation of model evaporation using tower-
based and globally gridded forcing data. Geosci. Model Dev. 9, 283–305. doi:10.5194/
gmd-9-283-2016

Mehrez, M. B., Taconet, O., Vidal-Madjar, D., and Valencogne, C. (1992).
Estimation of stomatal resistance and canopy evaporation during the HAPEX-
MOBILHY experiment. Agric. For. Meteorology 58, 285–313. doi:10.1016/0168-
1923(92)90066-D

Miao, Y., and Wang, A. (2020). A daily 0.25°× 0.25° hydrologically based land surface
flux dataset for conterminous China, 1961–2017. J. Hydrology 590, 125413. doi:10.1016/
j.jhydrol.2020.125413

Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A., et al.
(2016). The WACMOS-ET project–Part 1: Tower-scale evaluation of four remote-
sensing-based evapotranspiration algorithms. Hydrology Earth Syst. Sci. 20, 803–822.
doi:10.5194/hess-20-803-2016

Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M., et al.
(2016). The WACMOS-ET project–Part 2: Evaluation of global terrestrial
evaporation data sets. Hydrology Earth Syst. Sci. 20, 823–842. doi:10.5194/hess-
20-823-2016

Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W. (2007). Development of a global
evapotranspiration algorithm based on MODIS and global meteorology data. Remote
Sens. Environ. 111, 519–536. doi:10.1016/j.rse.2007.04.015

Mu, Q., Zhao, M., and Running, S. W. (2011). Improvements to a MODIS global
terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800. doi:10.
1016/j.rse.2011.02.019

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G.,
Balsamo, G., et al. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset
for land applications. Earth Syst. Sci. Data 13, 4349–4383. doi:10.5194/essd-13-4349-
2021

Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., et al. (2020). Evaluation
of global terrestrial evapotranspiration using state-of-the-art approaches in remote
sensing, machine learning and land surface modeling. Hydrology Earth Syst. Sci. 24,
1485–1509. doi:10.5194/hess-24-1485-2020

Penman, H. L. (1948). Natural evaporation from open water, hare soil and grass.
Math. Phys. Sci. 193, 120–145. doi:10.1098/rspa.1948.0037

Priestley, C. H. B., and Taylor, R. J. (1972). On the assessment of surface heat flux and
evaporation using large-scale parameters. Mon. weather Rev. 100, 81–92. doi:10.1175/
1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
Qiu, J., Crow, W. T., Wang, S., Dong, J., Li, Y., Garcia, M., et al. (2022). Microwave-

based soil moisture improves estimates of vegetation response to drought in China. Sci.
Total Environ. 849, 157535. doi:10.1016/j.scitotenv.2022.157535

Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P., Koster, R. D., et al.
(2017). Assessment of MERRA-2 land surface hydrology estimates. J. Clim. 30,
2937–2960. doi:10.1175/JCLI-D-16-0720.1

Reichle, R. H., Koster, R. D., De Lannoy, G. J., Forman, B. A., Liu, Q., Mahanama, S. P.,
et al. (2011). Assessment and enhancement of MERRA land surface hydrology
estimates. J. Clim. 24, 6322–6338. doi:10.1175/JCLI-D-10-05033.1

Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., et al.
(2004). The global land data assimilation system. Bull. Am. Meteorological Soc. 85,
381–394. doi:10.1175/BAMS-85-3-381

Rodell, M., Mcwilliams, E. B., Famiglietti, J. S., Beaudoing, H. K., and Nigro, J. (2011).
Estimating evapotranspiration using an observation based terrestrial water budget.
Hydrol. Process. 25, 4082–4092. doi:10.1002/hyp.8369

Schellekens, J., Dutra, E., Martínez-De La Torre, A., Balsamo, G., Van Dijk, A., Sperna
Weiland, F., et al. (2017). A global water resources ensemble of hydrological models: The
eartH2Observe tier-1 dataset. Earth Syst. Sci. Data 9, 389–413. doi:10.5194/essd-9-389-2017

She, D., Xia, J., and Zhang, Y. (2017). Changes in reference evapotranspiration and its
driving factors in the middle reaches of Yellow River Basin, China. Sci. Total Environ.
607, 1151–1162. doi:10.1016/j.scitotenv.2017.07.007

Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent
heat fluxes. Hydrology earth Syst. Sci. 6, 85–100. doi:10.5194/hess-6-85-2002

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K. L. (2018). A
review of global precipitation data sets: Data sources, estimation, and intercomparisons.
Rev. Geophys. 56, 79–107. doi:10.1002/2017RG000574

Swanson, R. H. (1994). Significant historical developments in thermal methods for
measuring sap flow in trees. Agric. For. meteorology 72, 113–132. doi:10.1016/0168-
1923(94)90094-9

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., et al.
(2016). Predicting carbon dioxide and energy fluxes across global FLUXNET sites with
regression algorithms. Biogeosciences 13, 4291–4313. doi:10.5194/bg-13-4291-2016

Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R.,
et al. (2014). Global warming and changes in drought. Nat. Clim. Change 4, 17–22.
doi:10.1038/nclimate2067

Frontiers in Environmental Science frontiersin.org18

Wang et al. 10.3389/fenvs.2023.1079520

https://doi.org/10.1016/j.jhydrol.2020.125239
https://doi.org/10.1016/j.jhydrol.2020.125239
https://doi.org/10.1016/j.jhydrol.2017.10.040
https://doi.org/10.5194/bg-6-2001-2009
https://doi.org/10.5194/bg-6-2001-2009
https://doi.org/10.1038/nature09396
https://doi.org/10.1007/s12205-012-0006-1
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1007/s00506-021-00769-x
https://doi.org/10.1029/2011WR011453
https://doi.org/10.1016/j.agrformet.2011.04.010
https://doi.org/10.5194/essd-2021-456
https://doi.org/10.1029/2021GL093492
https://doi.org/10.3390/rs10111692
https://doi.org/10.1029/2019WR025196
https://doi.org/10.1038/s43017-021-00144-0
https://doi.org/10.1016/j.scitotenv.2021.148662
https://doi.org/10.1016/j.jhydrol.2016.04.006
https://doi.org/10.1016/j.rse.2014.08.006
https://doi.org/10.1016/j.rse.2014.08.006
https://doi.org/10.5194/essd-13-5879-2021
https://doi.org/10.3390/atmos12010016
https://doi.org/10.3390/rs9040307
https://doi.org/10.1175/JCLI-D-17-0213.1
https://doi.org/10.1088/1748-9326/10/9/094008
https://doi.org/10.1088/1748-9326/10/9/094008
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.5194/gmd-9-283-2016
https://doi.org/10.5194/gmd-9-283-2016
https://doi.org/10.1016/0168-1923(92)90066-D
https://doi.org/10.1016/0168-1923(92)90066-D
https://doi.org/10.1016/j.jhydrol.2020.125413
https://doi.org/10.1016/j.jhydrol.2020.125413
https://doi.org/10.5194/hess-20-803-2016
https://doi.org/10.5194/hess-20-823-2016
https://doi.org/10.5194/hess-20-823-2016
https://doi.org/10.1016/j.rse.2007.04.015
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/hess-24-1485-2020
https://doi.org/10.1098/rspa.1948.0037
https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
https://doi.org/10.1016/j.scitotenv.2022.157535
https://doi.org/10.1175/JCLI-D-16-0720.1
https://doi.org/10.1175/JCLI-D-10-05033.1
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.1002/hyp.8369
https://doi.org/10.5194/essd-9-389-2017
https://doi.org/10.1016/j.scitotenv.2017.07.007
https://doi.org/10.5194/hess-6-85-2002
https://doi.org/10.1002/2017RG000574
https://doi.org/10.1016/0168-1923(94)90094-9
https://doi.org/10.1016/0168-1923(94)90094-9
https://doi.org/10.5194/bg-13-4291-2016
https://doi.org/10.1038/nclimate2067
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1079520


Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R.,
et al. (2005). An extended AVHRR 8-km NDVI dataset compatible with MODIS and
SPOT vegetation NDVI data. Int. J. remote Sens. 26, 4485–4498. doi:10.1080/
01431160500168686

Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B. (2011). Global
estimates of evapotranspiration for climate studies using multi-sensor remote sensing
data: Evaluation of three process-based approaches. Remote Sens. Environ. 115,
801–823. doi:10.1016/j.rse.2010.11.006

Wang, A., Zeng, X., and Guo, D. (2016). Estimates of global surface hydrology and
heat fluxes from the Community Land Model (CLM4. 5) with four atmospheric forcing
datasets. J. Hydrometeorol. 17, 2493–2510. doi:10.1175/JHM-D-16-0041.1

Wang, K., Dickinson, R. E., Wild, M., and Liang, S. (2010). Evidence for decadal
variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model
development. J. Geophys. Res. Atmos. 115, 20112–D20210. doi:10.1029/
2009JD013671

Wang, T., Wang, P., Wu, Z., Yu, J., Pozdniakov, S. P., Guan, X., et al. (2022). Modeling
revealed the effect of root dynamics on the water adaptability of phreatophytes. Agric.
For. Meteorology 320, 108959. doi:10.1016/j.agrformet.2022.108959

Weerasinghe, I., Bastiaanssen, W., Mul, M., Jia, L., and Van Griensven, A. (2020). Can
we trust remote sensing evapotranspiration products over Africa?Hydrology Earth Syst.
Sci. 24, 1565–1586. doi:10.5194/hess-24-1565-2020

Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., et al. (2013). Use of general
regression neural networks for generating the GLASS leaf area index product from time-
series MODIS surface reflectance. IEEE Trans. Geoscience Remote Sens. 52, 209–223.
doi:10.1109/TGRS.2013.2237780

Xie, Z., Yao, Y., Zhang, X., Liang, S., Fisher, J. B., Chen, J., et al. (2022). The global
LAnd surface satellite (GLASS) evapotranspiration product version 5.0: Algorithm
development and preliminary validation. J. Hydrology 610, 127990. doi:10.1016/j.
jhydrol.2022.127990

Xu, B., Li, J., Park, T., Liu, Q., Zeng, Y., Yin, G., et al. (2018). An integrated method for
validating long-term leaf area index products using global networks of site-based
measurements. Remote Sens. Environ. 209, 134–151. doi:10.1016/j.rse.2018.02.049

Xu, T., Guo, Z., Xia, Y., Ferreira, V. G., Liu, S., Wang, K., et al. (2019). Evaluation of
twelve evapotranspiration products from machine learning, remote sensing and land
surface models over conterminous United States. J. Hydrology 578, 124105. doi:10.1016/
j.jhydrol.2019.124105

Yang, P., Zhang, Y., Xia, J., and Sun, S. (2020). Identification of drought events in
the major basins of Central Asia based on a combined climatological deviation index
from GRACE measurements. Atmos. Res. 244, 105105. doi:10.1016/j.atmosres.2020.
105105

Yao, Y., Liang, S., Cheng, J., Liu, S., Fisher, J. B., Zhang, X., et al. (2013). MODIS-
driven estimation of terrestrial latent heat flux in China based on a modified
Priestley–Taylor algorithm. Agric. For. Meteorology 171, 187–202. doi:10.1016/j.
agrformet.2012.11.016

Yao, Y., Liang, S., Li, X., Hong, Y., Fisher, J. B., Zhang, N., et al. (2014). Bayesian
multimodel estimation of global terrestrial latent heat flux from eddy covariance,
meteorological, and satellite observations. J. Geophys. Res. Atmos. 119, 4521–4545.
doi:10.1002/2013JD020864

Yu, L., Qiu, G. Y., Yan, C., Zhao, W., Zou, Z., Ding, J., et al. (2022). A global terrestrial
evapotranspiration product based on the three-temperature model with fewer input
parameters and no calibration requirement. Earth Syst. Sci. Data Discuss. 14,
3673–3693. doi:10.5194/essd-14-3673-2022

Yuan, W., Liu, S., Yu, G., Bonnefond, J.-M., Chen, J., Davis, K., et al. (2010). Global
estimates of evapotranspiration and gross primary production based onMODIS and global
meteorology data. Remote Sens. Environ. 114, 1416–1431. doi:10.1016/j.rse.2010.01.022

Zeng, R., and Cai, X. (2018). Hydrologic observation, model, and theory congruence
on evapotranspiration variance: Diagnosis of multiple observations and land surface
models. Water Resour. Res. 54, 9074–9095. doi:10.1029/2018WR022723

Zeng, Z., Piao, S., Li, L. Z., Wang, T., Ciais, P., Lian, X., et al. (2018). Impact of Earth
greening on the terrestrial water cycle. J. Clim. 31, 2633–2650. doi:10.1175/JCLI-D-17-
0236.1

Zeng, Z., Piao, S., Lin, X., Yin, G., Peng, S., Ciais, P., et al. (2012). Global
evapotranspiration over the past three decades: Estimation based on the water
balance equation combined with empirical models. Environ. Res. Lett. 7, 014026.
doi:10.1088/1748-9326/7/1/014026

Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley, J. J., et al.
(2015). Vegetation greening and climate change promote multidecadal rises of global
land evapotranspiration. Sci. Rep. 5, 15956–15959. doi:10.1038/srep15956

Zhang, X., Zhang, Y., Ma, N., Kong, D., Tian, J., Shao, X., et al. (2021). Greening-
induced increase in evapotranspiration over Eurasia offset by CO2-induced vegetational
stomatal closure. Environ. Res. Lett. 16, 124008. doi:10.1088/1748-9326/ac3532

Zhang, Y., Chiew, F. H., Peña-Arancibia, J., Sun, F., Li, H., and Leuning, R. (2017).
Global variation of transpiration and soil evaporation and the role of their major climate
drivers. J. Geophys. Res. Atmos. 122, 6868–6881. doi:10.1002/2017JD027025

Zhang, Y., Gentine, P., Luo, X., Lian, X., Liu, Y., Zhou, S., et al. (2022). Increasing
sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric
CO2. Nat. Commun. 13, 4875–4879. doi:10.1038/s41467-022-32631-3

Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H., Vaze, J., Liu, C., et al.
(2016). Multi-decadal trends in global terrestrial evapotranspiration and its
components. Sci. Rep. 6, 19124–19212. doi:10.1038/srep19124

Zheng, H., Miao, C., Li, X., Kong, D., Gou, J., Wu, J., et al. (2022). Effects of
vegetation changes and multiple environmental factors on evapotranspiration across
China over the past 34 years. Earth’s Future 10, e2021EF002564. doi:10.1029/
2021EF002564

Zhong, Y., Zhong, M., Mao, Y., and Ji, B. (2020). Evaluation of evapotranspiration for
exorheic catchments of China during the GRACE era: From a water balance perspective.
Remote Sens. 12, 511. doi:10.3390/rs12030511

Frontiers in Environmental Science frontiersin.org19

Wang et al. 10.3389/fenvs.2023.1079520

https://doi.org/10.1080/01431160500168686
https://doi.org/10.1080/01431160500168686
https://doi.org/10.1016/j.rse.2010.11.006
https://doi.org/10.1175/JHM-D-16-0041.1
https://doi.org/10.1029/2009JD013671
https://doi.org/10.1029/2009JD013671
https://doi.org/10.1016/j.agrformet.2022.108959
https://doi.org/10.5194/hess-24-1565-2020
https://doi.org/10.1109/TGRS.2013.2237780
https://doi.org/10.1016/j.jhydrol.2022.127990
https://doi.org/10.1016/j.jhydrol.2022.127990
https://doi.org/10.1016/j.rse.2018.02.049
https://doi.org/10.1016/j.jhydrol.2019.124105
https://doi.org/10.1016/j.jhydrol.2019.124105
https://doi.org/10.1016/j.atmosres.2020.105105
https://doi.org/10.1016/j.atmosres.2020.105105
https://doi.org/10.1016/j.agrformet.2012.11.016
https://doi.org/10.1016/j.agrformet.2012.11.016
https://doi.org/10.1002/2013JD020864
https://doi.org/10.5194/essd-14-3673-2022
https://doi.org/10.1016/j.rse.2010.01.022
https://doi.org/10.1029/2018WR022723
https://doi.org/10.1175/JCLI-D-17-0236.1
https://doi.org/10.1175/JCLI-D-17-0236.1
https://doi.org/10.1088/1748-9326/7/1/014026
https://doi.org/10.1038/srep15956
https://doi.org/10.1088/1748-9326/ac3532
https://doi.org/10.1002/2017JD027025
https://doi.org/10.1038/s41467-022-32631-3
https://doi.org/10.1038/srep19124
https://doi.org/10.1029/2021EF002564
https://doi.org/10.1029/2021EF002564
https://doi.org/10.3390/rs12030511
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1079520

	Varying performance of eight evapotranspiration products with aridity and vegetation greenness across the globe
	1 Introduction
	2 Datasets and methods
	2.1 Datasets
	2.1.1 Runoff (Q) datasets
	2.1.2 Precipitation and GRACE datasets
	2.1.3 ET products
	2.1.4 AI and LAI data

	2.2 Methods
	2.2.1 Water balance ET
	2.2.2 Evaluation metrics
	2.2.3 Aridity and vegetation categories


	3 Results
	3.1 Overall assessment of ET products
	3.2 Validation by aridity regimes
	3.3 Validation by vegetation conditions

	4 Discussion
	4.1 Validation by dynamic aridity or vegetation conditions
	4.2 Uncertainties

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


