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Peatland is a fragile ecosystem in the tropical region which is prone to subsidence.
Until now, there is still lack of procedure to rapidly assess a tropical peatland
subsidence in a large area. Our objective was to compare subsidence in a used and
restored zone in a peatland hydrological unit using synthetic aperture radar data
from Sentinel-1A products (SAR data) in South Sumatra, Indonesia from the period
of 2014–2021. The subsidence rate of used peatland estimated by the D-InSAR
procedurewere in the range of 28–80 cm year−1 in the early period of its utilization
and becoming less for the consecutive year (16–48 cm year−1). Meanwhile, the
subsidence rate based on the field surveys was in the range of 4–50 cm year−1 in
the early period of peatland utilization. The subsidence rate in the used peatland
zone (agriculture and plantations) was higher than that in the restoration zone for
all SAR data pairs used in our study. The SAR data is a potential tool for the
assessment, monitoring and differentiating subsidence rates among different
peatland uses in a large area. This tool will help the Directorate of Peat
Ecosystem Degradation Control, Directorate General of Environmental
Pollution and Degradation Control, and Ministry of Environment and Forestry
to plan for better peatland management and restoration.
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1 Introduction

Peatlands of the world have the role to 1) store 525 Gt of global carbon, 2) supply 10% of
the global freshwater, and 3) regulate floods (Joosten and Clarke, 2002; Jaenicke et al., 2008;
Page et al., 2011; Acreman and Holden, 2013).

Peatland in Indonesia covers 13.9 million ha, being mostly located in Sumatra,
Kalimantan, and Papua. Some peatlands in Indonesia are used for agriculture and
plantation purposes, potentially accelerating their oxidation and decomposition
processes. The continual oxidation and decomposition of peatlands can result in
substantial land subsidence (Gambolati et al., 2005), and cumulative subsidence can
reach between 100 and 150 cm in the peat of more than 300 cm thick over the first
5 years after its use in Southeast Asia (Hooijer et al., 2012a; Hooijer et al., 2012b). Large scale
subsidence studies conducted in oil palm plantations on peatlands in South East Asia have
reported that, at average water table depths of 0.7 m, the subsidence rate is high at the
beginning of peat draining (Hooijer et al., 2012a; Hooijer et al., 2012b). Continuous land
subsidence can lead to loss of land because it can cause permanently flooded areas, which
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results in a loss of future peatland ecosystem services, such as climate
and water regulations (Jaenicke et al., 2008; Yule, 2010; Page et al.,
2011; Gao et al., 2015; Tarigan et al., 2021). Therefore, monitoring is
important for identifying areas experiencing substantial subsidence
and preparing for the implementation of mitigation measures.
Peatland ecosystems are commonly situated in remote areas, and
often lack detailed biophysical data. For such areas, satellite products
such as Sentinel-1 data offer a feasible option for identifying areas
experiencing subsidence. Sentinel-1 data are free to access, and in
combination with the D-InSAR method, can be used to
inexpensively estimate peat subsidence (Lees et al., 2018; Khakim
et al., 2020). Sentinel-1 data had been used in various peatland
studies including study of soil moisture and groundwater table
depths monitoring (Asmuss et al., 2019; Lees et al., 2021) and it
can partially pass through the treetops depending on the crown’s
characteristics (Czapiewski and Szumi´nska, 2022). The subsidence
of peatlands correlates with the presence of drainage activities
(Grzywna, 2017).

Our objective in this study was to identify subsidence rates in
used and restored peatland based on interferometric synthetic
aperture radar data from Sentinel-1A products (D-InSAR). The
advantage of SAR products is their ability to record data from the
Earth’s surface without depending on cloud conditions, which is
often a major obstacle for remote-sensing products, for example,
multispectral data (Shimada et al., 2016; Lees et al., 2018; Lal et al.,
2021). The C-band dual-polarization Sentinel-1 data serve as an
advantageous tool for monitoring tropical peatland and
discriminating peat depth classes (Khakim et al., 2020). D-InSAR
procedure can be used to accurately detect the location, range,
spatial change trend, and basin edge information of mining
subsidence (Chen et al., 2021). SAR data, in comparison with
optical remote sensors, are advantageous because of their ability
to penetrate vegetation canopies (Torbick et al., 2012; Merchant
et al., 2017; Canisius et al., 2019). While the D-InSAR procedures
had been used tomonitor mining subsidence, its application to study
peatland subsidence is still rare. The subsidence is an important
indicator for peatland degradation and their contribution to carbon
emission, especially in the tropical region. Our study examined the
application of the D-InSAR procedure to characterize the peatland
subsidence and then compared with available field survey data. The
result of our study will help the relevant authority to use tool to
monitor peatland subsidence in a large area which are very
important for the mitigation of the peatland subsidence.

The twomain InSARmethods used for subsidence identification
are: a) D-InSAR and b) SBAS-InSAR. Both D-InSAR and SBAS-
InSAR can be used to effectively monitor subsidence in real time
(Yang et al., 2018; Chen et al., 2021). The D-InSARmethod is used as
a short-term baseline to minimize decorrelation due to temporal
changes (Yang et al., 2018; Du et al., 2021). As our purpose in this
study was to identify subsidence on a yearly basis, we selected the
D-InSAR method as appropriate for application. Natural conditions
such as peatland moisture content, atmospheric conditions, and
vegetation canopy can affect the results of D-InSAR analysis
(Khakim et al., 2020; Lal et al., 2021; Tampuu et al., 2021). Soil
moisture is an important factor in determining the penetration
depth of the radar signals. Changes in the soil volumetric water
content can cause a change of up to 60 mm in C-band penetration
depth (Nolan et al., 2003; Nolan and Fatland, 2003).

The D-InSAR method generates an interferogram of a pair of
SAR images before and after subsidence and then subtracts the
subsidence information from the differential interferogram
(Massonnet et al., 1993). The basic principle of D-InSAR method
is to generate an interferogram of two radar images before and after
deformation, remove topographical factors using the difference
from the external DEM to generate a differential interferogram
(Chen et al., 2021), The result of D-InSAR processing is line-of-sight
imagery (LOS), which provides displacement values in every pixel of
the SAR data.

2 Materials and methods

2.1 Study area

The study area was in the Merang-Ngirawan peat hydrological
unit (PHU) (Figure 1). A peatland hydrological unit (PHU) is a peat
landscape between two rivers, often with one or more elevated peat
domes (Tarigan et al., 2020). The PHU was 80,000 ha, with
geographic coordinates of 01◦47′59″–02◦04′26″S and
103◦59′06″–104◦14′57″E., and the dominant peat thickness in
the study area was between 300 and 450 cm. However, in some
areas, the peat thickness could reach 800 cm. Part of the area in the
northern part was used for agriculture and plantations. The other
part in the southern area (24,000 ha) was managed as a peat
restoration zone. The plantations in the northern part and the
restoration in the southern part began around 2009 (Fitri, 2009).
The study area has a fairly high annual average rainfall of 2,500 mm,
with the highest rainfall occurring in December-January of
250–400 mm and the lowest in June of 64–86 mm. The annual
average temperature is 26°C (Kelola Sendang Project, 2018).

A time series land use map, Landsat images, LiDAR map, field
data on peat thickness, and rainfall data were available for our study
area (Table 1).

The land use data for years 1990–2014 was obtained from the
Kelola Sendang Project and for years 2015–2021 from Ministry for
Forestry. Together with the corresponding Landsat image, the land
use map was used to identify the land use transitions, especially
related to the period when the peatlands started to be used for
agriculture and plantations and the existence of draining canal
networks. The identification of this period was necessary in
relation to changes in the subsidence rate.

2.2 Data analysis

2.2.1 Differential interferometry SAR (D-InSAR)
Vegetation canopy can reduce the temporal coherence of the

D-InSAR procedure. To minimize the impact of the vegetation
canopy, we used a pair of SAR acquisitions with a short time interval
(1 year). In a 1-year interval, we expected minor vegetation changes
of plantation as perenial crops. In the dry and rainy seasons,
peatlands have different groundwater depths. During the dry
season, the groundwater table decreases; consequently, the
number of pores filled with the water in the peatland near the
surface decreases, which can cause a temporary surface decrease
(subsidence). To minimize the impact of different soil moisture
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contents between two SAR images, we only used images within
month of a similar season. Atmospheric-induced errors should
remain relatively constant over a few kilometers (Foster et al.,
2006; Bekaert et al., 2015).

During the rainy season, the groundwater table fills all the
peatland pores, which can slightly increase its surface level. The

surface level differences in the dry and wet seasons are not
categorized as subsidence because they are only temporary
conditions due to groundwater level fluctuations in different
seasons. In our study, we dealt with the permanent subsidence of
the peatland surface. Permanent subsidence in peatlands is caused
by decomposition, oxidation, and carbon emissions occurring over

FIGURE 1
Study area in Merang-Ngirawan peatland hydrological unit (PHU), Sumatra Indonesia.

TABLE 1 Data description.

Data type Sources

Peatland hydrological unit boundary Ministry for Forestry

Land use map Years 1990–2014 (Kelola Sendang Project) (2018)

Years 2015–2021 (KLHK)

Peat thickness Kelola Sendang Project-Deltares, LPPM-IPB (2019)

Landsat images Kelola Sendang Project

Rainfall data CHIRPS and INTREP climate stations

SAR data 2014–2021 European Space Agency (ESA)

Topography LIDAR data - Kelola Sendang Project (2018)

Hot spot map 2015 Modis Data - Kelola Sendang Project-Deltares (2018)
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several years. In Table 2, we list the daily rainfall conditions during
the acquisition days of the SAR data andmonthly cumulative rainfall
in December for each acquisition year. Moderate-to low-intensity
rainfall events do not interfere with SAR data coherence (Khakim
et al., 2020; Tampuu et al., 2021).

We analyzed peat subsidence by pairing yearly synthetic
aperture radar (SAR) data between December 2014 and
December 2021. In this study the SAR data available in the
European Space Agency (ESA) website was used, i.e., Sentinel-1A
Single Look Complex (SLC) and interferometric wide (IW). The
resolution of the Sentinel-1A imagery is 20 m × 20 m (Tampuu et al.,
2021). The SLC data consisted of several bursts, which were divided
into three subswaths (i.e., IW1, IW2, and IW3). Our study area was
situated in the IW2 subswath. We selected the VV polarization
during the TOPS Split command to reduce the data volume. The VV
coherence is more responsive to surface changes than the VH
coherence (Abdikan et al., 2016). The scene was a subset of the
boundary of the Merang-Ngirawan PHU (Figure 1). We used ESA
SNAP software to process the SAR data, including splitting the
subswath and selecting the bursts (TOPS Split) (Figure 2).

The D-InSAR processing steps included coregistration,
interferogram formation, TOPS deburst, filtering, phase
unwrapping using the statistical cost network flow algorithm for
phase unwrapping (SNAPHU), and terrain correction (Braun and
Veci, 2020). The coregistration step was necessary to align the pixels
between one SAR datum to another in two images. We used the
interferogram formation in the flattening step to change the
projection field. This step also produced coherent information
between the two images. Coherence indicates the consistency
between pairs of SAR imagery. The coherence value ranges
between 0 and 1, where a value of 0.2 is considered acceptable
(Khakim et al., 2020). Topo phase removal was used to remove
topographic effects using Digital Elevation Model (DEM) SRTM
30 m × 30 m data (Massonnet et al., 1993).

Phase unwrapping was performed to determine the absolute
interferometric phase of the relative phase. The absolute phase has
an interval value between -π and + π, which must be converted into
metric units for more accurate interpretation of the result. The
conversion to metric unit was carried out by performing phase
unwrapping of the interferogram using the statistical cost network

flow algorithm for phase unwrapping (SNAPHU) (Braun and Veci,
2020). Before phase unwrapping, we performed multilooking and
coherence-weighted phase filtering of Goldstein phase filtering
(Goldstein and Werner, 1998), separately. Phase filtering in the
D-InSAR process is used to increase the signal-to-noise ratio (SNR)
so that noise and orbit effects can be minimized. The final step of
D-InSAR processing was terrain correction of the interferometric
phase images into a geographic or UTM coordinate system.

2.2.2 Peat depth
Peat depthmapping in the study area has been conducted by several

institutions since 2010 (LPPM-IPB, 2019). To calculate the actual
subsidence rate, we used peat thickness data from the field surveys
in 2014 and 2019 and calculated the thickness change. Peat thickness
data for 2014 and 2019 were measured by drilling the peat in 43 and
135 sampling points, respectively. For both years, we chose several
sampling positions that overlapped or were close to each other in the
field. Peat thickness data comparisons in both years were only available
in the used area in the northern part. After calculating the peatland
subsidence based on the field surveys, we then compared the result to
the subsidence rate identified using the differential interferometry SAR
(D-InSAR) procedure in the used peatland.

3 Results

3.1 Land use change

Land uses in the PHU could be broadly categorized into two
types, a) agricultural and plantation in the northern part and b)
ecosystem restoration in the southern part (Figure 3C). Based on the
time series Landsat image, the PHU was still dominated by
secondary forests and shrub in 2005 (Figure 3A). Peatland use
has started in the northern part since 2008–2009 (Fitri, 2009). In
2009, some anthropogenic activities in the northeastern part of the
PHU were visible in the Landsat image, such as the opening of the
secondary forest for the establishment of new plantations (purple)
(Figure 3B). The restoration activities in the southern part of the
PHU also started around 2009 (Fitri, 2009). We could visually
identify both areas in the Landsat image 2014 (Figure 3C) and

TABLE 2 Rainfall in study area according to CHIRPS data.

Date SAR data Rainfall (mm)

Daily Cumulative in December

28-12-2014 S1A_IW_SLC__1SDV_20141228T112355_003918_004B52_A322 6 314

23-12-2015 S1A_IW_SLC__1SDV_20151223T112356_009168_00D329_C329 0 218

05-12-2016 S1A_IW_SLC__1SSV_20161205T112415_014243_017088_1D75 0 101

24-12-2017 S1A_IW_SLC__1SDV_20171224T112417_019843_021C21_1925 13 181

31-12-2018 S1A_IW_SLC__1SDV_20181231T112424_025268_02CB62_A194 15 107

14-12-2019 S1A_IW_SLC__1SDV_20191214T112431_030343_03789A_031A 0 196

20-12-2020 S1A_IW_SLC__1SDV_20201220T112437_035768_042FB5_28BA 0 150

27-12-2021 S1A_IW_SLC__1SDV_20211227T112442_041193_04E525_5F8A 18 162
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the corresponding land use maps (Figures 4A–C). Peatland use for
agriculture and plantations requires water drainage. During the
rainy season, water is drained from the peatland to maintain the
required ground water level of 40 cm. Water is drained by
constructed drainage canal networks. During the dry season, the
drainage canals are closed to prevent water level drawdown.
However, during prolonged dry seasons, the groundwater level
may be lower than 100 cm in the used zone. During this period,
intensive peatland oxidation and decomposition occur, leading to
higher subsidence. In the conservation zone, no water draining is
conducted during the rainy season. Excess water during the rainy
season is maintained as much as possible in the field to maintain a
high groundwater level throughout the dry season. In this case, the
oxidation and decomposition remain low. Consequently, subsidence
in the conservation zone is lower than that in the used zone.

In the 2014, the drainage canal networks in the northern part of the
PHU were relatively developed and interconnected. If not properly
managed, these draining canals accelerate peatland subsidence.

The establishment of plantations in the PHU occurred mainly
during 2006–2009 (Figure 5). The plantation developments are in
line with the decline of secondary forest and shrub areas at the same
time periods. After 2014 the plantation areas seem to become
constant.

3.2 Identification of peatland subsidence
with D-InSAR procedure

The accuracy of the D-InSAR procedure is reflected in the
interferometric coherence value. In our D-InSAR analysis, 69% of

FIGURE 2
Flowchart for D-InSAR processing.
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the pixels in our study area had a coherence value > 0.2 (Figures 6A, B).
Interferometric coherence is a normalized measure of the similarity
between two SAR data acquisitions, which quantifies the changes in the
amplitude and phase of the image pixels in an SAR image pair (Zebker

and Villasenor, 1992; Preiss et al., 2006; Scott et al., 2017). Coherence is
high when the position and physical properties of the scatterers within
the averaging window are similar for both images between acquisitions
(Tamm et al., 2016).

FIGURE 3
Landsat images of study area in (A) 2005, (B) 2009, and (C) 2014.

FIGURE 4
Land use map of study area in (A) 2005, (B) 2009, and (C) 2014.
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We identified subsidence using the D-InSAR method on a
yearly basis starting from the period of 2014–2015 until the
2020–2021 data pairs. The results of the analysis show that a)
relatively higher subsidence in the study area occurred in the

northern part of the PHU, where peatland are used for
plantations; b) the highest subsidence rate (>0.8 m/year)
occurred in the early use of peatland in year 2014–2015
(Figure 7A). Thereafter, the peatland subsidence rate decreased

FIGURE 5
Main land use change dynamic in the study area during time period 1990–2014.

FIGURE 6
Coherence histogram for (A) 2014–2015 and (B) 2015–2016.
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(Figures 7B–F). In the restored areas, peatlands are not used for
agriculture and plantations. The existing canal drainage are also
blocked in these areas. This is the main reason why the subsidence
rate in the southern area in all years considered was consistently
lower than that in the northern part.

Based on a field survey data (Table 3), in the early period of peatland
utilization the subsidence rate was in the range of 4–50 cm year−1.
Meanwhile, the subsidence rate estimation by the D-InSAR procedure
were in the range of 28–80 cm year−1 in the early period of its utilization
and becoming less for the consecutive year (16–48 cm year−1).

FIGURE 7
Yearly subsidence: (A) December 2014–December 2015, (B) December 2015–December 2016, (C) December 2017–December 2018, (D)
December 2018–December 2019, (E) December 2019–December 2020, and (F) December 2020–December 2021.

TABLE 3 Peat thickness change (cm) from 2014 until 2019 (5 years) based on the field surveys in northern part of PHU (agriculture and plantation zone).

Coordinates (UTM) Depth in 2014 Depth in 2019 Subsidence (cm)

In 5 years Yearly averaged

390,351, 9,783,865 370 230 140 28

397,932, 9,786,011 400 380 20 4

399,631, 9,785,546 320 210 110 22

392,000, 9,784,245 317 275 42 8

407,605, 9,784,153 750 600 15 3

402,074, 9,785,639 480 230 250 50

404,870, 9,785,460 549 455 94 19

407,609, 9,784,148 691 600 91 18
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FIGURE 8
(A) Peat fire in 2015, (B) burn scar from 2015 fire, and (C) high subsidence rate in the burn scar area based on D-InSAR (dark blue).

FIGURE 9
(A) Peat thickness and (B) subsidence during 2014–2015.
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3.3 Peat fire and subsidence

The study area experienced two peat fire events in 2015 and
2019, with that in 2015 being the most extensive, coinciding with
El Niño 2015. The 2015 peat fires occurred in both the used and
restoration zones. Peat fires can have impacts similar to those of
peatland surface subsidence. The impact of peat fires in the PHU
is often local. A detailed examination of the peat fire map in 2015
(Figure 8A) and the corresponding peat thickness map
(Figure 8B) showed that the impact of the peat fire in August
2015 has left a burn scar (indicated by a rectangle box in
Figure 8B). This burn scar occurred owing to the decreasing
peat thickness in that area, which was caused by the peat fire
event in 2015. When we located the corresponding location of the
burn scar on the subsidence map based on D-InSAR 2014–2015
(Figure 8C), the location was displayed in a dark blue color,
indicating a high subsidence rate (>80 cm). We subtracted
Figure 8C from Figure 7A, and we found that the peatland fire
only locally influenced subsidence. In contrast, peatland
decomposition and oxidation affected all used peatlands in the
northern part of the PHU.

3.4 Peat thickness and subsidence

The high subsidence rate during 2014–2015 (Figure 9B)
mostly occurred in the deep peat (Figure 9A). The agricultural
activities in the thick peat intensified the subsidence rate.

3.5 Topography

Each PHU has a peat dome. A peat dome in a PHU is
characterized by a higher elevation than its surroundings.
Depending on the form of the PHU, a peat dome can have a
height difference of approximately 5–20 m from its lower part
(Tarigan et al., 2020). Compared with the topographic map
(Figure 10A), higher subsidence mostly occurred in the peat
dome areas (Figure 10B), which were situated at a higher
elevation (northeastern part of the PHU). Peatlands at higher
elevations more easily drain than those at lower elevations.
During months of water scarcity, peatlands at higher elevations
dry before those at lower elevations. Consequently, peatlands at
higher elevations are more susceptible to subsidence than those at
lower elevations.

4 Discussion

The peatland water table and the peat thickness had been
considered as the most influencing factor in the peatland
subsidence in the previous studies (Hooijer et al., 2012a; Hooijer
et al., 2012b). Our finding shows that the agriculture activities and
the topography should be considered as important accompanying
factors for the subsidence rate as well. The agriculture activities
cause greater impact because they are associated with the
establishment of the drainage network. The drainage network
decreases the peatland water table providing conducive condition

FIGURE 10
(A) Elevation map based on LiDAR data and (B) peat subsidence (m).
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for peatland oxidation leading to a subsidence. Based on our findings
in this study, the subsidence monitoring priority should be carried
out in peatland area used as agriculture and situated in a higher
topographical position with tick peat.

Indonesia has 13.8 million ha peatland, most of it is experiencing
subsidence because of the anthropogenic influence, especially
agriculture activities. Peatland ecosystem around the globe covers
423 million hectare or about 2.9% of land surface (Xu et al., 2018).
Due to the serious consequences of the peatland subsidence around
the globe, their subsidence monitoring should be carried out
regularly to determine priority area for its mitigation before it is
too late to mitigate. The remote sensing data (for example, the SAR
data) provides realistic alternative to monitor the peatlands
subsidence rapidly. Previous studies had applied the InSAR
procedure with L-band from ALOS PALSAR data to estimate
geological surface deformation (Khakim et al., 2020). However,
the L-band data from ALOS 2 is very expensive and has less
coverage. In contrast, C-band from Sentinel-1 data (SAR data) is
free with a 12-days cycle in a single pass.

While the D-InSAR procedures had been used to monitor
mining subsidence (Ren and Feng, 2020; Chen et al., 2021), its
application to study peatland subsidence is still rare. Considering
that the D-InSAR procedures only requires two SAR images from
Sentinel-1 at the time, there is a potential use of D-InSAR in near-
real-time routine monitoring of peatlands subsidence. The D-InSAR
procedure can be effectively used for monitoring wide coverage areas
at a low cost (Klein et al., 2017; Acosta et al., 2021).

However, there is a slight difference between the subsidence rate
obtained using the D-InSAR procedure and the result of field survey
data. The difference can be attributed to the limitation of the
D-InSAR for subsidence measurement in vegetated area (Khakim
et al., 2020; Lal et al., 2021; Tampuu et al., 2021). Despite this
difference, our study showed that the subsidence rate based on the
D-InSAR procedure was consistently higher in the agriculture zone,
signifying the impact of agriculture activities in increasing the
subsidence rate. We have minimized the impact of vegetation
cover on the analysis by selecting a pair of SAR acquisitions with
a short time interval (1 year). In a 1-year interval, we expected minor
vegetation changes of the perennial crop in our study area.

5 Conclusion

The D-InSAR procedure proofed to be a potential and an
effective tools to rapidly monitor wide coverage areas of peatland
subsidence at a low cost. Our results showed that the subsidence rate
in the used peatland zone (agriculture and plantations) was higher
than that in the restoration zone for all data pairs used in our study.
The average subsidence rate in the used zone, based on the field
survey data, was in the range of 4–50 cm year−1. This value fit within
the subsidence rates estimated by the D-InSAR procedure, which are

in the range of 28–80 cm year−1 in the early period of its utilization
and becoming less for the consecutive year (16–48 cm year−1). The
topographical position in a PHU and the peat thickness intensified
the impact of agriculture activities on the subsidence rate.
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