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The gross primary productivity (GPP) of terrestrial ecosystems reflects the total
amount of organic carbon assimilated by vegetation through photosynthesis per
given unit of time and area, which represents the largest carbon flux in carbon
budget and plays a fundamental part in the carbon cycle. However, challenges
such as determining how to select appropriate methods to improve GPP
estimation accuracy at the regional/global scale remain. Therefore, it is of
great importance to comprehensively review the research progress on the
methods for estimating the GPP of terrestrial ecosystems and to summarize
their flaws, merits and application fields. In this study, we reviewed studies of
GPP estimation at different spatiotemporal scales, and systematically reviewed the
principles, formulas, representative methods (Ground observations, Model
simulations, SIF based GPP, and NIRv based GPP) at different scales and
models (Statistical/Ecological process/Machine learning/Light use efficiency
models), as well as the advantages and limitations of each research method/
models. A comprehensive comparison of GPP research methods was performed.
We expect that this work will provide some straightforward references for
researchers to further understand and to choose appropriate models for
assessing forest ecosystem GPP according to the research objectives and area.
Thus, critical and effective GPP estimation methods can be established for the
terrestrial carbon cycle, carbon neutralization accounting and local carbon
emission reduction policy formulation and implementation.
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1 Introduction

The gross primary productivity (GPP) is the sum of gross carbon fixation by autotrophic
carbon-fixing tissues per unit area and time (gross photosynthesis minus photorespiration)
(Chapin et al., 2006; Wohlfahrt and Gu, 2015). GPP represents the material and energy that
initially enters a terrestrial ecosystem and directly reflects the productivity of the terrestrial
ecosystem under natural conditions (Yuan et al., 2014a). GPP is an important link
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representing the capacity of vegetation fixing CO2 in the carbon
cycle through photosynthesis, drives seasonal and interannual
changes in CO2 contents and is also a key parameter for
understanding atmosphere-biosphere interactions and the global
carbon cycle (Christian et al., 2010; Yuan et al., 2014a).

The terrestrial ecosystem, as the most complex major carbon
pool among the “four carbon pools” in the world (i.e., namely, the
terrestrial ecosystem carbon pool, the lithosphere carbon pool, the
ocean carbon pool and the atmospheric carbon pool) stores 25%–
30% of anthropogenic CO2 emissions (Qiu, 2015; Wang et al., 2017).
This ecosystem type plays a vital role in maintaining the global
carbon cycle and mitigating climate change (Cramer et al., 2001),
and accurate quantification of GPP and its dynamic spatiotemporal
changes is not only an important prerequisite for ecosystem function
assessment and carbon balance research but can also serve as an
important indicator for evaluating the support capacities of
terrestrial ecosystems with regard to the sustainable development
of human society (Yuan et al., 2014a; Tang et al., 2015). However, it
is difficult to realize direct observations of GPP (Ma et al., 2015;
Rahman et al., 2015). Conclusions based on ground observations,
scattered spatial sampling and flux-site observations are applicable
only within a limited spatial range. Similarly, data-driven and
remote sensing model simulations make it possible to conduct
quantitative research and obtain spatio-temporal dynamic of
large-scale ecosystem GPP. Unfortunately, whether ground
observations or model simulation research is conducted, GPP
estimation results are always affected by environmental factors,
model structures and the response modes of different vegetation
types, which means great uncertainties exist in estimation results
derived at different temporal and spatial scales. In addition, under
the background of global climate change and the goals of “carbon
peaking and carbon neutrality”, increasing accuracy of regional/
global GPP estimations is an important scientific and social need in
the context of clarifying the current situation and establish the
potential for regional carbon sequestration.

Therefore, in this paper, we review the progress of GPP research,
systematically summarize the advantages and disadvantages of
ground-observation and model-simulation methods, aim to
systematically sort GPP estimation methods designed for
different scales and their application potentials, comprehensively
compare the characteristics of various models, and summarize the
existing problems and possible development directions. We expect
that this work will provide a reference for improving the quantitative
GPP research methods and model-selection process. Thus, effective
research methods for estimating the total amount of carbon
sequestration in the regional carbon cycle, performing carbon
neutralization accounting and formulating and implementing
local carbon emission reduction policies are provided.

2 Research progress on GPP estimation
methods

Since the launch of the International Biological Programme
(IBP) in the 1960s, research on the GPP of terrestrial ecosystems has
developed rapidly and has gone through stages such as field
investigations, fixed-point observations and model simulations
(Chen, 2017). In general, research on terrestrial ecosystem GPP

estimation can be roughly divided into two aspects: ground
observations and model simulations (Huang, 2019).

2.1 Ground observations

Ground observation research methods based on sample plots or
stations continue to develop and improve, from the traditional
biomass survey method to the chlorophyll determination method,
radioactive labelling method, eddy covariance method, etc. In
addition, ground observations accurately and rapidly record
climate data characterizing continuous changes in light,
temperature and water conditions in the analysed ecosystem,
allowing a large number of reliable driving and verification data
to be accumulated for subsequent GPP model simulations. At
present, commonly used ecosystem-scale GPP ground
observation methods include the biomass survey method and
eddy covariance method.

2.1.1 Biomass survey methods
Biomass survey methods represent a traditional ecosystem

productivity research method. Continuous biomass observations
are the most basic means used to understand biomass
accumulation dynamics, the relationships between ecosystem
productivity and climate conditions, soil conditions and other
factors, and the distributions of community photosynthetic
products both aboveground and belowground. Biomass survey
methods are simple and direct, but it is usually necessary to
study continuous multiyears monitoring data to effectively reflect
vegetation changes. Under certain conditions, GPP can be estimated
using the dynamic monitoring data associated with ecosystem
biomass change: this type ofchanges is formulated as GPP = NEP
+ Ra + Rh = NEP + Reco (with net ecosystem production (NEP),
ecosystem respiration (Reco), autotrophic respriation (Ra),
heterotrophic respriation (Rh)). Biomass survey methods are
small-scale observation methods, that are easy to implement with
simple tools, equipment and calculation methods. However, scale
mismatch may occur if large-scale extrapolation is need when
estimating regional GPP. Moreover, if we want to extrapolate
biomass to GPP, we must determine some variables that are
difficult to measure, such as root turnover. Therefore, the
estimation accuracy of this method needs to be verified. Zhang
et al. (2019) analysed and summarized regional and global biomass
datasets and found serious inconsistencies in the aboveground forest
biomass data; in addition, the estimation results obtained using these
datasets were highly uncertain (Liang et al., 2020). Therefore,
spatiotemporal GPP distribution estimations obtained with
biomass survey methods can be quite different. At the same time,
biomass survey methods lack the integration of information
regarding the carbon flux process or relevant environmental
variables in the corresponding time period, so the results
obtained using these methods cannot reflect the carbon cycle
process, the driving forces of the analysed ecosystem or the local
feedback adjustment mechanisms. Thus, the estimation accuracy of
these methods must be improved (Fei, 2018). This is mainly due to
the differences in the structure and function of the ecosystems,
resulting in significant differences in the data obtained. Due to the
above limitations of traditional field measurements to estimate
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biomass at a regional scale, remote sensing has been widely used for
estimation in past decades due to its wide-area coverage capability.
In remote sensing-based biomass estimation, field measurements
remain important, especially because they are indispensable to both
the calibration of remotely sensed data and the validation of
estimated biomass results. To estimate the primary productivity
of terrestrial ecosystems accurately at a regional scale, much effort is
currently being focused on integrating field data with remotely
sensed data such as optical, synthetic aperture radar (SAR) and
light detection and ranging (LiDAR) data using advanced methods
(Lim, 2003; Powell Scott et al., 2009; Sinha et al., 2015).

2.1.2 Eddy covariance methods
At the ecosystem scale, eddy covariance (EC) methods can be

used to obtain GPP ground observations by measuring the net
ecosystem exchange (NEE) between the biosphere and the
atmosphere and calculating the GPP of the vegetation (GPP =
–NEE + Reco). Specifically, at night, when vegetation does not
carry out photosynthesis, the GPP is zero, and the NEE and Reco

are equal. According to the observed NEE data collected at night, the
Reco estimation equation can be established, and the daytime Reco

can be estimated in combination with the daytime NEE to further
calculate GPP (Christian et al., 2010). This method has become the
most important method for measuring CO2 exchanges between
vegetation and the atmosphere and is also an internationally
recognized standard method for measuring carbon fluxes
(Schimel et al., 2015). In the 1990s, an international geosphere-
biosphere programme with global climate change research as the
core was formed to directly promote and accelerate the construction
and development of the global flux observation network
(FLUXNET), and a carbon flux observation network system
covering different climatic zones and typical vegetation ecological
areas around the world was gradually established. To date, carbon
flux networks that include more than 900 flux observation stations
have been formed; for example, in Asian flux network and the China
flux observation and research alliance provide long-term continuous
carbon-flux observation data collected at multiple time scales
(Friend Andrew et al., 2007) and covering almost all
representative ecosystem types (Yuan et al., 2014a). China
formally established a national carbon flux observation network
in 2002. After more than 20 years of development, nearly 100 flux
observation sites and research stations have been built nationwide
(details can be found at http://www.chinaflux.org/general/index.
aspx?nodeid=12). The continuous observation of CO2 fluxes in
various ecosystems, such as forests, grasslands, wetlands,
farmlands, deserts, cities and water areas, has been realized (Yu
et al., 2016). At the ecosystem scale, EC methods can provide direct
observations at a high precision (measurable trace (<0.
005 mg C m–2 s–1) turbulent flux), high temporal resolution (the
data output recording frequency is 10 or 20 Hz) and over a wide
range. In addition, these methods have a solid theoretical
foundation with regard to the observation and accounting
processes. However, these field-based flux observations are
affected by topography and geomorphology, and this method is
applicable only to areas with relatively flat underlying surfaces and
uniform canopy structures. At the same time, the actual data-
sampling areas monitored by eddy covariance methods are limited
to a small footprint (~1 km). The GPP values estimated using this

method thus represent the entire studied ecosystem, exhibiting
high temporal heterogeneities and a very limited spatial
representation. In addition, large amounts of funds and labour
are required for the construction and, later, maintenance of flux
towers, so the current number of stations is sparse and very
limited, making it difficult to obtain spatial or temporal GPP
patterns on the regional or global scale (Zhao et al., 2019).
Nevertheless, when we explore the coupled carbon-nitrogen-
water cycles of forest ecosystems and their biological regulation
mechanisms and analys the response and adaptation mechanism
of forest ecosystem carbon cycle processes under the background
of global change (Zhu et al., 2021), the data obtained using EC
methods still play an irreplaceable role in carbon cycle research
and in verifying the estimation accuracies of GPP models (Zhang,
2020).

2.2 Model simulations

The key problem restricting GPP simulations in regional/
global terrestrial ecosystems is the lack of reliable, large-scale
validation data, and this lack of data has greatly limited model
development for a long time. Therefore, obtaining accurate,
rapid, continuous and extensive ground observations has
become a key way to solve this problem (Yuan et al., 2014a).
Since the 1990s, with the increasing popularity of a variety of
medium and high-resolution satellite data and the accumulation
of eddy covariance flux data worldwide, many GPP estimation
models have been developed. These models can be roughly
divided into statistical models, ecological process models, light
use efficiency (LUE) models and machine learning methods (Lin
et al., 2018; Zhu, 2021). At the regional and even global scales,
estimating GPP with LUE models based on remote sensing data
has become an important and widely accepted research method
(Chen et al., 2014; Shi, 2019). The uncertainty in remote sensing
data products and the resulting C flux estimates can limits or
comparisons of the magnitude, interannual variability, and long-
term trends in vegetation productivity. As mentioned earlier,
satellite-derived VIs are widely used as proxies of GPP, while
LUE models, machine learning approaches, and diagnostic
process-based models are routinely used to quantify GPP
(Xiao et al., 2019).

2.2.1 Statistical models
Statistical models, also known as climate productivity models,

are used to estimate vegetation productivity by establishing
mathematical models through several common statistical
methods according to the relationships between plant biomass
changes and climate factors. For example, the Miami model
(Helmut, 1975), Thornthwaite model (Wickens et al., 1977) and
Chikugo model (Uchijima and Seino, 1985) have been widely used
in regional GPP estimations. The model simulation process is shown
in Figure 1. However, the Miami model considers only two limiting
factors, temperature and precipitation, and this model feature has
some defects. Based on the Miami model, the Thornthwaite model
increases the impact of evapotranspiration on plant photosynthesis
and improves the resulting estimation accuracy. Furthermore,
considering that the absorption of photosynthetically effective
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radiation by vegetation canopies is one of the leading factors
affecting photosynthesis, the Chikugo model adds the radiation
dryness index and net radiation to calculate vegetation
productivity, providing a more accurate description of
productivity. Chen (1987) used the improved Miami model to
calculate GPP in China, drew an online map and concluded that
the distribution trend of biomass in China gradually decreased from
southeast to northwest. This kind of model also has the advantages
of simple model structures, few parameters and easy data
acquisition. Correspondingly, the impact factors (temperature
and precipitation) considered in the models are excessively
simple, the complex ecosystem process is simplified, the
physiological basis is not sufficiently strict, and the estimation
results are uncertain. Specifically, when applied in arid and
semiarid grassland areas, the values estimated by these models
are high (Wen et al., 2014). At the same time, in areas with high
productivity, the productivity continues to increase while the
vegetation index becomes saturated. The correlation between
these two factors gradually decreases, failing to reflect the
response of the carbon sequestration process to climate change.

In addition, these models lack a rational description of the
vegetation productivity formation process (Yuan et al., 2014a).
Therefore, they cannot be used for future prediction research but
can be used only to assess real productivity.

2.2.2 Ecological process models
Ecological process models, also known as mechanism models,

are depict the physiological and ecological mechanisms associated
with vegetation growth and development in detail, such as radiative
transfer, photosynthesis, respiration, evapotranspiration, and soil
processes (Hall et al., 2012; Zhang et al., 2021). Thus, these models
are built to estimate the GPP of terrestrial ecosystems. Such models
include the Biome Bio-Geochemical Cycles (BIOME-BGC) model
(Running Steven, 1993), Boreal Ecosystem Productivity Simulator
(BEPS) model (Running Steven and Joseph, 1998), Lund-Postdam-
Jena (LPJ) model (Sitch et al., 2003), and Century model (Huang,
2000). This kind of model provides a solid theoretical foundation
and can clearly simulate the ecological mechanisms of plants. These
models usually regard the vegetation canopy as big leaf/two leaf
when computing ecosystem GPP. The main steps in the ecological

FIGURE 1
Schematic simulation process of typical statistical models.

FIGURE 2
Process and mechanism of ecological process model.
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process model is shown in Figure 2. The main principles of the
corrcsponding models are described below.

a) Big-leaf (BL) models regard the whole canopy as an extended
leaf, thus extending the leaf-level model type to the canopy scale
and achieving estimating GPP at the canopy scale. Representative
BL models include the Simple Biosphere (SIB2) (Sellers et al.,
1996), Biome-BGC and CLASS models (Wang et al., 2001).
These BL models simplify the canopy structure and
continuously improve the mechanism simulation effect. A
canopy photosynthetic model can be expressed as follows:

P � P Rcc( ) Rcc � Rsc/LAI (2 − 1)
where P (RCC) represents the canopy photosynthesis function, RCC is
the canopy conductance, RSC is the leaf stomatal conductance, and
LAI is the leaf area index. However, leaf photosynthesis exhibits a
non-linear response to stomatal conductance which leads to large
deviations between the calculated results and the actual values (Feng
et al., 2004). In addition, the photosynthetic rates of leaves differ
between direct radiation and scattered radiation conditions. Leaves
under direct radiation are limited by temperature and nutrients,
while leaves under scattered radiation are mainly limited by solar
radiation. In addition, in BL models, the differences between shaded
leaves and sunlit leaves are ignored.

b) Based on BL models, two-leaf (TL) models calculate the
photosynthetic rates of two leave types according to the
transport models of negative and positive leaves and finally
superimpose these two photosynthesis values to obtain the
canopy GPP. Typical TL models include the BEPS model,
Community Land Model (CLM) and Dynamic Land
Ecosystem Model (DLEM) (Liu et al., 1997; Tian et al., 2010;
Chen et al., 2012). In addition, multilayer models divide the
vegetation canopy (including leaves and air) into several vertical
layers, calculate the flux layer-by-layer, and finally accumulate
these fluxes to the canopy scale. Multilayer models, including the
spatial production allocation model (SPAM) and CANWHT
model (Feng et al., 2004), also distinguish between shaded leaves
and sunlit leaves. The estimation results of such models are more
accurate than those of simpler models, but these multilayer
models require more parameters and are relatively complex.

Ecological process models exist in many forms have complex
structures, require many input parameters and are difficult to
obtain. Although significant progress has been made in the
development of ecological process models over the past few
decades, there are still many areas that need to be improved
with regard to the GPP simulation performances of these
models. The GPP simulation results estimated by these models
are highly sensitive to the input parameters, and these models are
applicable only to typical areas containing a single vegetation type
or spatial scale. It is difficult to find models that are suitable for
specific research areas or research directions with practical
applications. In addition, the availability and accuracy of the
required data cannot be guaranteed during the practical
application process, and great uncertainties arise in the
simulation results. Therefore, this kind of model is difficult to

extend to regional-scale applications, and the advantages of the
model mechanisms cannot be effectively brought into play.

2.2.3 Machine learning methods
Ecological process models have a sound scientific basis but rely

on climate forcing variables and model parameterization (Zhang
et al., 2021). These uncertainties lead to differences in the simulation
results. Machine learning models are data-driven models based on
mathematical and statistical principles and establish the non-linear
relationships between input and target features by minimizing the
loss function mostly through an iterative training process. These
methods summarize the relationships between the carbon cycle and
observation variables from a statistical point of view with data-
driven techniques. In addition, machine learning methods can limit
the uncertainties associated the parameterization scheme, model
structure and input variables of traditional empirical and ecological
process models when simulating GPP. With the development of
computer science, increasing attention has been paid to research on
GPP inversion simulation methods that involve the use of remote
sensing data and measured flux data as training samples (Dong,
2021). Examples include artificial neural networks (ANNs), support
vector machines (SVMs), random forests (RFs), and convolutional
neural networks (CNNs). A number of studies have proven the
excellent performance of machine learning models in simulating
vegetation GPP and its time series. For example, Yang et al. (2007)
trained an SVM to predict vegetation GPP using explanatory remote
sensing variables, such as land surface temperature, the enhanced
vegetation index (EVI), land cover, and ground-measured climate
variables. A new two-step approach in which an existing emergent
constraint on CO2 fertilization was applied in combination with a
supervised machine learning model to constrain uncertainties in
multimodel predictions of GPP was proposed (Manuel et al., 2020).
Wu et al. (2019) developed a global forest GPP estimation model by
using a CNN. The simulation results were verified to be highly
consistent with the values observed at flux stations. An ANN was
used to estimate the global-scale GPP (142 ± 7.7 Pg C a–1), and the
result was not extensively different from that estimated by the
Vegetation Photosynthesis Model (VPM) (Zhang et al., 2017),
indicating that the machine learning method could effectively
capture the uncertainties associated with GPP changes (Joiner
and Yoshida, 2020). However, machine learning methods require
a large amount of training data to be input, and the simulation
results are difficult to interpret these methods display strong
regional applicability and relatively poor universality (Yuan et al.,
2014a). In addition, most existing machine learning methods are not
sufficiently deep; notably, the data-mining process is too shallow to
analyse potential data trends in detail. Thus, it is difficult to explain
the complex relationships between climate change processes and
ecosystems with traditional machine learning methods (Wu et al.,
2019). Zhang et al. (2021) developed a machine learning-based
scheme to simulate LAI and GPP time series solely based on
meteorological variables. The results demonstrated that the
machine learning models performed well in simulating the time
series of both LAI and GPP. Visibly, once developed and trained, the
machine learning models provide fast computing capabilities, and
can be conveniently applied to studies at the continental or global
scale. However, it is nearly impossible to interpret the processes in
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TABLE 1 LUE model structures.

Model Model
structure

Limiting factor
calculation method

Temporal
resolution

Spatial
resolution

Vegetation References Related
research
(China)

GLO-PEM GPP � FPAR × PAR × ε max × f(Ta) × f(SHD) × f(SM) f(Ta) � [(T−Tmin )(T−Tmax )]
[(T−Tmin )(T−Tmax )−(T−Topt )2 ]

Seasonal 8 km PFTs Prince Stephen
and Goward
(1995)

1981-2000

f(SM) � 1 − exp(0.081 (SM − 83.3)) Total GPP:
5.96 Pg C/a

f(SHD) � 1 − 0.05SHD (0< SHD≤ 15) Spatial resolution:
8 km Wang et al.
(2009)

or 0.25(SHD> 15)

SHD � SSH − SH

EC-LUE V1: GPP � FPAR × PAR × εmax × min(f(Ta), f(EF)); f(Ta) � [(T−Tmin )(T−Tmax )]
[(T−Tmin )(T−Tmax )−(T−Topt )2 ]

Daily Site scale forest Yuan et al. (2006),
Yuan et al. (2019)

2000-2009

V2: GPP � FPAR × PAR × εmax × min (f(Ta), f(EF)) ; V1: f(EF) � 1
β+1; grass Total GPP:

6.04 Pg C/a

V3: GPP � FPAR × PAR × εmax × f(CO2) × min (f(Ta), f(VPD)) ; V2: f(EF) � LE
Rn
; Spatial resolution:

10 km Li et al.
(2013)

V3: f(CO2) � (Ci − θ)/(Ci + 2θ), Ci � Ca × χ;
f(VPD) � VPD0/ (VPD + VPD0)

MOD17 GPP � FPAR × PAR × ε max × f(TMIN) × f(VPD) f(TMIN) � 1 (TMIN>TMINmax), or (TMIN − TMINmin)/
(TMINmax − TMINmin) (TMINmin ≤TMIN≤TMINmax), or 0 (TMIN<TMINmin);

f(VPD) � 0 (VPD>VPDmax), or (VPDmax − VPD)/ (VPDmax − VPDmin)
(VPDmin ≤VPD≤VPDmax), or 1 (VPD<VPDmin

8-day 1 km PFTs Justice et al.
(2002)

2001-2010

Total GPP:
5.47 Pg C/a

Spatial resolution:
0.5° He et al.
(2007)

VPM GPP � FPAR × PAR × εmax × f(Ta) × f(LSWI) × f(P) f(Ta) � [(T−Tmin )(T−Tmax )]
[(T−Tmin )(T−Tmax )−(T−Topt )2 ]

Hourly 1 km PFTs Pathmathevan et
al. (2008),
Schaefer et al.
(2012)

2006-2008

f(LSWI) � (1 + LSWI)/ (1 + LSWI max) Total GPP:
5.0 Pg C/a

Spatial resolution:
10 kmChen, (2014)

DTEC GPP � (εmsu × APARsu + εmsh × APARsh) × f(Ta) × f(W) f(Ta) � [(T−Tmin )(T−Tmax )]
[(T−Tmin )(T−Tmax )−(T−Topt )2 ]

Monthly 0.05° PFTs He et al. (2013) 2007-2010

f(W) � E/Ep Total GPP

7.17 Pg C/a

Spatial resolution:
0.0727° Zhang
et al. (2021a)
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the models and gain knowledge of the physiological mechanisms of
vegetation processes.

2.2.4 Light use efficiency (LUE) models
In 1972, Monteith first proposed an LUE model based on the

principle of light use efficiency. The main idea of this model involves
estimating GPP according to the LUE and absorbed
photosynthetically active radiation (APAR) of vegetation. LUE
models not only consider the relationships among GPP, LUE and
environmental factors but also consider the physiological and
ecological processes involved in vegetation photosynthesis. These
methods have a scientific physiological and ecological basis. At the
same time, they characterize a simplified model structure and have
greatly improved simulation abilities and application scopes. The
model algorithm can be expressed by Eq. 2-2 below:

GPP � APAR × LUE � PAR × FPAR × LUE (2 − 2)
where LUE represents the light use efficiency of vegetation, APAR
represents the photosynthetically effective radiation absorbed by the
vegetation canopy, FPAR represents the proportion of
photosynthetically effective radiation absorbed by the vegetation
canopy, and PAR represents the incident photosynthetically
effective radiation. In the process of model parameterization,
PAR can be directly obtained from meteorological data. The
acquisition methods of FPAR include: 1) empirical models based
on reflectance vegetation indices and 2) physical estimation models
based on radiative transfer theory (Hall et al., 1995). With the wide
application of various moderate and high-resolution remote sensing
data products, LUE models based on remote sensing data have
gradually become the mainstream methods for estimating GPP. The
representative models include the Carnegie-Ames-Stanford
Approach (CASA) model (Potter et al., 1993), Vegetation
Photosynthesis Model (VPM) (Xiao et al., 2004), Eddy
Covariance-LUE (EC-LUE) model (Yuan et al., 2006) and
MODIS GPP standard product (MOD17) (Heinsch et al., 2006).
See Table 1 for the algorithms of these LUE models. Different LUE
models adopt different remote sensing parameters, are applicable to
different research areas and research purposes, and consider
different impact factors.

The maximum light use efficiency (LUEmax) of vegetation refers
to the utilization rate of photosynthetically effective radiation by
vegetation under ideal conditions. This term is a physiological
attribute of plants, and its value is directly related to the type of
vegetation (Raymond, 1994; Goetz and Prince, 1998). As an
important input parameter of the LUE model, LUEmax was
assumed to be a fixed value for each vegetation type, as these
values are generally constant (Heinsch et al., 2006). However, in
reality, LUEmax values change with variations in vegetation types,
time, space, and the vertical structures of vegetation (Xie et al., 2020).
As the most important parameter in the LUE model, the LUEmax

assumption is an important reason for the low accuracies of
vegetation productivity model outputs (Yuan et al., 2014a). Potter
et al. found that the LUEmax of global vegetation was 0.389 g C ·MJ–1

(Potter et al., 1993). Without the limitations associated with climate
conditions or other factors, Hunt et al. believed that the upper LUE
limit was 3.5 g C · MJ– 1 (Raymond, 1994), while some scholars’
research results denote that the LUEs of some herbs and other
vegetation can range between 0.09 and 2.16 g C ·MJ– 1 (Ruimy et al.,TA
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1994; McCrady and Jokela, 1998). The comprehensive influence of
the geographical distributions of vegetation and climate zones also
causes LUEmax to show spatial heterogeneity (Zhao et al., 2007). The
influences of these different factors on LUE are shown in Table 2.
LUEmax changes dynamically with the functional type, phenology
and environmental stress of the local vegetation. Therefore, the
determination and selection of the LUEmax value pose very difficult
challenges (Zhao et al., 2004; Heinsch et al., 2006). To date, research
reflects great differences in the methods used to determine LUEmax

(Peng et al., 2000). Determining how to reasonably select this value
for ecosystems composed of multiple vegetation types is a key and
difficult task.

Although LUE models are all constructed on the same theoretical
basis, different model stucture parameterization schemes can result in
marked discrepancies in GPP estimates. On the one hand, researchers
have adopted different LUE calculation methods according to different
research purposes, making it difficult to directly compare the research
results. On the other hand, the research has shown that the model
parameters are simplified and that the LUEmax term is set to a fixed
value. For example, the MODIS-derived GPP is underestimated to a
certain extent, especially in farmland areas, due to the LUEmax

parameters being unable to distinguish C3 and C4 plants in the
model algorithm (Wang et al., 2013; Zhang et al., 2016a). Therefore,
Yan et al. (2015) proposed the terrestrial ecosystem carbon (TEC)
model to distinguish the LUE of C3 and C4 plants. As plant canopies
have higher LUE rates for scattered radiation than for direct radiation,
He et al. (2013) proposed a TL-LUE model that stratifies the canopy
into sunlit and shaded leaf areas and uses different LUEmax and APAR

values for them. Yan et al. (2017) further proposed an improved TL
light use efficiency model that considered the effects of direct radiation,
scattered radiation and C3 and C4 plant differences, thus improving the
reliability of the simulation results. Yuan et al. (2019) considered the
impact of elevated atmospheric CO2 concentrations on vegetation
growth, coupled the impact of atmospheric CO2 concentrations on
GPP to the EC-LUE model, and enhanced the ability of this remote
sensing data-driven LUEmodel to simulate long-term changes in GPP.
Interestingly, Mizunuma et al. collected images of a deciduous forest
from the top of a flux tower using two different camera systems. At this
deciduous woodland site, there was only a moderate relationship
between the NDVI from MODIS and the actual GPP over 2 years.
However, the LUE model based on vegetation colour indices calculated
from digital camera images yielded results with a better correlation with
GPP. In particular, the hue parameter was an excellent predictor of GPP
over 2 years (Toshie et al., 2013).

In addition to improving and optimizingmodel algorithms, scholars
have also carried out model comparison research based on observed flux
data, thus revealing the shortcomings of remote sensing GPP inversion
algorithms and the leading influencing factors. The spatiotemporal
differences of GPP in China simulated by the MODIS, Breathing
Earth System Simulator (BESS) and VPM models were compared.
The results showed that the three models could effectively reflect the
spatial change pattern of GPP, but great differences were found in the
interannual variation of the different models (Chen et al., 2019a). Lin
et al. (2018) compared and verified the simulation accuracy of a solar
energy utilization model in deciduous coniferous forests, mixed forests,
grasslands, farmlands, shrublands, and evergreen broad-leaved forest

TABLE 2 Influencing factors of LUE.

Influencing factor Effect of influencing factor on LUE

Vegetation composition and ecophysiological
structure factors

Vegetation type Different vegetation types have different LUEs

Surface coverage The higher the species richness is, the higher the LUE vertical utilization is

Age of the trees Generally, the LUEs of middle-aged and mature forests are higher than those of young forests

Canopy structure The canopy structure affects the absorption of direct and scattered radiation, but the
relationship between the two is not clear and needs further study

Species richness In ecological areas with mixed vegetation types, selecting a single LUE value introduces large
errors

Tree height Dwarf trees have higher LUEs because they are not light-saturated and can receive more
scattered radiation

Stomatal conductance The stomatal conductance and closing speed directly affect the PAR utilization efficiency
through the photosynthesis processes and subsequently affect the vegetation LUE

Environmental factors Moisture Water is a key factor affecting LUE. Drought and artificial irrigation both affect LUE, but the
details need to be explored

Radiation A certain radiation range increases LUE, but too much radiation triggers the photoprotection
mechanism and inhibits LUE

Temperature LUE increases in areas with sufficient water but shows a weak negative correlation in areas
experiencing drought

Carbon dioxide
concentration

An increase in the carbon dioxide concentration causes the LUE to increase to some extent

Scattered radiation Scattered radiation with a relatively strong penetration ability significantly increases
photosynthesis in leaves; the effects are more obvious on indirect canopy than on direct

canopies

Note: This table was adapted from (Gao et al., 2021).
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ecosystems and found that the R2 values derived between the VPM, EC-
LUE and MODIS models were between 0.11 and 0.78, and the root-
mean-square errors (RMSE) were between 1.37 and 4.65. Among the
analysed ecosystems, the simulation accuracies of every LUE model
applied to evergreen broad-leaved forests were low. According to the
above findings, although LUEmodels are relatively mature, uncertainties
exist in the accuracy of the estimation results obtained from thesemodels
in different regions and for different vegetation types. Therefore, the
selection of an appropriate model has a great impact on the GPP
estimation results, but the comprehensive estimation ability shown by
LUEmodels is commendable, and these methods can still be considered
reliable for estimating the GPP of regional and global terrestrial
ecosystems in the future.

2.3 GPP estimations based on sun-induced
chlorophyll fluorescence (SIF)

Sun-induced chlorophyll fluorescence (SIF) is a red and near-
infrared photon signal based on the absorption of natural light by

green plants. This signal can directly reflect dynamic changes in
plant photosynthesis. SIF is very sensitive to changes in
photosynthesis and is significantly correlated with GPP at the
leaf scale (Meroni et al., 2008), plant scale (Damm et al., 2015),
canopy scale (Zarco-Tejada et al., 2013) and ecosystem scale
(Guanter et al., 2012; Porcar-Castell et al., 2014). Therefore, the
use of SIF instead of other vegetation indices has important
application prospects with regard to improving GPP estimation
accuracies. Some scholars also believe that although there is a strong
linear relationship between SIF and GPP, large differences exist in
the linear slope of this relationship among different vegetation types
(Zhang et al., 2016b). Liu et al. (2022) compared remotely sensed SIF
retrievals and satellite-driven GPP products with tower-based GPP
measurements in two subtropical forests and reconfirmed the good
performance of SIF-based GPP estimation in a multi-year
evaluation, with strong linear SIF-GPP relationships observed
across two subtropical forest ecosystems. Although there are
some uncertainties associated with estimating GPP using SIF
inversion techniques, this method still has great potential and
developmental prospects.

FIGURE 3
The combined process between photosynthesis and SIF.

TABLE 3 Satellite-based sensors used to obtain SIF retrievals currently in orbit.

Platform Sciamachy GOSAT GOME-2 OCO-2 TanSat TROPOMI

Band (nm) 650–790 755–775 650–790 757–775 758–778 675–775

Spatial Continuity (nm) 0.48 0.025 0.5 0.042 0.044 0.38

Spatial continuity Continuous Discrete points Continuous Narrow strip Narrow strip Continuous

Start-stop time 2003.01-2012.07 2009.12- now 2007.01- now 2014.07- now 2016.12- now 2017.10- now

Transit time 9:30 13:30 9:30 13:30 13:30 13:30

Resolution (km2) 30 × 240 Diameter 10.5 40 × 80 (2013 and after: 40 × 40) 1.29 × 2.25 1.0 × 2.0 7 × 3

Signal - noise ratio 2800 300 2000 500 360 2660

Revisit period Approximately 3 days 3 days Approximately 2 days 16 days 16 days Approximately 1 day

Frontiers in Environmental Science frontiersin.org09

Liao et al. 10.3389/fenvs.2023.1093095

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1093095


2.3.1 Development of SIF retrieval methods
SIF is a spectral signal emitted by a photosynthetic centre when

green plants absorb solar energy for photosynthesis under natural light
conditions. SIF has two peaks corresponding to red light (685 nm) and
near-infrared light (740 nm) (Zhang et al., 2019). Moreover, SIF signals
are only from the fluorescent emission of vegetation based chlorophyll
(shown in Figure 3), which is less affected by the background of cloud
and soil conditions than is a vegetation index (Damm et al., 2015;
Norton et al., 2018). Therefore, SIF is regarded as an ideal tool for
exploring co-occurring vegetation activities and has great application
potential for plant growth monitoring (Pradeep et al., 2016). In 2011,
National Aeronautics and Space Administration (NASA) scientists first
used the Japanese Greenhouse Gases Observing Satellite (GOSAT) to
realize the remote sensing inversion of SIF at the global scale
(Frankenberg et al., 2011). This work has introduced new
innovations and research methods to large-scale vegetation GPP
research (Porcar-Castell et al., 2014). The satellite sensors that can
currently provide SIF inversion data are shown in Table 3.

Among the spectral signals reflected from the ground surface,
chlorophyll fluorescence accounts for approximately 1%–5% of the
reflected radiant energy in the near-infrared region. Therefore, it is
difficult to directly retrieve chlorophyll fluorescence information
from remote sensing data. SIF extraction methods mostly involve
calculations based on the Fraunhofer Line Discrimination (FLD)
algorithm proposed by Plascyk (Plascyk, 1975). The basic principles
are expressed as follows:

L λ( ) � r λ( ) · E λ( )
π + F λ( ) (2 − 3)

Fs � E λout( ) · L λin( ) − L λout( ) · E λin( )
E λout( ) − E λin( ) (2 − 4)

where λ is the wavelength, r(λ) is the true emissivity of vegetation
without considering fluorescence, E(λ) is the irradiance of the sun
incident on the vegetation, F(λ) is the chlorophyll fluorescence value

induced by sunlight, Fs is the chlorophyll fluorescence value, E (λin)
and E (λout) refer to the incident solar irradiance in the Fraunhofer
in-line band and out-of-line band, respectively, and L (λin) and L
(λout) are the apparent radiance in the Fraunhofer in-line band and
out-of-line band, respectively.

Although the standard FLD algorithm based on the atmospheric
radiative transfer mechanism is simple to operate, the reflectivity
and fluorescence values of two adjacent bands are not exactly the
same, and this feature affects the accuracy of the fluorescence
estimation results. Therefore, a series of improved algorithms
have been developed, including the three-band FLD (3FLD)
(VanToai et al., 2004) and corrected FLD (cFLD) algorithms
(GomezChova et al., 2006) based on multispectral data and the
improved FLD (iFLD) (Alonso et al., 2008), extended FLD (eFLD)
and spectral fitting method (SFM) algorithms based on
hyperspectral data (Meroni and Colombo, 2006). However, when
verifying the accuracy of SIF-GPP estimation results, the satellite-
derived SIF signal and the GPP value estimated from vorticity-
related stations face the problem of spatial inconsistency. Some
scholars have conducted relevant research on methods for
downscaling and reconstructing SIF data in attempts to overcome
the impacts of the different resolutions, physiological characteristics,
meteorological conditions and other aspects affecting these data
sources. Table 4 shows the available reconstructed SIF datasets.
These reconstructed SIF data can effectively reduce the cross-scale
mismatch problem and are consistent with both airborne and
ground-measured SIF results.

2.3.2 GPP estimation methods based on SIF
At present, research on GPP inversion estimates based on SIF

inversions has mostly focused on verifying the correlations between
SIF data derived from different sensors and the GPP characterizing
different vegetation types. This past research has confirmed the great
potential of SIF inversions in estimating GPP. Frankenberg et al. and

TABLE 4 Comparison of reconstructed SIF datasets.

Reconstructed
dataset name

Variable Predictor
variable

Machine learning
method

Spatial
resolution

Temporal
resolution

References

CSIF MCD43C4 (first four
bands)

OCO-2 Feedforward neural
network

0.05 4 days Zhang et al. (2018a)

SIF

RSIF Aqua-MODIS (four
bands)

GOME-2 Feedforward neural
network

500 m — Gentine and
Alemohammad (2018)

SIF

SIFoco2 005 MCD43C4 (seven
bands)

OCO-2 Feedforward neural
network

0.05 16 days Yu et al. (2016)

SIF

GOSIF Landcover OCO-2 Cubist regression tree 0.05 8 days Li and Xiao. (2019)

EVI, VPD, PAR and
temperature

SIF

SIFGOME2 005 MCD43C4 (seven
bands)

SCIAMA Random forests and
neural networks

0.05 Monthly Wen et al. (2020)

SIFSCIA 005 CHY SIF

SIF005 GOME-2

SIF
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Guanter et al. observed a high correlation between the SIF values
extracted from GOSAT and the GPP values estimated with data-
driven methods (Frankenberg et al., 2011; Guanter et al., 2012). Luis
et al. and Joiner et al. used Global Ozone Monitoring Experiment-2
(GOME-2) SIF data estimations to show that there is good
consistency between SIF estimations and the seasonal GPP cycle
as measured with flux towers. In addition, the authors reported that
the sensitivity of SIF to crop photosynthesis is also higher than those
of other existing remotely sensed parameters and models (Joiner
et al., 2014; Guanter et al., 2014). Other studies have also verified the
effectiveness of estimating GPP from SIF data derived from satellite
sensors such as the Orbiting Carbon Observatory-2 (OCO-2) (Sun
et al., 2018; Xing et al., 2018), TanSat (Du et al., 2018), and the
Tropospheric Monitoring Instrument (TROPOMI) (Damm et al.,
2015) through comparisons, indicating that SIF data have great
potential for retrieving and estimating GPP.

At present, the high correlation between SIF and GPP is directly
used to establish linear regression models between these variables.
LUE models based on remote sensing data can be defined as follows:

GPP t( ) � PAR t( ) × FPAR × LUEp t( ) (2 − 5)
SIF t, λ( ) � PAR t( ) × FPAR × LUEf t, λ( ) × fesc λ( ) (2 − 6)

where GPP(t) is the GPP at time t of the day, LUEp(t) is the PAR
efficiency at time t, PAR(t) is the photosynthetically effective
radiation reaching the canopy at time t, FPAR is the proportion
of photosynthetically effective radiation absorbed by the canopy, λ is
the wavelength of SIF, LUEf (t,λ) is the fluorescence quantum
efficiency, and fesc(λ)is the probability that the fluorescence
emitted by all leaves will escape from the canopy (Joiner et al.,
2014). The relationship between GPP(t) and SIF(t) can be obtained
by combining Eq. (2-2) and Eq. (2-6).

GPP t( ) � SIF t, λ( ) × 1
fesc λ( ) ×

LUEp t( )
LUEf t, λ( ) (2 − 7)

Near-infrared fluorescence is rarely reabsorbed by leaves or in
the canopy, and the canopy structure changes little when a satellite
repeatedly covers the same vegetation area within a certain period of
time. For the same vegetation type, fesc(λ) can be regarded as a
constant, especially for grasslands and cultivated lands. Thus, it is
assumed that 1/fesc(λ) = 1. Many studies have proven that under the
conditions of satellite measurements, LUEp(t) and LUEf(t,λ) tend to
change together (Zarco-Tejada et al., 2013; Alexander et al., 2010),
and this change can be considered a constant. Therefore, it can be
concluded that GPP and SIF are linear.

Based on satellite-derived SIF remote sensing data, a number of
studies have estimated GPP at regional and global scales and have
achieved good results. Frankenberg et al. (2011) extracted SIF
information from GOSAT data using a physical model for the
first time and established the relationship between SIF and GPP.
The results of their work show that there is a good linear relationship
between SIF and GPP on the global scale. Luis et al. compared the
relationships among GPP, GOME-2 SIF and theMODIS plant index
recorded at farmland vorticity flux stations in the United States and
found that the relationship between SIF and crop GPP was better
than that between the normalized difference vegetation index
(NDVI) and crop GPP, the latter relationship exhibited
saturation (Guanter et al., 2014). He et al. (2017) corrected the

viewing angle of GOME-2 SIF data and calculated the hot spot
direction weights (SIFh) and a weighted sum of SIF (SIFt) leaves to
represent the canopy conditions. The authors concluded that
compared to the original SIF observations, the data
distinguishing SIFh and SIFt had a better correlation with GPP.
The authors noted that the SIF760 signal can track the daily
dynamics of plant photosynthesis. GPP and SIF760 also showed
significant linear correlations every half hour in the canopy of
C3 crops (winter wheat) and C4 crops (summer maize), thus
further confirming the ability of SIF remote sensing signals to
directly estimate GPP (Guan, 2017).

Although global SIF inversion studies have achieved fruitful
results, the linear relationship between satellite-derived SIF remote
sensing signals and GPP derived based on spatiotemporal merging
methods exhibits great differences among different vegetation types
due to the strong spatial heterogeneities of ecosystems at spatial
scales above 5–10 km (Guanter et al., 2014). Moreover, some
scholars have pointed out that the correlation between GPP and
SIF at the canopy scale is not a simple linear correlation and that it is
more appropriate to use a hyperbolic model to represent this relation
(Porcar-Castell et al., 2014; Damm et al., 2015). In addition, the
correlation mechanism by which GPP could be estimated using SIF
is still unclear. At the same time, the correlation between SIF and
GPP is also affected by environmental stressors, canopy structure,
local plant functional types and other factors. It is thus necessary to
establish a more complete and systematic SIF-GPP research system
by combining more accurate observation experiments and improved
model algorithms. In summary, research regarding SIF remote
sensing inversions and GPP estimations still faces challenges such
as low observation accuracies, scale integration issues and model
algorithm shortcomings. Moreover, as an effective proxy for
terrestrial GPP, SIF reveals a greening trend across most of the
world’s karst areas. especially for global re-constructed SIF products.
Compared with the MODIS GPP product, the SIF observations
indirectly confirmed the superior performance of the VPM GPP
results (Chen et al., 2019b). This can be ascribed to an improved
light use efficiency parameter with the separate treatment for C3/
C4 photosynthesis pathways in the VPM model (Tang et al., 2022).
This indicates that satellite-based SIF retrievals will have multiple
spatial-scale and in broader and more in-depth applications of GPP
estimtion.

2.4 GPP estimation methods based on the
near-infrared reflectance of vegetation
(NIRv)

Recently, emerging improvements in the direct proxies of GPP,
including SIF and NIRv, have provideed alternative approaches to
estimate regional/global GPP(Guanter et al., 2014; Badgley et al.,
2017). These indices provide the information on vegetation
physiological and biochemical functions (Porcar-Castell et al.,
2014; Wang et al., 2019). However, generally limited by satellite-
based SIF coarse resolution, short duration (only starting from
1995), and sensor degradation impacts (Zhang et al., 2018b), it
can hardly be used to monitor the long-term trends in estimating
GPP. The recently proposed NIRv, is defined as the product of NDVI
and near-infrared (NIR) reflectance of vegetation. NIRv has a robust
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physical interpretation, as it relates directly to the number of NIR
photons reflected by plants (Badgley et al., 2017). As a result, NIRv

minimizes both the effects of soil contamination and variable
viewing geometry on satellite-derived spectra. Compared to
NDVI and fPAR, NIRv can better explain GPP flux changes at
the monthly and annual scales (56% of monthly changes and 68% of
annual changes), and the relationship between NIRv and GPP is
always linear. In addition, the RMSE of GPP simulations performed
based on site-based NIRv was 42% lower than that of the values
estimated through BESSmodel simulations but 57% higher than that
of the values estimated using the machine learning product
FLUXCOM (Badgley et al., 2017). This indicates that NIRv can
effectively balance the accuracy and complexity of the applied
model. Furthermore, the NIRv approach requires no additional
information on meteorological conditions, such as temperature,
vapour pressure deficit, or incoming radiation. Residuals in
observed GPP relative to NIRv-derived GPP estimates showed
only weak relationships with meteorological variables (Badgley
et al., 2017),demonstrating that NIRv provides a robust basis and
new independent method for global estimations of GPP.

Wang et al. (2021) established a robust NIRv-GPP empirical
relationship based on data recorded at hundreds of flux stations and
then extended this relationship to the global scale, generating a long-
term global GPP product based on Advanced Very High Resolution
Radiometer (AVHRR) NIRv observations. Using this product, the
global GPP was estimated to be 128.3 ± 4.0 Pg C yr– 1. This result is
within the estimation ranges of machine learning methods, LUE
models and ecological process models, and the spatial distribution

and seasonal pattern are also very similar, indicating that NIRv can
capture long-term GPP trends. According to the absorption and
reflection spectra of vegetation, this index can be subdivided into the
vegetation near-infrared reflectance (NIRv, Ref) and vegetation near-
infrared emissivity (NIRv, Rad). However, the relationships between
NIRv, Ref and GPP on relatively short time scales d) have not been
studied, but it is expected that this relationship would be worse than
that obtained on the monthly scale because short-term NIRv,Ref

changes are much smaller than long-term changes. At this time, the
NIRv of vegetation supplemented by considering incident radiation,
NIRv, Rad, may be the best analogue for obtaining GPP on relatively
short time scales (Zeng et al., 2019). Wu et al. (2020) evaluated the
GPP performances of corn and soybean with NIRv, Rad based on field
observations collected across multiple sites. Compared to the other
three analysed indicators (NIRv, Ref, EVI and SIF760), NIRv, Rad

better explained the changes in GPP. The strong correlations
between NIRv and GPP and between NIRv, Rad and GPP prove
the robustness of the NIRv, Rad indices in estimating GPP across sites,
indicating that linear models based on NIRv, Rad have great potential
for estimating crop GPP at short time scales from high-resolution or
long-term satellite remote sensing data. That is, the NIRv index that
considers incident radiation may become a direct substitute for GPP
on short time scales.

NIRv is also highly correlated with SIF and GPP on long-time
scales, and these relations have been widely considered by the
vegetation remote sensing community. However, NIRv also has
some unsolved problems and shortcomings. For example, as
NIRv is linearly proportional to NIR, how should saturation be

FIGURE 4
Summary of estimation methods of GPP.
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TABLE 5 Summaries of existing GPP research methods.

Research
method

Representative model Advantage Limitation Application scope

Biomass survey
methods

1) The test method is direct and
clear, the research objective is clear
and the technical requirement is
simple

1) The investigation process is
destructive to vegetation

Grasslands, crops, wetlands, forests
ecosystems, and other regions that
can be set up for quadrat-based
data collection

2) The method by which biomass
changes are obtained to estimate
NPP and convert NPP to GPP is
mature

2) The method involves a large
workload, is time consuming and
requires a long observation period

3) GPP can be calculated only by
calculating the proportion of
ecological respiration in the study
area

Eddy covariance
methods

1) Solid theoretical foundation and
high estimation accuracy

1) Flux towers are limited in
number and are unevenly
distributed

GPP can be obtained for almost all
typical ecosystem types, including
farmlands, forests, grasslands,
wetlands, and lakes. However, this
method is limited to areas with
vorticity flux stations

2) The estimation method is
reliable and recognized as the
standard GPP estimation method

2) The construction of flux towers
has high land and underlying
surface requirements and high
construction costs

3) Carbon, water and heat fluxes
are not directly available at the
regional or global scale

Statistical models 1) Miami model 1) Simple model structure 1) Lack of a mechanical description Grasslands, forest ecosystems, etc.
However, the climate condition
requirements are high, for
example, when applying these
models to arid and semiarid
grasslands, the estimated values are
high

2) Chikugo model 2) The required model parameters
are few and easy to obtain

2) The models have strong regional
applicability

3) Thornthwaite Memorial model 3) It is difficult to predict GPP
using these models

4) These models have relatively
high climatic condition
requirements

Ecological process
models

1) BIOME-BGC model 1) Clear description of
ecophysiological vegetation
processes

1) The model structures are
complex

For ecosystem types such as
forests, grasslands and farmlands,
it is worth noting that the
parameterization schemes of these
model are adaptable and must be
optimized or improved when the
models are applied to novel regions

2) BEPS model 2) These models can be used to
perform predictive GPP analyses

2) There are many parameters
involved, and some of them are
difficult to obtain

3) TEM model 3) The GPP estimation results
obtained from these models are
reliable

3) The regional applicability of
these models is strong but is
limited by the utilized scale
transformation

4) CENTURY model

5) SIB model

6) LPG model

LUE models 1) CASA model 1) The principle of the models is
clear, the calculations are simple,
and the models can be applied to
obtain large-scale GPP estimations

1) The LUEs of different vegetation
types have great spatiotemporal
differences

These models are widely used to
estimate the GPP of various types
of ecosystems. However, it is worth
noting that when the vegetation
heterogeneity is high in a study
area, it is necessary to distinguish
the selection of LUEmax values
corresponding to different
functional plant types

2) GLO-PEM model 2) Most of the model parameters
can be obtained from remote
sensing data

2) The chosen data sources and
optical transmission process
introduce additional uncertainties

3) VPM model 3) The simulation accuracy is high,
and the high-spatiotemporal-
resolution GPP estimates can be
obtained

(Continued on following page)
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addressed? In addition, NIRv uses the same band as NDVI, but it is
not clear how the applied assumptions and approximations affect
the NIRv values. These questions need to be explored and answered.
At the same time we should also realize that in addition to high
accuracy at calibration sites, the approach combines simple
calculation, robust error propagation, and the ability to utilize
decades of historical remote sensing data. To adapt to the needs
of GPP estimation at different spatio-temporal scales. Future
refinements of the NIRv-based approach can come from

improved remote sensing inputs and inclusion of additional
physiological processes.

3 Comprehensive comparison of GPP
research methods

According to the studies and results described above, six
conclusions can be obtained: 1) obtaining GPP from flux

TABLE 5 (Continued) Summaries of existing GPP research methods.

Research
method

Representative model Advantage Limitation Application scope

4) EC-LUE model

5) DTEC model

6) MODIS product

Machine learning
methods

1) ANNs 1) Feasible methods for effectively
solving complex and non-linear
problems

1) A large number of training
samples need to be input, the
availability of which is highly
dependent on ground-observed
data

These methods are suitable for
study areas where large amounts of
training data can be obtained, and
machine learning methods can be
coupled with various models to
estimate GPP, including the use of
SIF data2) SVMs 2) These methods are not affected

by the parametric uncertainty of
the selected model

2) The simulation results are
difficult to explain mechanically

3) RFs 1) Climate change and vegetation
heterogeneities greatly influence
the simulation results

4) CNNs

SIF-GPP 1) Empirical linear models based on
the SIF-GPP relation

1) SIF signals come only from
vegetation photosynthesis and are
less affected by the soil background
value and cloud cover conditions

1) SIF signals are very weak, so the
spatial and temporal resolutions of
ground- and satellite-derived SIF
observation data need to be
improved

Grasslands, forests, farmlands and
other ecosystems, these methods
are also used for crop monitoring
and phenology-related remote
sensing monitoring

2) Methods based on the SCOPE
model

2) The correlation between SIF and
GPP is better than those of GPP
and other vegetation indices based
on greenness

2) The relationship between SIF
information collected at different
scales and photosynthesis,
represents a difficulty in SIF data
reconstructions, especially cross-
scale simulations

3) Methods based on the VPM 3) These methods are ideal for
detecting transient photosynthetic
vegetation activities

NIRv-GPP 1) These methods achieve balanced
model accuracies and model
complexities

1) Some uncertainties exist in the
data sources (e.g., cloud
contamination)

These methods are most widely
applied to farmland ecosystems
(especially corn and soybeans)

2) No additional information on
climatic conditions is required

2) There is no physiological
explanation for the estimated
results

3) These methods allow statistically
valid error propagations

(4)These methods effectively
eliminate the impact of the canopy
structure

5) These calculations can be based
on existing high-resolution, widely
available satellite imagery
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observations based on eddy covariance methods is considered to be
the most accurate GPP estimation method at present. However, due
to the limited number and uneven distribution of flux stations, it is
not possible to directly obtain regional/global GPP spatiotemporal
patterns through spatial expansion, although the flux data
accumulated by EC methods are still indispensable basic data for
model simulations and accuracy verifications. 2) Data-driven
models lack any description of photosynthetic process
mechanisms. 3) Ecological process models have a complete
theoretical basis, but the model parameters are numerous and
difficult to obtain, and the model structures are relatively
complex. 4) Machine learning methods can prevent the
uncertainties caused by traditional model parameterization
schemes from arising but require the application of a large
number of training samples, and the estimation results are
difficult to interpret mechanically. 5) The principle of LUE
models is clear, and their calculations are simple. Thus, LUE
models have become the main tool used to assess regional/global
GPP spatial and temporal distributions. However, there are still
many deficiencies and defects in these model algorithms and
parameterization schemes, and the models need to be further
improved and verified. 6) SIF and NIRv, as direct substitutes of
GPP, provide the potential to estimate global GPP, but these
correlations are not consistent among different spatiotemporal
scales, and the estimation results obtained by these methods lack
a clear mechanistic explanation. In summary, the estimation
methods of GPP are shown in Figure 4, and the advantages,
limitations and application scopes of the various GPP estimation
methods reviewed in this paper are summarized comprehensively in
Table 5, which provides a model-selection reference for future GPP
quantitative research and enables researchers to select accurate
estimation models that are suitable for their specific study area.

4 Summary and perspectives

4.1 Summary

A key problem faced in model simulations is the need for
comprehensive data with which to parameterize the utilized model
and verify the simulation results, especially when performing
large-scale estimations. It is necessary to use ground-observed
data to improve and optimize the model, and model
parameterization errors are one of the main sources of regional/
global model estimation errors. First, developing high-precision
datasets containing many of the meteorological elements (such as
temperature, wind speed, radiation, and precipitation) required in
model operation is an important way to improve the simulation
accuracies of models. For example, a relatively high spatiotemporal
resolution and large observation range can be obtained by using
limited meteorological-station-observed data in combination with
inverted meteorological satellite-derived data. The massive
amounts of data that can be obtained with remote sensing
technologies can be effectively screened through comparisons
with ground-observed data to obtain the driving data required
in regional and even global GPP estimations. Therefore,
determining how to extract effective data from long-term,
continuous and large-scale remote sensing datasets according to

different research purposes in the future has become a key issue
faced when attempting to improve the accuracies of model
simulations.

Second, we should also be clearly aware that large simulation
errors still exist in remote sensing models when assessing some
ecosystems with certain vegetation types. For example, in
evergreen broad-leaved forests, the accuracies of almost all the
models assessed herein are lower than those obtained in other
ecosystems (Yuan et al., 2014b), although evergreen broad-leaved
forests play a critical role in the global terrestrial carbon cycle
(Yuan et al., 2014a). Generalizing the modelling process by
considering other ecosystems in global research would
introduce large errors, and the reliability of the research
results would be controversial. Therefore, it is necessary to
improve these model algorithms when simulating specific
ecosystem types or typical regions. One important idea
involves determining the focused abilities of different models
in different ecosystem types according to the accuracy weights of
each model algorithm derived for the same ecosystem type and
creating multiple model-coupling algorithms to give full play to
the advantages of each model and effectively reduce the
uncertainty of the simulation results.

In addition, with the development of research needs and
technical levels, some indices that perform better than the
correlations between vegetation indices and GPP in
photosynthesis processes have been found and applied (such
as SIF and NIRv). Of course, it is still very difficult to study the
relationship between SIF and GPP on multiple time scales,
including at the different growth stages of vegetation, and to
study the instantaneous relationship between SIF and GPP. Here,
the consideration of the different time scales (minutes to years)
provided by the EC method may be an effective way to verify the
SIF-GPP relationship on different time scales.

4.2 Perspectives

Generally, accurate driving data, specific algorithm formulas,
clear model uncertainties (error ranges) and highly relevant model
parameters are important indicators for improving the estimation
accuracy of a model and determining the potential application scope
of the model. This paper makes the following considerations
regarding how to optimize and improve the simulation accuracies
of analysedmodels: 1) the estimation results obtained using different
models are quite different. We compared the model structures and
evaluated the applicability of each analysed model to effectively
reduce the uncertainty introduced by each model itself and improve
the overall model simulation accuracy. Therefore, effectively
combining the advantages of various models and building a
coupled model containing multiple models are important
directions for the future development of GPP simulations. For
example, the combination of LUE models and machine learning
methods may be an important direction for the accurate simulation
of terrestrial GPP in the future. 2) Environmental stress factors,
including temperature, precipitation, solar radiation, VPD, CO2

concentration and evapotranspiration, also have important effects
on the accuracy of GPP simulations. In model simulation, generally,
one or more of these influencing factors are considered, while the
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impact of the other factors and their coupling effects on the GPP
estimation results are neglected. More factors could be further
considered in subsequent research to improve the accuracy of
GPP simulations and estimations. 3) The scale transition effect of
model simulation applications still represents a popular future
research direction. 4) The emerging SIF and NIRv indicators may
play an important role in improving the accuracy of LUE models in
regional and global GPP simulations. By integrating the SIF
indicators into the construction and calibration of LUE models,
and considering the evolution characteristics of LUE models, LUE
models can potentially be improved in the future.
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