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Most lotic ecosystems have been heavily modified in recent centuries to serve human
needs, for example, by building dams to form reservoirs. However, reservoirs have major
impacts on freshwater ecosystem functions and severely affect rheophilic fishes. The aim
of this review is to gather evidence that aside from direct habitat size reductions due to
reservoir construction, competition for food and space and predation from generalist
fishes affect rheophilic community compositions in tributaries (river/stream not directly
affected by water retention). River fragmentation by reservoirs enables the establishment
of generalist species in altered river sections. The settlement of generalist species, which
proliferate in reservoirs and replace most of the native fish species formerly present in
pristine river, may cause further diversity loss in tributaries. Generalist migrations in
tributaries, spanning from tens of metres to kilometres, affect fish communities that
have not been directly impacted by reservoir construction. This causes “edge effects”
where two distinct fish communities meet. Such interactions temporarily or permanently
reduce the effective sizes of available habitats for many native specialized rheophilic fish
species. We identified gaps that need to be considered to understand the mechanistic
functioning of distinct fauna at habitat edges. We call for detailed temporal telemetry and
trophic interaction studies to clarify the mechanisms that drive community changes
upstream of reservoirs. Finally, we demonstrate how such knowledge may be used in
conservation to protect the remnants of rheophilic fish populations.
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1 Introduction

Riverine ecosystems host much of the world’s biodiversity (Dudgeon et al., 2006; Reid et al.,
2019), yet they have been so significantly modified to meet human needs that few free-flowing
rivers remain (Grill et al., 2019; Belletti et al., 2020). Rivers have always been considered as
essential sources of human wellbeing, which provide food and water for domestic and agricultural
use, colonization pathways and transportation corridors, as well as being recognized as sources of
energy generation, which range from simple water wheels to sophisticated hydropower plants
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(Grill et al., 2019). With the increasing demands of growing human
populations, rivers are being regulated, impounded, and harnessed to
meet electricity, irrigation, water supply, and flood management needs
(Nilsson et al., 2005; Lehner et al., 2011; Reid et al., 2019). In addition to
their primary purposes, artificial structures such as flumes, sluices, weirs
and dams interfere with the natural processes of entire ecosystems. Such
impoundments cause river fragmentation, flow regime modifications,
sediment deposition, nutrient cycle alterations, and temperature
changes, which lead to rapid declines in biodiversity (Belmar et al.,
2010; Lehner et al., 2011; Feng et al., 2018; Grill et al., 2019; Jumani et al.,
2019). Due to the overall complexity of the impacts of fragmentation on
aquatic biodiversity that are caused by damming, the long-term scale of
these impacts, and the time lags between causes and consequences, the
changes in river functioning are likely underestimated (Fuller et al.,
2015; Belletti et al., 2020; Arboleya et al., 2021).

Habitat fragmentation is a paramount topic in biodiversity
conservation. One of the most important concepts is called “edge
effects”, which in a broad context can be described as the changes in
resource availability, physical and biological conditions at ecosystem
boundaries or within adjacent ecosystems (Fischer and Lindenmayer,
2007). Its biotic component, on which we focus in this review, includes
interactions among generalists occupying human-altered
environments and specialized species present in the remaining
pristine fragments (Andren and Angelstam, 1988). This primarily
terrestrial concept has the potential to be more widely used in fish
conservation due to similarities in the interactions among generalist
and rheophilic fish fauna living side by side (Tamario et al., 2021). In
particular, we review here evidence that reservoir construction may
induce similar biotic edge effects between generalists and rheophilic
fishes in interconnected rivers and streams (Figure 1), ranging from

tens of meters to kilometers depending on the particular system and
species.

Fish communities along river continua have evolved and are
maintained by a series of biotic and continuous longitudinal
gradients of abiotic variables through processes known as
environmental filtering (Jackson et al., 2001; Kraft et al., 2015),
which are reflected by the zonation patterns of fish communities
(Aarts and Nienhuis, 2003; Buisson et al., 2008; Troia and Gido, 2014).
Increasing riverbed steepness and water discharges and decreasing
trophic status, conductivity, and temperature constitute natural
barriers to dispersal for generalists and their proliferation in
upstream lotic environments inhabited by potamodromous
rheophilic species (Vannote et al., 1980; Johnson et al., 1995; Troia
and Gido, 2014). These natural processes are seriously damaged by
reservoir construction, and the impacts of reservoirs have been
monitored with special attention paid to altered habitats below
reservoir and newly established fish communities within reservoirs
(Bain et al., 1988; Kubečka, 1993; Říha et al., 2009; Ganassin et al.,
2021) and to river function alterations downstream and between
reservoirs (Preece and Jones, 2002; Perkin et al., 2015; Bartoň et al.,
2022). A significant scientific effort has been aimed to discover the
effects of limited gene flow due to migration constraints between
isolated sites and the way how construction of fish ladders could avert
these effects (Roscoe and Hinch, 2010; Kemp, 2016; Tamario et al.,
2019; Sun et al., 2022). However, the contact of two distinct fauna that
occupy lentic reservoirs and their fluvial tributaries is to the authors’
best knowledge not well covered.

Although edge effects are a critical issue in the global declines of
native rheophilic fish species populations in fragmented rivers
(Limburg and Waldman, 2009; Deinet et al., 2020), the effect of

FIGURE 1
Conceptual scheme of synergistic negative effects of reservoir construction on rheophilic fishes in tributaries (river/stream not directly affected by the
water retention function of a reservoir). While rheophilic fishes face a range of stressors varying from change in physical conditions to community change, this
review focuses on biotic interactions that are modified by reservoir construction (green and pink color). Due to the proliferation of generalists in impounded
sections of reservoirs, competitive interactions (e.g., food availability, spawning habitat, spatial niche) and predator-prey relationships (increased
mortality of rheophilic fish in various life stages) are compromised, leading to community change in tributaries and negatively impacting rheophilic fishes.
Please see main text for details and examples of interactions.
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reservoir fish fauna (which often predominantly consist of locally non-
native species) on rheophilic fish has received relatively little attention.
To date, most studies have evaluated biodiversity and trait-based
metrics in relation to reservoir occurrences and overall river
fragmentation and have provided useful insights into the
biodiversity declines and functional changes in impounded rivers
(Degerman et al., 2007; Wang et al., 2011; Esselman et al., 2013;
Van Looy et al., 2014; Cooper et al., 2017; Turgeon et al., 2019). To
much less extent were studied generalist fish migrations from
reservoirs to riverine sections on habitat edges, which can further
degrade river status (Andren and Angelstam, 1988; Tamario et al.,
2021). While some fish community changes in rivers can be attributed
to abiotic changes in ecosystems, others are likely related to biotic
interactions among unnaturally close lentic and lotic fish fauna
(Pringle et al., 2000; Jackson et al., 2001).

The aim of this review is to address the topic of edge effects of
lentic fish fauna that are composed of generalists in reservoirs and
their competitive and predation effects on rheophilic fish
communities. We summarize the current state of knowledge, from
reservoir settlement of generalist fish species, which is often driven by
intentional or unintentional fish transport, to dynamic migrations of
generalists into reservoir tributaries. Most importantly, we suggest that
predation and the competitive interactions among lotic and lentic
fauna are among the causes of the declining biotic integrity of reservoir
tributaries. Finally, we show that it is possible to protect riverine
communities by intentional fragmentation, where the conservation
benefits of such measures exceed their negative impacts. We focus our
attention on the impacts of generalist fishes that may come from three
sources: 1) local fish species that proliferate after reservoir
construction in impounded sections, 2) locally non-native species
(species native in the region that were not formerly present in local
communities) and 3) regionally non-native species (species not native
to the focal region). We mainly focused our attention on the impacts

on potamodromous rheophilic fish species, but when we did not find a
good example of biotic interactions due to edge effects, we used
examples of anadromous rheophilic fish species, which are better
studied due to their commercial importance. We have reviewed
literature and identified examples of such interactions ranging from
temperate to tropical climates (Figure 2). We aim to draw attention to
this topic, which is not yet explored in full, since it may help in
conservation efforts aimed to preserve declining rheophilic fish species
located upstream of reservoirs.

2 Proliferation of generalists in reservoirs

Dams create lentic or slow-flowing environments that are
generally much deeper than the original river channels
(Figure 3). Rheophilic fish are able to survive in such
environments until they are occupied by other species (Irz et al.,
2002; Lenhardt et al., 2009; Knott et al., 2021). However, on a
longer time scale, the proportions of rheophilic fish in impounded
environments generally become low, and they are replaced by
quickly proliferating generalists (Figures 3, 4; Gido et al., 2009;
Clavero and Hermoso 2010).

The community change has been described e.g. in mainland
Europe: a typical reservoir fish community is dominated by bream
(Abramis brama), roach (Rutilus rutilus), and bleak (Alburnus
alburnus) in the final stage of community succession, although
many reservoirs were constructed in rheophile-dominated
community zones (Kubečka, 1993; Říha et al., 2009). Two
rheophilic fish groups have been classified in Europe: More
specialized rheophiles A (e.g., Barbus barbus, Chondrostoma
nasus, Leuciscus leuciscus, Squalius cephalus, Alburnoides
bipunctaus, and Vimba vimba), which require river conditions
at all stages of their life histories, and less specialized rheophiles

FIGURE 2
Map of evidence for interactions between rheophilic fishes and generalist fishes compiled by the study. The numbers in themap correspond to numerical
order of case studies and their supporting references in Table 1.
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B (e.g., L. aspius, L. idus, Pelecus cultratus, Gobio gobio, Lota lota,
and Cobitis taenia), which are well adapted to lentic conditions
during part of the ontogeny (Schiemer and Waidbacher, 1992).
This classification appears to be valid in most systems outside
Europe, and the rheophiles A formerly abundant before dam
construction move upstream from lentic parts of reservoir
(Agostinho et al., 1999). Adult rheophiles B can inhabit suitable
reservoir habitats but usually become less abundant when
reservoirs are occupied by other species. All rheophilic species
require flowing water for reproduction, and their early stages have
higher dissolved oxygen requirements than generalist and
limnophilic species (Balon, 1975). The need for specific water
flows and the risk of being displaced from suitable habitats by
flow fluctuations (Bartoň et al., 2021; Bartoň et al., 2022) represent
a clear disadvantage of rheophilic fishes compared to generalists,
which are extremely flexible in their spawning substrate choices
and do not rely on narrow ranges of optimal conditions to provide
spawning sites (Hladík and Kubečka, 2004).

One of the main factors favoring the replacement of rheophilic
fish by generalists in reservoirs is changes in food resources. While
the main autochthonous primary production in rivers comes from
benthic systems, primary production in reservoirs is mostly pelagic
(Ward and Stanford, 1995). Littoral habitats with benthic food
chains may be the most productive per unit area, but due to large
pelagic spatial proportions of reservoirs, most production occurs in
pelagic areas (Fernando, 1994; Moraes et al., 2021). The bulk of
production in reservoirs goes from phytoplankton to zooplankton.
For rheophilic species, benthic macroinvertebrates and algae are
the main autochthonous food sources (Vannote et al., 1980; Aarts

and Nienhuis, 2003; Bešta et al., 2015). These resources are
generally limited in reservoirs (Agostinho et al., 1999; Moraes
et al., 2021) because productive benthic habitats are limited and
the benthos are also heavily used by omnivores (Agostinho et al.,
1999; Schleuter and Eckmann, 2008). Another important food
source for rheophilic fishes is terrestrial insects, which are
generally rarely available in reservoirs and are also preyed upon
by generalists (Mehner et al., 2005; Vašek et al., 2008). Although
specialized, truly planktivorous fishes are often found in small
numbers in reservoirs (Fernando and Holčík, 1991), while
omnivorous generalists such as cyprinids, characids, percids,
and centrarchids are well equipped to prey on zooplankton,
which leads to zooplankton size reduction (Seďa and Kubečka,
1997; Hülsmann et al., 1999; Quintana et al., 2015). The main
adaptations of omnivorous generalists for zooplankton feeding are
dense branchial sieves (Van Den Berg et al., 1994) and sinusoidal
swimming to detect dense aggregations of zooplankton (Jarolím
et al., 2010). Rheophilic species have no such adaptations and thus
cannot compete efficiently for the main food sources in reservoirs.
Although rheophiles B may survive as predators or specialized
benthivores, rheophiles A slowly disappear from these sites: when
the barbel (B. barbus) was locked in the large newly filled Orava
Reservoir (Slovakia), its growth rate decreased significantly despite
a trophic upsurge in the newly flooded reservoir (Havlena, 1964).
Additionally, study conducted in the Medjuvrsje Reservoir (Serbia)
shows that the decline of rheophilic fishes gradually increases with
reservoir aging (Lenhardt et al., 2009), and the increasing
domination of generalists may have further negative impact on
the tributaries.

FIGURE 3
Schematic representation of the community changes before (blue rectangle) and after reservoir construction (red rectangle) and the biotic interactions
among two distinct faunas of generalist fishes and rheophilic fishes in the tributary at the habitat edge. Rectangle indicates river section that is not directly
influenced by increase of water level, yet the community changes due to reservoir construction. The green dots in lower panel indicate shift from littoral
primary production to pelagic production and examples of invertebrates indicate the change in themajor prey items for omnivorous fish within reservoir
driving settlement of generalist fishes. Red arrow indicates enhanced interaction between generalist fishes in reservoir and rheophilic fishes in the tributary.
Only subset of fish species reviewed is depicted to maintain clarity—rheophilic fish examples: 1—Salmo trutta, Salmonidae; 2—Leuciscus aspius, Leuciscidae;
3—Hepsetus odoe, Characidae; 4—Cyprinella lutrensis, Leuciscidae; 5—Oligosarcus hepsetus, Characidae; typical generalists: 6—Abramis brama, Cyprinidae;
7—Clarias sp. Clariidae; 8—Micropterus salmoides, Centrarchidae; 9—Cichla ocellaris, Cichlidae. Drawn by Zuzana Sajdlová.
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3 Human-driven translocation of
lowland species to upstream man-made
habitats

Reservoirs often serve as stepping stones for non-native
generalists, which facilitates generalists dispersal across the
landscape (Havel et al., 2005; Johnson et al., 2008; Liew et al.,
2016; Silva-Sene et al., 2022) and thus reservoir communities have
usually high similarity with each other, despite their presence in
relatively distant watersheds with distinct riverine fish
communities. Therefore, reservoirs are one of the sources of
biotic homogenization in river ecosystems, which is
characterized by a loss of biological uniqueness (Olden and
Rooney, 2006; Poff et al., 2007; Clavero and Hermoso, 2010).
An example of such homogenization is introduction of Cichla
spp. Into reservoirs of Upper Paraná river basin and other
Brazilian regions resulting in the biotic homogenizations of
native fish assemblages (Franco et al., 2021). This genus has
been widely introduced within and outside the Neotropical
region and its introduction are mostly occurring in presence of
reservoirs (Franco et al., 2022a; Franco et al., 2022b).

In upper-river drainage areas, the colonization mechanisms of
newly established reservoirs by non-native generalists act more slowly
in the absence of fish transport (Olden et al., 2004). Considering non-
human driven reservoir colonization, opportunities would often be
limited to external or internal transport of fish eggs by birds, which is a
process whose frequency is still unknown in the context of fish
dispersal mechanisms (Hirsch et al., 2018; Silva et al., 2019; Lovas-
Kiss et al., 2020) and extreme flood events (Taylor and Cooke, 2012).

Therefore, the organized breeding and translocation of angler-
preferred generalists into novel environments poses a serious threat
to native fish communities (Copp et al., 2009; Volta et al., 2013; Early
et al., 2016). In addition, many small-sized generalists are introduced
accidentally with economically important stocking materials (Lusk
et al., 2010) and through the release of ornamental organisms (Patoka
et al., 2017) or live baitfish (Drake and Mandrak, 2014). Since these
impacts are directly driven by human activities, areas with higher
human population densities are more vulnerable to introductions of
non-native species (Dawson et al., 2017).

4 Timing of fish migrations from
reservoirs to tributaries

Animal migrations, including those of fish, are characterized as
regular movements between environments (Northcote, 1984), which
are influenced by individual characteristics (Chapman et al., 2011;
Skov et al., 2011; Harrison et al., 2015) and can be decomposed into
one-way migration events (Lucas and Baras, 2001). In general, fish
migrations between lentic and lotic habitats, e.g., between lakes and
their tributaries, are species-specific and depend on the food
availability in lakes and their tributaries, as well as trade-offs such
as predation risk or reproduction (Brönmark et al., 2008; Brodersen
et al., 2014; Šmejkal et al., 2018). Some of the generalists that thrive in
impounded habitats actively migrate over long distances into
tributaries, such as European bream (Hladík and Kubečka, 2003;
Pfauserová et al., 2021) or bleak (Šmejkal et al., 2017; Šmejkal
et al., 2018) and interacting strongly with rheophilic brown trout

FIGURE 4
Changes in fish guild compositions after the construction of reservoirs in two rivers in the Czech Republic. Four fish faunas are considered: Former river
community (Before), reservoir (Reser.), river locations less than 5 km upstream of the reservoirs (<5 km) and more than 5 km upstream of the reservoirs
(>5 km). Stocked salmonids refer to brown trout (Salmo trutta) and grayling (Thymallus thymallus) that are artificially supported by fisheries (according to
(Peňáz et al., 1968; Hladík et al., 2008)).
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(Salmo trutta) and asp (Leuciscus aspius), respectively. Thus, fauna
that interact at the edges of habitats can affect fish communities
located hundreds of meters to more than one hundred kilometers
upstream of impounded reaches (Perkin and Gido, 2011; Pfauserová
et al., 2021; Tamario et al., 2021).

Reproductive migrations appear to be the main reason that cause
fish to temporarily return from reservoirs to tributaries. In many
species, spawning areas and spawning grounds are well defined and
persist for many decades (Arnold et al., 2019), For example, lithophils
that spawn on gravel and phytophils that spawn on macrophytes or
flooded vegetation (Balon, 1975) migrate to tributaries when these
substrates are limited in reservoirs (Hladík and Kubečka, 2003). In the
case of European fish, spring migrations of rheophilic fish from
reservoirs into tributaries are regularly recorded, with lithophilous
asp and chub (Squalius cephalus) searching for gravel substrata
(Benitez, et al., 2015; Pfauserová et al., 2019; Pfauserová et al.,
2021; Šmejkal et al., 2021). Tributaries may also be used by
reproducing generalists such as bream that are not strictly
dependent on a single spawning substrate and use a wide range of
available substrates (Hladík and Kubečka, 2004; Říha et al., 2013) and
by phytophilous pike (Esox lucius) searching for submerged vegetation
(Sandlund et al., 2016).

Reservoirs contain relatively high abundances of fish, with many
generalist species, such as bream and roach, which are food-limited
and fail to reach their maximum size due to intra- and interspecific
competition and a lack of optimal food sources (benthos) (Šmejkal
et al., 2015; Žák et al., 2020). As tributary temperatures drop, food
resources become scarcer in the tributary, while predation risks
increase (Harvey and Nakamoto, 2013). For this reason, most
generalist species occupy tributaries in productive period of the
year and return to reservoirs for overwintering (Pfauserová et al.,
2021; Pfauserová et al., 2022). Although the mechanisms driving fish
migrations from reservoirs to tributaries are not completely
understood, it appears that the motivations may be similar to fish
migrations from lakes to tributaries, where reproduction plays an
important role (Kristiansen and Dølving, 1996; Baril and Magnan,
2002), as well as the predator-prey relationships (Skov et al., 2011).

The migratory activities between shallow lakes and their
tributaries and the high species abundances in shallow lake
tributaries in winter differ significantly from the dynamics of
cyprinid migration between deeper canyon-shaped reservoirs and
tributaries, where generalist fishes in tributaries peak in spring and
summer and return to reservoirs in winter (Hladík et al., 2008;
Pfauserová et al., 2021). For example, common bream, silver bream
(Blicca bjoerkna) and roach migrate to small tributaries for
overwintering to evade predation when the food availability in
lakes is low and predation risks in lakes are relatively higher
compared to tributaries (Skov et al., 2008; Skov et al., 2011).
Whether the available depths in reservoirs are essential for fish
decisions regarding where to overwinter (and thus affecting
interactions with rheophilic fish) remains to be investigated.

5 Predation of rheophilic species by
generalists in tributaries

One of the key factors that affects fish community structures in
freshwater ecosystems is predation (Persson, 1997; Jackson et al., 2001;
Temming et al., 2007). Generalist predators that thrive in the human-

made lentic parts of river systems interfere with lotic waters, although
the magnitude of the edge effects is unknown. In altered ecosystems,
adjacent lotic river fauna may be heavily preyed upon (Table 1; Jepsen
et al., 2000; Tamario et al., 2021). Introduction of predatory fish can
lead to extinction of local species, destruction of unique communities,
and severe loss of diversity (Chapleau et al., 1997; Hermoso et al., 2011;
Pelicice et al., 2015). For example, the preys for introduced pike consist
of native juvenile salmonids or other native rheophilic species where
salmonids are less abundant (Sepulveda et al., 2013). Another effect
observed in North America is the difference between unfragmented
and fragmented streams, where in unfragmented streams more
rheophilic specialists persist, and fragmented streams are
significantly more dominated by generalist predatory species
(Guenther and Spacie, 2006). Reservoir construction on the
Laramie River, Wyoming, also caused higher abundances of non-
native generalist predatory fish and led to extirpation and population
reductions of selected rheophilic fishes (Quist et al., 2005). The authors
of this study did not determine the specific mechanisms for the
changes in the fish communities upstream of the reservoir, but
they expected that non-native predators were the principal cause of
community change (Quist et al., 2005). The introduction of peacock
bass (Cichla ocellaris) in South America caused considerable negative
impacts on fish assemblage composition of upper stream riverine
native small-sized fish through predation (Franco et al., 2021).
Another example of the influence of generalists on fish species
occupying reservoir tributaries is the disappearance of red shiner
(Cyprinella lutrensis) from streams directly connected to Lake
Texoma, United States, with predation by centrarchids as a likely
contributing mechanism (Matthews and Marsh-Matthews, 2011).
Similarly, generalist predators threatened native rheophilic fish
fauna after the construction of the Kenney Reservoir, USA
(Martinez et al., 1994), although a detailed investigation of the
modified interactions between species is missing in this study.

A notable example in this regard is the largest European
freshwater fish, the European catfish (Silurus glanis), which is now
regionally non-native in portions of European freshwaters (Copp
et al., 2009). Catfish are typically introduced to reservoirs and
spread into higher-order rivers (Gago et al., 2016); in some
instances, they change fish communities during invasion
(Guillerault et al., 2015). Catfish cause high mortality in the
critically endangered allis shad (Alosa alosa) during spawning in
one of Europe’s most important spawning areas (e.g., Garonne
River, Southwest France) (Boulêtreau et al., 2021) but also in the
endangered sea lamprey (Petromyzon marinus) (Boulêtreau et al.,
2020), Atlantic salmon (Salmo salar) (Boulêtreau et al., 2018) or vimba
bream (Vimba vimba), European nase (Chondrostoma nasus) and
barbel (Barbus barbus) (Lyach, 2021). Predation on native fishes by
African catfish (Clarias gariepinus) caused a drastic reduction in the
abundance of endemic and endangered Pseudobarbus asper and
Sandelia bainsii in South Africa impoundments (Weyl et al., 2016).

Migratory success or mortality at early life stages can strongly
influence population sizes (Larsson, 1985). Most rheophilic fish
species must migrate downstream or upstream once or regularly
during their lives (Lucas and Baras, 2001). As a result, they
inevitably pass through altered sections of rivers with lentic waters
where the risk of predation is high (Jepsen et al., 1998; Olsson et al.,
2001). An example of how environmental alterations can increase
mortality is the massive predation of Atlantic salmon smolts by striped
bass (Morone saxatilis) as they pass through reservoirs (Table 1;

Frontiers in Environmental Science frontiersin.org06

Šmejkal et al. 10.3389/fenvs.2023.1099030

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1099030


TABLE 1 Examples of field-based evidence of the biotic interactions among generalist fish fauna of reservoir species and rheophilic fish with negative impacts on the remaining rheophilic fish populations based in reservoir
tributaries. Number (No) indicates the geographical position of the study in the map (Figure 2).

No Continents Country Latitude Longitude Generalist species Rheophilic/riverine species Eco-region Type of
interaction

Season References

1 Africa Nigeria 6.350006 5.650000 Unspecified Unspecified Ikpoba River Community
change

Spring,
Summer

Victor and Tetteh (1988)

2 North America United States 38.099791 −86.158582 M. salmoides, Morone
chrysops

Micropterus dolomieu, Esox americanus Central Indiana and Central
Till Plain.

Community
change

Spring Guenther and Spacie
(2006)

3 North America United States 39.424294 −106.30112 Unspecified Unspecified White River Community
change

Spring Martinez et al. (1994)

4 North America United States 42.104124 −104.877552 Unspecified Unspecified Great Plains river Community
change

Spring,
Summer

Quist et al. (2005)

5 Asia India 27.590000 86.560000 Unspecified Schizothorax richardsonii, Labeo dero,
Labeo dyocheilus

Himalayas Community
change

Spring Sugunan, (1995)

6 Asia India 21.012094 84.040789 Unspecified Puntius sarana, Tor mahanadtcus, Tor
mosal

Mahanadi Community
change

Spring,
Summer

Sugunan (1995)

7 Asia India 12.528591 75.993629 Unspecified P. dobsoni, P. dubius, P. carnaticus Cauvery Community
change

Spring,
Summer

Sugunan (1995)

C. drrhosa and Labeo kontius

8 Asia India 15.754239 80.89727 Unspecified P. kolus, P. dubius, P. sarana Krishna River Community
change

Spring Sugunan (1995)

P. porcellus, L.fimbrtatus, L. calbasu, L.
pangusia and Tor kudree

9 Asia China 28.900000 112.228777 Unspecified Unspecified Southeast Asia Community
change

Spring,
Summer, fall

Li et al. (2021)

10 Asia China 36.308176 115.783497 Unspecified Unspecified Huang He Plain Community
change

NA Zhang et al. (2018)

11 South America Brazil −30.005117 −51.123734 Unspecified Unspecified Paraná Community
change

NA Li et al. (2013)

12 Africa South Africa −24.58456 30.44019 Oncorhynchus mykiss Enteromius treurensis Zambezi Competition NA Maimela et al. (2022)

13 Europe Czech
Republic

48.51219 13.55126 Abramis brama Salmo trutta Central and Western Europe Competition NA Pfauserová et al. (2021)

14 South America Brazil −22.51000 −44.21000 Cichla ocellaris Rhamdia quelen, Hoplias malabaricus Paraná Competition NA Franco et al. (2022a)

15 South America Brazil −27.396172 −56.516809 Pterygoplichthys
ambrosettii

Unspecified Upper Paraná Competition NA Nobile et al. (2018)

16 Africa South Africa −33.652437 19.453672 Oncorhynchus mykiss Pseudobarbus, Burchelli, Sandelia
capensis, Galaxias zebratus

Zambezi Predation NA Shelton et al. (2015)

17 Africa South Africa −33.820655 24.845112 Clarias gariepinus Pseudobarbus asper, Sandelia bainsii Zambezi Predation NA Weyl et al. (2016)

(Continued on following page)
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TABLE 1 (Continued) Examples of field-based evidence of the biotic interactions among generalist fish fauna of reservoir species and rheophilic fish with negative impacts on the remaining rheophilic fish populations based in
reservoir tributaries. Number (No) indicates the geographical position of the study in the map (Figure 2).

No Continents Country Latitude Longitude Generalist species Rheophilic/riverine species Eco-region Type of
interaction

Season References

18 Africa Zambia −15.961329 23.14447 Hydrocynus forskahlii Hepsetus odoe,
Cyprinodontidae,Characidae

Upper Zambezi Predation NA Winemiller and
Kelso-Winemiller (1994)

19 North America United States 33.7705278 −96.8194926 Micropterus sp.,
Lepomis sp.

Cyprinella lutrensis US Southern Plains Predation NA Matthews and
Marsh-Matthews (2011)

20 North America United States 61.41340 −150.18230 Esox lucius Oncorhynchus tshawytscha, O. kisutch,
Lethenteron camtschaticum, Cottus
cognatus

Alaska and Canada Pacific
Coastal

Predation NA Sepulveda et al. (2013)

21 Europe France 44.06376 0.55333 Silurus glanis Salmo salar Cantrabic Coast - Languedoc Predation NA Boulêtreau et al. (2018)

22 Europe France 45.02458 0.364156 Silurus glanis Petromyzon marinus Cantrabic Coast - Languedoc Predation NA Boulêtreau et al. (2020)

23 Europe Denmark 55.87037 9.813089 Esox lucius, Stizostedion
lucioperca

Salmo trutta Central and Western Europe Predation NA Jepsen et al. (2000)

24 Europe Switzerland 47.5595986 7.5885761 Neogobius
melanostomus

Chondrostoma nasus Central and Western Europe Predation NA Lutz et al. (2020)

25 Europe Czech
Republic

49.578497 15.251671 Alburnus Leuciscus aspius Central and Western Europe Predation NA Šmejkal et al. (2017)

26 North America Canada 46.600481 66.632079 Morone saxatilis Salmo salar Northeast US and Southeast
Canada Atlantic Drainages

Predation NA Daniels et al. (2018)

27 North America Canada 47.094277 65.837024 Morone saxatilis Salmo salar Northeast US and Southeast
Canada Atlantic Drainages

Predation NA Blackwell and Juanes
(1998)

28 South America Brazil −18.78962 −48.14334 Cichla ocellaris Gymnotus carapo, Psalinodon fasciatus Paraná Predation NA Franco et al. (2022a)

29 South America Brazil −25.405789 −54.5862 Cichla ocellaris Gymnotus carapo, Psalinodon fasciatus Paraná Predation NA Franco et al. (2022a)

30 South America Brazil −15.72000 −44.60000 Cichla ocellaris Gymnotus carapo, Psalinodon fasciatus Paraná Predation NA Franco et al. (2022a)

31 South America Brazil −22.21000 −43.31000 Cichla ocellaris Astyanax bimaculatus, Oligosarcus
hepsetus

Paraíba do Sul river basin Predation NA Franco et al. (2022a)

32 South America Brazil −27.396172 −56.516809 Pterygoplichthys
ambrosettii

Unspecified Upper Paraná Predation NA Franco et al. (2022a)
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Blackwell and Juanes, 1998; Daniels et al., 2018). Predation of eggs by
non-native species can also be problematic for the recruitment of
native fish (Table 1; Schaeffer and Margraf 1987; Silbernagel and
Sorensen 2013; Karjalainen et al., 2015). Because of the spawning
migrations of generalists in the spring into tributaries (Hladík and
Kubečka, 2003), predation on eggs and juveniles may be an important
issue. Another example of edge effects is predation of eggs by
generalist bleaks, which reduced the reproductive success of
rheophilic asp in a tributary of a reservoir (Šmejkal et al., 2017;
Šmejkal et al., 2018).

Some rheophilic fish migrate to slower river sections and pools for
overwintering (Näslund et al., 1998) and remain nearly inactive during
the winter. However, if they use artificial impoundments as
overwintering habitats, they may be at higher risk of mortality
because many predators are still active when temperatures drop
(Brönmark et al., 2008). Although little studied, this may be a very
important hidden interaction in altered freshwater ecosystems
(Jackson et al., 2001; Hurst, 2007).

6 Temporal habitat displacement of
rheophilic species by generalists in
tributaries: Competition for food and
space

Competitive interactions among fish species may lead to habitat
niche displacement or even extirpation of native species (Pfauserová
et al., 2021; Tapkir et al., 2022). Strong seasonal migration patterns in
generalists such as roach and bleak have been described for
fragmented habitats (Slavík et al., 2009; Lothian et al., 2019; Mader
et al., 2020). These result in community structure changes with
seasonal patterns in tributaries: The ecological quality of fish stocks
in the Vltava River, as classified by the European Fish Index (Breine et
al. 2005), varied seasonally from good conditions in spring to
moderate conditions in autumn, which reflected seasonal
colonization by generalist species from the Lipno Reservoir
(Pfauserová et al., 2021). Some populations of non-native species,
including generalist bream, use this reservoir for overwintering during
harsh conditions and tributaries for feeding and/or spawning during
the rest of the year (Pfauserová et al., 2021). Such competition for food
sources or habitats often results in displacement of native species from
tributaries (Hoxmeier and Dieterman, 2016). Accordingly, the
presence of non-native fish in tributaries forced native brown trout
to relocate to small brook tributaries (Pfauserová et al., 2021). Spatial
segregation is a known response of brown trout to increasing
competition (Vehanen et al., 1999); however, it might have broader
ecological consequences. For example, the critically endangered
freshwater pearl mussel (Margaritifera margaritifera) utilizes brown
trout as the primary host for its glochidia larvae (Bauer et al., 1991).
Forced declines in the usage of the main river by brown trout during
the summer when glochidia are released could be considered a threat
to reproduction of this mussel, which is considered key to its
conservation (Modesto et al., 2018). Seasonal colonization of
tributaries by generalist species can thus alter habitats and available
resources for native fishes but also affects interactions with other
species.

Similar to the evidence from Europe, a study conducted in a reservoir
located on the White River, United States showed increased competition
of rheophilic fishes with non-native generalists. Generalist species

proliferated in the reservoir and comprised up to 90% of the fish
community, which also affected the remaining original fish
community in the tributary (Martinez et al., 1994). The negative
effects of competition with reservoir generalists may also be visible in
the significant positive associations of certain species with increasing
distances from reservoirs (Falke and Gido, 2006). Another example is the
construction of the Three Gorges Reservoir, China, which led to a
reduction in rheophilic fishes in the tributaries and increased
competition with 18 non-native generalists that proliferated in the
modified reservoir environment (Liao et al., 2018; Lin et al., 2018; Liu
et al., 2019). Maimela et al. (2022) revealed that adverse impacts on
community structure and function were observed due to competition for
food and space between O. mykiss and indigenous species in the upper
Blyde River Catchment, South Africa. Psedudobarbus verloenii, a tropical
rheophilic species, is reported to decline in South Africa due to reservoir
construction. This species spawns in clear water, moderate to fast flow
throughout the year and rocky substratum. It was widespread throughout
the Verlorenvlei and Langvlei River system, South Africa in the past, but
the population declined during the last century due to competition with
banded Mozambique tilapia (Oreochromis mossambicus), tilapia (Tilapia
sparrmanii), and common carp (Cyprinus carpio) (Chakona et al., 2014;
Shelton et al., 2015).

Competition for food and space in tributaries is not limited to
adult fish. During spring spawning, reservoir generalists can
outnumber native rheophilic species and deposit enormous
numbers of eggs in tributaries (Hladík and Kubečka, 2004). This
deposition of generalist offspring may affect the rheophilic species
recruitment as they compete for very similar food sources as juveniles
(Specziár and Rezsu, 2009); thus, there is the potential to investigate
how rheophilic recruitment is affected by habitat edges with adjacent
reservoir fauna. We are not aware of any studies that have quantified
this effect.

7 Intentional fragmentation as a tool for
reducing the spread of generalist species

Since generalist species usually occupy artificial, degraded habitats
(Corbacho and Sánchez, 2001; MacDougall and Turkington, 2005),
the simplest strategy to exclude them from uninvaded sites is to
protect natural habitats or restore degraded environments and allow
them to act as natural barriers against invasions of undesirable species
(Rahel, 2007). This restoration measure has been used, e.g., by the
removal of the Woolen Mills Dam, United States, and subsequent
habitat improvement work, which reduced the dominance of non-
native common carp (Cyprinus carpio) in favor of smallmouth bass
(Micropterus dolomieu) (Kanehl et al., 1997). Although dam removal
(reviewed in e.g. Bednarek, 2001; Tonitto and Riha, 2016; Ding et al.,
2019) is optimal solution of strong interaction between generalist
fishes and rheophilic fishes, the global trend is to increase proportions
of rivers that will be affected by damming (Grill et al., 2015; Zarfl et al.,
2015; Winemiller et al., 2016; Cutler et al., 2020). In cases where
restoration of degraded environments are not possible, there is a
possibility to disrupt the connection between the remaining
unoccupied tributary to isolate the habitats that are already
occupied by generalist species (Rahel, 2013). This approach, known
as intentional fragmentation or isolation management, has been used
worldwide and increasingly since the 1950’s (Jones et al., 2021). This
management measure significantly increases the eradication success of
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targeted species in riverine sections, which has otherwise rarely been
successful (Simberloff, 2013).

There are several ways to create intentional fragmentation in
aquatic systems, and we present the most-often used methods.
They consist of mechanical, electrical, chemical or other non-
mechanical methods (Table 2). Most commonly, exclusion barriers
are used to prevent upstream migration of undesirable species (Rahel
2013). Examples of mechanical barriers include constructing low head
dams, gabion barriers, or culvert barriers to restrict common carp and
other reservoir generalists from entering the upstream tributaries of
the Roaring River, United States (Bulow et al., 1988), limit sea lamprey
access to the spawning grounds in the Laurentian Great Lakes basin
(McLaughlin et al., 2007; Miehls et al., 2020) and protect native
salmonids in western North America (Novinger and Rahel, 2003;
Kirk et al., 2018). Although creating new barriers increases
fragmentation and can to some extent create new lentic habitats,
this impact is exceeded by the benefits of preventing intrusion of
unwanted taxa. Moreover, isolationmanagement has been shown for a
long time to support native trout populations in headwater streams,
when strategically placed barriers isolate catchments that are large
enough to allow seasonal movements and maintain metapopulation
structures (Harig and Fausch, 2002) and the isolated population is

large enough to avoid extinction due to loss of genetic variability or
stochastic demographic or environmental events (Cook et al., 2010).

Isolation management using electric barriers has been successfully
used to block non-native trout and protect reintroduced populations
of native Mediterranean brown trout (Salmo cetti) (Sabatini et al.,
2018) and a similar device is used seasonally to block the migration of
sea lamprey (Petromyzon marinus) and limit its reproduction in the
Black Mallard River, Michigan (Johnson et al., 2021). Electric barriers
meet the conflicting demands of managers to disrupt biological
connectivity while maintaining hydrologic connectivity. Despite
this advantage, there is a possibility of power or equipment failure
(Clarkson, 2004); these barriers could be overcome by jumping fish, or
their effectiveness may decrease during the navigation of metal-hulled
barges through these barriers (Parker et al., 2015). The world’s largest
and well-known electric barrier system was activated in the Chicago
Sanitary and Ship Canal in 2002. Two additional barriers were added
in 2009 and still function as the primary barrier to the spread of
bigheaded carps (i.e., silver carp Hypophthalmichthys molitrix and
bighead carp H. nobilis) between the Mississippi River and the Great
Lakes basin (Parker et al., 2016).

Various types of chemical barriers have been used worldwide, but
their use is much less widespread compared to mechanical and electric

TABLE 2 Examples of different types of barriers used to reduce the spread of generalists that were selected by using the criterion of estimated effectiveness.

Barrier type Target species Advantages Disadvantages Effectivity Relevant
citations

Mechanical—culvert brook trout (Salvelinus fontinalis) Easy construction Association with road crossing 100%

Gabions Easy to build Free interstitial spaces pervious 80%–100% Thompson and
Rahel (1998)

Electricall—small Mediterranean trout (Salmo cettii)
common carp (Cyprinus carpio)

Maintain hydrologic connectivity,
flexible deployment

Size selectivity, chance of
equipment or power outage

100% Sabatini et al.
(2018)

Large >99% Sparks et al.
(2010)

Chemosensory
alarm cue

Sea lamprey (Petromyzon marinus) Maintain hydrologic connectivity,
cheap, environmentally benign,
potential species selectivity

High effort to produce
sufficient bulk of cue, danger of
habituation

97%a Di Rocco et al.
(2016); Imre et al.
(2016)

Carbon dioxide silver carp (Hypophthalmichthys
molitrix), bighead carp
(Hypophthalmichthys nobilis)

Maintain hydrologic connectivity,
environmentally benign

Large investments in facility,
danger of habituation

50%–66% Schneider et al.
(2018)

Light (600 FPS) brown trout (Salmo trutta) Less infrastructure, low costs Species, life-history, ambient
conditions dependent

88% (day); 67%
(night) **

Jesus et al. (2019b)

Sound (sweep up
mode)

brown trout (Salmo trutta) Effective across wide range of
environments

Variable effectiveness, species
specific

16% Jesus et al. (2019a)

Douro nase (Pseudochondrostoma
duriense)

91% Jesus et al. (2019a)

Iberian barbel (Luciobarbus bocagei) 96% Jesus et al. (2019a)

Bubble curtain common carp Low cost Low effectivity under certain
conditions

74% (upstream);
28 (downstream)

Zielinski and
Sorensen (2015)

silver carp 80% ** Zielinski and
Sorensen (2016)

bigheaded carp 83% ** Zielinski and
Sorensen (2016)

Hydraulic Round goby (Neogobius
melanostomus)

Selectively excludes nuisance
species

Major modification to channel;
few sites meet criteria

100% ** Wiegleb et al.
(2021)

aThe calculated effectiveness represents the proportion of directed individuals outside the treated stream; however, there was the possibility of migrating into the control (untreated) stream.**

laboratory conditions.
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barriers. Application of taxon-specific piscicides can be quite effective in
preventing the invasion of non-native species in target areas (Araújo et al.,
2018). Although their effects can be effectively neutralized by other
substances (Weyl et al., 2014), they are potentially dangerous due to
their possible negative effects on entire ecosystems (Birceanu et al., 2014).
The use of chemosensory alarm cues (i.e., facilitating early warning for
prey fish) could be a cheaper and safer alternative (Frisch, 1938; Ferrari
et al., 2010; Imre et al., 2010). The effect of chemical alarm cues was
demonstrated primarily under laboratory conditions (Wagner et al., 2011)
and showed a significant reduction in the occurrence of non-native
species in the field (Di Rocco et al., 2016); however, this effect is not
absolute, and combinations with other measures are needed. Carbon
dioxide and ozone are other options that can be used to block fish
migration and prevent the further spread of non-native species, and they
are relatively environmentally benign compared to other chemicals in
aquatic systems (Buley et al., 2017; Suski, 2020). While the knowledge of
fish behavior with respect to these substances is relatively well known,
there are still many data gaps regarding the use of CO2 andO3 in the field,
including determining how freshwater river systems will respond to the
use of O3 barriers.

Other types of non-mechanical devices that provide barriers to
migrations of fish species, which are based on the behavioral
responses of fish to physical stimuli (e.g., light, sound, and air bubbles;
Bullen and Carlson 2003), are also being used more frequently. Some
species are attracted to light (Stamplecoskie et al., 2012), while others are
repelled (Hadderingh, 1982), but strobe lights repel most target species
and are most effective at pulse rates greater than 300 flashes per minute
(Kim and Mandrak, 2017). Experiments showed that acoustic signals
influence fish behavior (Vetter et al., 2015), but the observed response was
not sufficient to produce a strong deterrent effect in the field (Deleau et al.,
2020) and is affected by strong species-specific variability that is likely
caused by species differences in auditory sensitivity (Bullen and Carlson,
2003). The efficiency of this type of barrier could be increased in the future
by using a sweep or modulated sound (Jesus et al., 2019a) or in
combination with air-bubbles (ensonified bubble curtain), which helps
to focus and enhance sound fields while often causing its bubbles to
resonate (Dennis et al., 2019). The air-bubble curtains that are emitted
from air diffusers located along the water bottom achieved over 80%
efficiency in reducing passage for bigheaded and common carps
(Cyprinus carpio) under laboratory conditions (Zielinski et al., 2014).
Although the efficiency was lower in field experiments when fish were
more motivated to migrate (Zielinski and Sorensen, 2016), the
combination with sound (ensonified bubble curtain) increased its
efficiency to 95% or more for bigheaded carps (Taylor et al., 2005).
On the other hand, combination of ensonified bubble curtain with strobe
light has been show unlikely to block upstream sea lamprey migration in
laboratory (Miehls et al., 2017). A new approach to protect pristine
upstream areas from invasion by non-native fish consists of hydraulic or
velocity barriers (Wiegleb et al., 2021) and these have been tested under
laboratory conditions. Based on knowledge of the differences in
swimming performance under artificially elevated water flows (Kemp,
2016), environments can be created to prevent passage of the tested non-
native species (e.g., round goby Neogobius melanostomus) and allow
passage of desired species (e.g., gudgeon Gobio gobio and bullhead Cottus
gobio). However, the performance of such barriers has yet to be tested in
the field.

In summary, mechanical barriers, when properly operated and
maintained, can achieve 100% fish exclusion. Other barrier types are
either not 100% effective, are prone to fail in extreme or unexpected events

or have not yet been properly tested under field conditions (Table 2).
However, the resulting disruption of natural flows by mechanical barriers
and blockage of non-target species pose significant challenges. The
effectiveness of all behavioral and chemical barriers may continue to
decrease over time due to the habituation process of target species (Imre
et al., 2016). Nevertheless, they may significantly decrease the number of
generalist fishes and potentially reduce the impacts on rheophilic species
when combined with other management measures. A systematic review
on barrier types and efficiencies along with proper identification of
knowledge gaps may be beneficial in this field to achieve progress in
the conservation of reservoir tributaries.

8 Conclusion and future directions

Here, we reviewed the impacts on generalists due to damming
(which also applies to smaller impoundments) on rheophilic fish fauna
based in tributaries and the potential solutions to mitigate their impacts
through intentional fragmentation. We suggest that the observed
changes in fish diversity and fish functional traits in reservoir
tributaries following reservoir construction can be partly attributed
to changes in the intensities of interactions among generalists and
rheophilic species. We emphasize that the management of edge effects
may be critical to maintaining viable populations of rheophilic fishes in
lotic ecosystems that are modified to meet human needs. Although
many studies have examined the effects of reservoirs on fish diversity
(e.g. Esselman et al., 2013; Van Looy et al., 2014; Cooper et al., 2017),
detailed data on the intensified interactions among generalists and
rheophilic fish and ontogenetic bottlenecks due to competition or
predation are generally lacking (Tamario et al., 2021). In particular,
we call for detailed temporal telemetry, reproductive migration, and
trophic interaction studies to move from descriptive and correlative
science to a better understanding of the mechanisms behind the
community changes that are caused by artificially enhanced fish
fauna interactions. This knowledge may not only provide novel
insights into the observed trends but also may lead to novel
solutions for rheophilic species conservation efforts, which may be
targeted to specific bottlenecks that emerge due to habitat degradation.
An example of such conservation measures can consist of blocking the
migration of generalists to enable year-round utilization of river
channels by brown trout (Pfauserová et al., 2021).

One of the targets of future studies could be determining the habitat
proportions that need to be maintained to sustain potamodromous
rheophilic fish populations, e.g., (Fausch et al., 2002; Isaak et al., 2007;
Perkin et al., 2015). In particular, an important issue is the magnitude of
edge effects for protected rheophilic fish species that would prevent their
long-term population stability in the face of competition and predation by
generalists (e.g. Tamario et al., 2021). Since these patterns will often be
species- and site-specific to some extent, considerable conservation efforts
will need to be made to minimize local extinctions of rheophilic fishes in
fragmented rivers. In case a barrier is important to human needs more
than to protecting targeted species, what measures can be implemented to
minimize the predation and competition pressures from generalists?
Antimigration barriers that prevent generalists and other non-native
species from entering tributaries can help preserve the remaining free-
flowing segments, and much has been done in recent decades to make
progress in this area. However, efficiency evaluations of particular barrier
types need more research under comparable field conditions. Migrations
of generalists from reservoirs to tributaries provide an opportunity to
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apply temporarily installed barriers and mitigate edge effects for
conservation needs.
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Glossary

Anadromous species fish species spending part of their life cycles in
marine environments and reproducing in freshwater

Edge effects interactions among modified and natural environments
on their neighboring edges through changes in biotic and abiotic
conditions

Generalist species species that can utilize a wide range of ecological
conditions and various food sources

Lentic environment a body of standing water

Lotic environment fluvial freshwater environments such as streams
and rivers

Potamodromous species fish species spending their whole life cycle in
freshwater and typically undergoing only short-distance migration

Rheophilic species fish species that are specialized to live in fast
flowing streams and rivers at least for some of their life cycles

River continuum concept continuously integrating series of abiotic
and biotic parameters from river spring to its estuary
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