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Atmospheric nitrogen(N) deposition increased soil active N, and excessive N content
led to the increase of the ratio of nitrogen to phosphorus (N: P), which changed plant
growth from N limitation to phosphorus(P) limitation. Potentilla is not only an
important native greening material, but also a common diversity component in
various grasslands in China. Its population fluctuation in the process of N deposition
will affect the species diversity and productivity of grassland ecosystem. Potting
experiment was conducted for 2 years with Potentilla tanacetifolia, a common
species in the northern warm steppe, as the material. Through the interactive
treatment of different N addition (0, 10, 20, 40 kg N ha yr−1) and P addition (4, 6,
8 kg P ha yr−1) gradients, to analysis the feedback effect between leaf N and P content
and net photosynthetic rate (Pn). We explored the N: P threshold of N and P limitation
from the perspective of Pn. The results showed that: 1) Under low soil N
concentration, P addition can promote N absorption of P.tanacetifolia, while the
high soil N concentration can reduce the N: P by increasing the leaf P content to
weaken the limiting effect caused by nutrient imbalance of plants. 2) In N addition
environment, proper P addition increased Pn by increasing stomatal conductance
(Gs), while excessive P addition decreased Gs and inhibited Pn. 3) The Pn showed a
single peak normal distribution characteristic with the enhancement of the N: P of
leaves, and the Pnwas at a high level between 14.5–17.0. It was preliminarily believed
that the threshold value of N: P in leaves of P.tanacetifolia was 14.5–17.0. Plant
photosynthesis is very sensitive to the environment and easy to be affected by the
external environment. The results of N and P addition showed that Pn of broad-leaf
forbs was easily affected by N and P restriction, and P addition increased Pn of broad-
leaf forbs under N restriction. There was a certain relationship between N:P and Pn. It
was preliminarily believed that the N: P of P.tanacetifolia leaves is not limited by
nitrogen and phosphorus in the range of 14.5-17.0.
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Introduction

Atmospheric nitrogen(N) deposition has become the third driving factor for biodiversity loss
after land use and global climate change. Since 2005, the Biodiversity Committee of the UNEP has
listed N deposition as an important indicator for assessing biodiversity change (Sala et al., 2000;
Payne et al., 2017). N deposition increases the content of soil ionic N (NO3

-, NH4
+), the inherent
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nutrient balance between soil and plants is changed, which has a serious
impact on the growth and reproduction of plants, and ultimately leads
to the loss of species diversity (Liu et al., 2013; Stevens et al., 2018). In
recent years, the N deposition rate in northern China has reached
40–70 kg ha yr−1 and has been growing continuously, which has become
one of the important environmental variables in the warm steppe of
northern China (Yin et al., 2017; Tian et al., 2020). Due to the responses
of different plant to soil N addition, photosynthetic capacity, growth and
reproduction of plants showed different fluctuation trends under a
certain range of N addition (Soons et al., 2017; Ibáñez et al., 2018;
Stevens et al., 2018). Therefore, in order to further clarify the impact of
N deposition on the warm steppe communities in northern China,
further studies are still needed on different vegetation combinations in
different regions.

According to 1,091 sets of plant observation data from
181 research sites worldwide, N addition could significantly
increase the N content of plant leaves and lead to further increase
in the ratio of nitrogen to phosphorus (N:P) (You et al., 2018). In N
limited ecosystems, moderate N deposition increased the N content of

plants, and some plants had stronger growth and reproduction ability
due to the release of N limitation (Yu et al., 2022). However, when the
increase of N deposition exceeded a certain threshold, due to the
phosphorus(P) content in the soil was not supplemented, the high N:P
led to the transformation of the ecosystem from N limitation to P
limitation. Again inhibiting the growth of the plant (Bai et al., 2010;
Yuan et al., 2021). Study on the tundra zone of Changbai Mountain in
Northeast China found that N addition increased the leaf N content of
the dominant plant Rhododendron aureum, decreased the plasticity of
N and P, and decreased the plant viability, while another dominant
plantVaccinium uliginosum showed a batter growth trend (Yuan et al.,
2021). Therefore, N deposition will inevitably lead to the replacement
of dominant species or species decline. In order to determine the limit
range of plant N:P, we need an index as a basis for judgment.

Photosynthesis plays a key role in plant energy acquisition and
transformation, which will directly affect the growth and reproductive
capacity of plants. The loss of plant diversity in warm steppe due to N
enrichment mainly results from changes in plant functional groups,
through the rapid accumulation of NH4

+-N in the soil after N addition,

FIGURE 1
Basic information of test site, the red cross in the figure is the location of the test site.

FIGURE 2
Effects of N and P addition on (A) total N content and (B) total P content in leaves of P.tanacetifolia. Different capital letters indicate significant differences
(p < .05) between groups of N addition treatments in the same P treatment group, and different small letters indicate significant differences (p < .05) between
different P addition treatments in the same N treatment group, similarly for the following figure.
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which first inhibits the net photosynthetic rate of broad-leaved non-
root nodule plants, leading to the loss of these N sensitive species in the
early stages (≤3 years) of N enrichment, which has become an
important mechanism for the reduction of plant diversity due to N
deposition in warm alkaline calcareous steppe (Tian et al., 2020).
Therefore, changes in net photosynthetic rate is a stronger indicator of
the early stages of N addition. Studies in the eastern Tibetan Plateau
showed that Pn of Potentilla fruticosa was suppressed when N
additions exceeded 15 g N m−1 yr−1 (Guo et al., 2014). N additions
significantly increased the Pn of the dominant species Kobresia
capillifolia and Elymus nutans in cold grassland, but Pn of
Potentilla cranbergii was still inhibited (Xu et al., 2018). Pn of
Leymus chinensis was suppressed in temperate grasslands when N
additions exceeded 50 kg N · ha−1 · yr−1 (Wang et al., 2019a), while Pn
of the dominant species Cryptocarya concinna was suppressed at N
additions above 100 kg N · ha−1 · yr−1 in subtropical forests (Mao et al.,
2018). These studies show that the relationship between Pn response
and N addition of grass plants in different ecological regions has not
been uniformly concluded. With most grassland plants changing from
N limitation to P limitation, the net photosynthetic rate decreased with
the increase of N deposition. N:P in soil of alpine meadow, warm
steppe and mountain steppe was positively correlated with N:P in
leaves of their grassland vegetation (Stipa baicalensis, Leymus
chinensis, etc.) (Prach et al., 2021; Qian et al., 2018; Wang et al.,
2019a). This indicated that the net photosynthetic rate was inhibited

when N:P exceeded a certain threshold. Therefore, we supposed that
whether N:P could be reduced by P addition to alleviate the inhibition
of photosynthesis caused by plant nutrient limitation and improve the
growth and reproduction ability of plants in N deposition
environment.

Studies have shown that P addition can alleviate the P limitation of
plants when N is excessive (Liu et al., 2018; Zong et al., 2022). However,
many studies have focus on grasses and legumes, and the current
judgment of N and P limitation threshold is usually defined by the
biomass change of N and P addition experiments (Du et al., 2014;
Turner and Wright, 2014). Potentilla tanacetifolia is widely distributed
in temperate grasslands in northern China. It has the characteristics of
early turning green, strong drought resistance, high ornamental value,
and natural material for landscaping (Hao et al., 2020). We propose the
following hypotheses. Can changes in net photosynthetic rate reveal the
trend of N and P limitation of broad-leaf forbs by N deposition? Does P
addition in the context of N deposition improve net photosynthetic rate
of broad-leaf forbs? Is there any relationship between N:P and net
photosynthetic rate? Therefore, we selected P.tanacetifolia, a common
broad-leaved forbs in warm steppe of northern China, as the material.
Used pot experiment and the method of adding N and P artificially,
mastered the response of plant N and P content and photosynthesis
after the addition of N and P. Revealed the relationship between leaf N:P
and net photosynthetic rate, and explored the N:P threshold of N and P
limitation. This study provides a theoretical basis for predicting the

FIGURE 3
Coefficient of variation of N and P contents in P.tanacetifolia under (A)N addition treatment and (B) P addition treatment. Different capital letters indicate
significant differences (p < .05) between groups of CV of N and CV of P.

FIGURE 4
Effects of N and P addition on (A) net photosynthetic rate (Pn) and (B) stomatal conductance (Gs) of P.tanacetifolia.
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potential impact of N deposition on grassland plants in northern China
and coping strategies in the future.

Materials and methods

Study area and experimental design

The seed of P.tanacetifolia were collected from the Aerxiang
Teaching and Research Base of Shenyang Agricultural University
(42°08′-42°;50′N, 121°;53′-122°;58′E), which is located in the
transition zone from the eastern forest to the warm steppe, with an
annual precipitation of 550 mm (Figure 1). It is hot in summer and
cold in winter, belonging to the temperate continental climate. In
September 2018, the collected seeds were planted in experimental pots
(with an inner diameter of 21 cm, a height of 27 cm, and a hole with a
diameter of 1 cm at the bottom), and then placed in a greenhouse to
seedlings cultivation. In April 2019, one healthy seedling was retained
in each pot and moved to the awning for test. The pot was filled with
8 kg brown soil (pH 5.74, organic matter 32.11 g·kg−1, total N
1.02 g·kg−1, and total P .42 g·kg−1). The experimental period is from
June 2019 to September 2020, and samples will be taken after 2 years of
treatment.

The N treatment agent was urea (CH4N2O) with a N content of
46%, and KH2PO4 was used as a P additive. The amount of N and P
added in 1 year were divided into two equal parts, dissolved in water

and sprayed on June 10 and August 10 each year. According to the
measured data, the total atmospheric dry deposition of N was 24.1 kg
N ha yr−1 in 2017 in the grassland near the Dahekou Reservoir
(42°13′19.17″N, 116°38′4.00″E) in Inner Mongolia, 200 km from
the experimental area (Lu et al., 2021). 4 gradients of N
concentration are set. Marked as N0 (N free treatment, 0 kg N ha
yr−1), N10 (low N treatment, 10 kg N ha yr−1), N20 (medium N
treatment, 20 kg N ha yr−1) and N40 (high N treatment, 40 kg N ha
yr−1). According to the data of Hulun Buir Meadow Steep Field
Experiment Station of the Chinese Academy of Sciences (Gao
et al., 2017), 3 gradients of P concentration were set, which were
marked as P4 (low P treatment, 4 kg P ha yr−1), P6 (medium P
treatment, 6 kg P ha yr−1) and P8 (high P treatment, 8 kg P ha yr−1),
and there were 12 in total after two-factor interaction treatment. Each
treatment was repeated 5 per, with a total of 60 pots. To avoid the
influence of precipitation, it is calculated according to the annual
average precipitation of the test site that artificial water replenishment
is carried out every 4 days during the test period, which is equivalent to
an increase of 1% in annual precipitation.

Data collection

Photosynthesis was measured from 9:00 a.m. to 12:00 a.m. on
2 September 2020. Before the measurement, the leaves were wrapped
in tinfoil to adapt to the darkness at ambient temperature for 1 h, and

FIGURE 5
Relationship between net photosynthetic rate (Pn) and stomatal conductance (Gs) under different N and P addition treatments. (A) N0 group, (B) N10
group, (C) N20 group and (D) N40 group.

Frontiers in Environmental Science frontiersin.org04

Hao et al. 10.3389/fenvs.2023.1099203

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1099203


then the net photosynthetic rate (Pn), stomatal conductance (Gs) and
other light and parameters of the leaves of different plants were
measured by portable photosynthesis system (Li6800, Li-Cor,
United States). The CO2 cylinder was used for the measurement,
and the CO2 concentration was set to (400 ± 5) mmol mol−1. The red
and blue light source fluorescence chamber (LI6800-02) was used with
90% red light and 10% blue light as light sources, and the light intensity
was set to 1,350 μmol m−2 s−1 (Liu et al., 2019). Three leaves in the
same position were selected for each treatment, and each leaf was
collected five times, and the plant photosynthesis was recorded as the
average value of 15 data.

The plant leaves were taken immediately after the determination of
photosynthetic parameters, washed with distilled water and dried, and then
put into an oven for deactivation of enzymes (105°C, 30min) and dried at
65°C to constant weight. The dried plant samples were ground into powder
for determination, and the total N and P contents of the leaves were
determined by using an intermittent chemical analyzer (Smartchem140).

Statistical analysis

We used SPSS (Version 23.0, SPSS Inc., United States) to analyze the
collected data, and two-way ANOVA was used to analyze the significance
of the two factors of N and P addition, and then LSDmultiple comparisons
were performed. The significance analysis was performed at the 95%
confidence level for the P addition treatments. The analyzed data were
plotted using Sigmaplot (Version 12.5, Systat Software Inc., United States).
The variation degree of plant N and P nutrients is calculated according to
the ratio of the standard deviation of the plant N and P nutrient contents to
the average value of the N and P nutrient contents in the same
concentration N treatment group and the same concentration P
treatment group, i.e.

CV � SD

AV
(1)

Results

Effects of N and P addition on N and P
absorption in leaves

The leaf total N content of P.tanacetifolia was significantly
different only in N0 group. Compared with N0P4, the leaf total N
content significantly increased (p < .01) by 17.5% (N0P6) and 52.1%
(N0P8), and the leaf total N content increased with P addition
(Figure 2A). Leaf P content was different from N content. In N0,
N10 and N40 groups, P8 treatment significantly increased leaf total P
content (p < .05), while in N20 group, P6 treatment significantly
increased (p < .05) (Figure 2B).

Under N addition treatment, there was no significant difference in the
variation coefficient of P.tanacetifolia N nutrient, which was maintained
at a low level, while the variation coefficient of P nutrient was significantly
increased in the N0 and N10 groups (p < .05) (Figure 3A). Under P
addition, the variation coefficient of N increased significantly within
P4 group (p < .05), while there was no significant change in the coefficient
of variation of P nutrient (Figure 3B). Plant P nutrients were more
sensitive under low N (N0, N10), and plant N was also more sensitive
under low P conditions (P4).

Effects of N and P addition on leaf
photosynthetic parameters

In the N0 and N10 treatment groups, only the Pn of P4 was
significantly increased (p < .01), and in the N20 treatment group, the
Pn of P4 and P6 was significantly increased (p < .01), while in the
N40 treatment group, only the net photosynthesis rate of P6 was
significantly increased (Figure 4A). The change of Gs was basically
consistent with the change of Pn. The Gs of P4 in N0, N10 and
N20 treatments was significantly increased (p < .01), while the Gs of
P6 in N40 treatment was significantly increased (p < .01) (Figure 4B).

In order to demonstrate the effects of N and P addition on Pn and
Gs of P.tanacetifolia, we took the highest Pn in N0 group as the
boundary for comparison. In the N0 and N10 treatments, only part of
the Pn of P4 treatment could exceed this limit, and the Gs of
N10P4 treatment was lower when it exceeded this limit (Figures
5A, B). In the N20 treatment group, the Pn of most P4 treatments
were higher than this limit, and the Pn of most P6 treatments also
fluctuated at this limit, and the overall increase in Pn was promoted by
higherGs (Figure 5C). However, the N40 treatment was different from
other N addition groups. The photosynthesis of P4 treatment was
inhibited, while P6 treatment could still maintain the Pn above and
below the limit through higher Gs (Figure 5D). The P8 treatment
exhibited lower photosynthetic parameters at all N addition levels and
did not show significant changes (Figure 5).

Correlation between photosynthetic
parameters and N and P in leaves

Leaf N and P status is one of the important factors affecting Pn. We
found that with the increase of leaf N content, the Pn of plants decreased,
and there was a negative correlation between leaf N content and Pn
(Figure 6A). There was also a negative correlation between leaf P content
and Pn, and the Pn of the plant decreased with the increase of leaf P
content (Figure 6B).

We analyzed the leaf N:P and Pn under different treatments. The Pn
of P4 treatment was higher in the N0 and N10 treatment groups (Figures
7A, B). The Pn of P4 and P6 treatments were higher in the N20 treatment
group (Figure 7C). In the N40 treatment group, the Pn was higher in the
P6 treatment (Figure 7D). We found that the Pn and leaf N:P of
P.tanacetifolia leaves were normally distributed. The peak value of Pn
appeared in the range of 14.5–17 of leaf N:P, and the Pn decreased when
the leaf N:P was less than 14.5 or greater than 17 (Figure 7).

Discussion

Plants can adopt different strategies to adapt to environmental changes,
and different life forms have different responses to N and P environment.
Their nutrient distribution patterns will show different ecological
stoichiometry characteristics, under the environment of N addition the
N content of plants will fluctuate accordingly (Soons et al., 2017; He et al.,
2021). In our study, higher N concentrations (N20, N40) increased the leaf
N content of P.tanacetifolia, but theN40 treatment did not showhigher leaf
N concentration than the N20 treatment as the N concentration continued
to increase. This indicates that leaf N content will stabilize after a certain
amount of uptake andwill not increase with the increase ofN addition. Leaf
P content was elevated at higher N concentrations (N20, N40) compared to
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lower N concentrations (N10, N20) treatments (Figure 2). Similar results
were found in Pennisetum centrasiaticum, where N addition increased leaf
N and P content of P.centrasiaticum (Huang et al., 2018). Moreover, it can
be seen from the coefficient of variation of leaf N and P nutrients in
P.tanacetifolia that plant N nutrients are less sensitive to N addition, but
more sensitive to P addition, and a small amount of P addition in low N
(N0, N10) environment will increase leaf N (Figure 3). The results showed
that P.tanacetifolia had unique characteristics of N and P nutrient
adaptation. In the environment with low soil N concentration, N
absorption can be promoted by P addition, while in the environment
with high soil N concentration, the N:P could be reduced by increasing the
P content in leaves, to weaken the limitation of plant nutrient imbalance.

Photosynthesis is an important way of plant energy acquisition and
transformation, will produce different degrees of changes in different
environments, which can be used as an important indicator of plant
vitality in different environments (Atkin et al., 2015). It was found that
the net photosynthetic rate of P.tanacetifolia shrubs in the eastern Qinghai-
Tibet Plateauwas significantly increased by 10 gN·m−1·yr−1 N addition, but
inhibited when the concentration reached 15 g N·m−1·yr−1 (Xu et al., 2018).
N addition significantly increased the net photosynthetic rate of Salix
viminalis and Elymus nutans, but inhibited the net photosynthetic rate of
Potentilla chinensis (Wang et al., 2019b). Therefore, the response of N
addition to the net photosynthetic rate of Potentilla in different
environments has not been unified. We found that the net

FIGURE 6
Relationship between photosynthetic rate and (A) total N and (B) total P in P.tanacetifolia leaves.

FIGURE 7
Relationship between N/P ratio and net photosynthetic rate (Pn) in P.tanacetifolia leaves. (A)N0 group, (B)N10 group, (C)N20 group and (D)N40 group.
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photosynthetic rate decreased with P addition under no N (N0) and low N
(N10) treatments, indicating that N was the main limiting factor for
P.tanacetifolia photosynthesis within this range, and that photosynthesis
reached the highest under medium N (N20) treatment, and P addition
began to show a mitigating effect; Photosynthesis was not significantly
improved when N was applied at high concentration (N40), but P addition
still had a mitigating effect on photosynthesis (Figure 4A). These results
confirm our first hypothesis that changes in net photosynthetic rate can
reveal trends in N and P limitation by nitrogen deposition in broad-leaf
forbs. However, high P addition did not increase net photosynthetic rate
under P limitation. We further explored the changes of stomatal
conductance under different treatments. Stomatal conductance is one of
the important limiting factors of net photosynthetic rate. When stomatal
conductance decreases, the amount of CO2 entering the stomata decreases,
which cannot meet the requirements of photosynthesis, and it is called
stomatal limitation of photosynthesis (Iturrate-Garcia et al., 2020). Studies
have shown that the stomatal conductance of grassland plants will change
with the addition of N, which has a serious impact on the net
photosynthetic rate through the change of CO2 concentration (Cabrera
et al., 2021; Zangani et al., 2021). The addition of N and P helps to improve
the stomatal conductance and net photosynthetic rate, but the environment
with higher P concentration will inhibit the CO2 assimilation rate, resulting
in the decrease of stomatal conductance and net photosynthetic rate (Ben
et al., 2019; Cabrera et al., 2021; Zangani et al., 2021). In our study, the
response trend of stomatal conductance to N and P addition was basically
consistent with that of net photosynthetic rate, and showed a positive
correlation. Moderate N and P addition promoted net photosynthetic rate
by increasing stomatal conductance, while excessive P addition inhibited
net photosynthetic rate by reducing stomatal conductance (Figure 4B,
Figure 5). This also explained the reason why the high concentration of P
addition treatment cannot improve the net photosynthetic rate when P
limitation occurred. However, the specific reasons for the inhibition of
P.tanacetifolia photosynthesis by excessive P concentration need further
experimental explanation. It can be concluded that P.tanacetifolia
photosynthesis is mainly N-limited when the N application rate is less
than 20 kg N·ha·yr−1, while it is mainly P-limited when the N application
rate is greater than this value (Figure 5). This supports our second
hypothesis that P addition in the context of N deposition improves the
net photosynthetic rate of broad-leaf forbs. However, this improvement is
limited. When P is added in excess, the resulting P limitation also inhibits
net photosynthetic rate.

When the environmental N and P change, the content of N and P in
plants will change accordingly, which makes the plat N:P fluctuate. Study
have pointed out that the N:P in plants can be used as a basis for judging
whether plants are limited by N or P in the environment (Güsewell, 2004).
In the study of Sphagnum swamp plants in northern and southern Sweden,
it was proposed that plants are limited by N when the N:P is less than 10,
and limited by Pwhen theN:P is greater than 14; In the study of 74 plants in
Dutch grassland suggested that when the N:P is less than 10, it was limited
by N, and when the N:P is greater than 20, it was limited by P; In the study
ofL.chinensis andCarex korshinskyi in the typical steppe of InnerMongolia,
it is proposed that when the N:P is less than 21, it is limited byN, and when
the N:P is more than 23, it is limited by P (Güsewell, 2004; Zhang et al.,
2004; Zhao et al., 2019). Therefore, the threshold of N/P ratio proposed by
different plant communities in different regions is not fixed. In our study,
the net photosynthetic rate of P.tanacetifolia had a linear relationship with
the content of N and P in leaves, and the correlation between the N:P and
net photosynthetic rate was normal distribution. When the N:P is
14.5–17.0, the net photosynthetic rate was at a higher level. The net

photosynthetic rate of P.tanacetifolia decreased when it was below or
above this range (Figures 6, 7). This supports our third hypothesis that there
is a relationship between N:P and net photosynthetic rate of broad-leaf
forbs. We preliminarily considered that the P.tanacetifolia is limited by N
when the N:P is less than 14.5, and limited by P when the N:P is more than
17.0. The results of our experiment are not the same as those of the above
experiments, indicating that there are certain differences between the
stoichiometric ratio of N and P and the limitation of N and P in
different plants, and more research accumulation is needed to verify the
threshold of N or P limitation in main species.

Conclusion

N deposition caused nutrient imbalance of P.tanacetifolia by
changing the proportion of soil nutrients, which had a serious impact
on plant growth and reproduction. Therefore, appropriate P supplement
should be carried out to avoid or reduce the impact of N deposition on
community ecology when using P.tanacetifolia to build orchards or
cultivate and expand.
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