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Weather forecasting has been playing an important role in socio-economics.
However, operational numerical weather prediction (NWP) is insufficiently
accurate in terms of precipitation forecasting, especially for heavy rainfalls.
Previous works on NWP bias correction utilizing deep learning (DL) methods
mostly focused on a local region, and the China-wide precipitation forecast
correction had not been attempted. Meanwhile, earlier studies imposed no
particular focus on strong rainfalls despite their severe catastrophic impacts. In
this study, we propose a DL model called weighted U-Net (WU-Net) that
incorporates sample weights for various precipitation events to improve the
forecasts of intensive precipitation in China. It is found that WU-Net can further
improve the forecasting skill of heaviest rainfall comparing with the ordinary U-Net
and ECMWF-IFS. Further analysis shows that this improvement increases with
growing lead time, and distributes mainly in the eastern parts of China. This study
suggests that a DL model considering the imbalance of the meteorological data
could further improve the precipitation forecasting generated by numerical weather
prediction.
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1 Introduction

Weather forecast has been playing an important role in socio-economics, covering many
areas such as agriculture, transportation, business and energy management. Accurate weather
forecast, especially rainfall prediction, is essential to the well-operation of society. Precipitation
exerts significant impacts on socio-economics, for example, extreme precipitation events
usually induce severe disasters such as floods and mudslides (Easterling et al., 2000;
Changnon et al., 2000; Wang and Yuan, 2018; Tao et al., 2020; Wang et al., 2021).
However, current operational weather forecast and seasonal prediction of precipitation is
not satisfying yet (Wang and Yuan, 2018; Cloke and Pappenberger, 2009; Siddique et al., 2015;
Kobold and Sušelj, 2005). There is intrinsic uncertainty in operational weather forecast based
mainly on numerical weather prediction (NWP) models, due to the approximation in
representing atmospheric dynamics and physics (Buizza et al., 1999; Palmer, 2000; Slingo
and Palmer, 2011). Post-processing methods to correct NWP have been found to be effective in
improving the forecast skill for decades (e.g., Glahn and Lowry, 1972; Wilks, 2009).
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Model output statistics (MOS) method, as a traditional post-
processing method, is highly utilized to promote forecast skills by
establishing a linear relationship between model outputs and
predictands (Glahn and Lowry, 1972; Wilks, 2009; Marzban et al.,
2006). The Kalman filter approach is another bias correction method,
which is able to update the real-time correction, while MOS is not
(Homleid, 1995). Moreover, Robertson et al. (2013) utilized a Bayesian
joint probability model approach, which joined the predictands and
the model predictors into a joint probability distribution, to generate
predicted probability distributions from the NWP of rainfall by
Bayesian inference. However, most of these approaches are specific
to individual observation stations.

Recently, deep learning (DL) techniques have been successfully
applied in atmospheric and environmental research, owing to
explosive computing resource and increasing amounts of
meteorological datasets (Shen, 2018; Boukabara et al., 2019). DL is
a kind of data-driven approaches that can extract features from big
data on its own, for example, detecting spatial structures in grided data
automatically, which is difficult to do with traditional methods.
Furthermore, DL models are comprised of much more parameters
than traditional ones, leading to more sophisticated results.
Convolutional neural network (CNN) is widely used in
meteorological and climatological applications for its capacity in
processing images, which is a lot in common with processing
grided data (e.g., Ham et al., 2019; Lagerquist et al., 2019; Wen
et al., 2019; Weyn et al., 2020). Ham et al. (2019) constructed a
statistical forecast model using CNN, which produced skillful ENSO
forecast. Lagerquist et al. (2019) employed a CNN to identify
Synoptic-Scale Fronts. Weyn et al. (2020) designed CNNs
operating on cubed sphere to improve data-driven global weather
prediction.

CNN-based architectures, together with other DL approaches, are
also utilized in the post-processing of NWP (Rasp and Lerch, 2018;
Han et al., 2021; Hu et al., 2021). U-Net is a CNN-based architecture
first proposed for biomedical segmentation, and has acquired some
achievements in the estimate of weather factors (Ronneberger et al.,
2015; Larraondo et al., 2019). In this study, we will further explore its
application in forecast correction of precipitation.

This paper demonstrates a deep learning method to correct
grided precipitation forecast data from NWP using U-Net
models. We selected a domain covering the whole of China,
which has not been studied on in existing work, as previous
researches usually focused on local regions (Han et al., 2021; Han
et al., 2022). NWP data from the European Center for Medium-range
Weather Forecast Integrated Forecasting System (ECMWF-IFS) was
adopted to be corrected, and the ECMWF Fifth-generation
Reanalysis (ERA-5) was used as the ground truth. Notably, DL is
essentially a statistical approach so that its performance is highly
dependent on sample sizes. As precipitation is subject to skewed
distribution with a long tail at the big end, the amount of large
precipitation sample would be considerably smaller than that of tiny
small precipitation, which could influence the performance of DL on
extreme rainfalls (Tan et al., 2021; Yang et al., 2022; Fu et al., 2022).
Therefore, we adopted a strategy of assigning heavier weights to
larger precipitation grids, and investigated its improvement in
forecasting heavy rainfalls.

The remainder of this paper is as follows. Section 2 introduces the
employed dataset and methodology. Section 3 presents the experiment
results, and finally, Section 4 concludes this work.

2 Data and methods

2.1 Dataset

In this study, we employed the NWP data from the ECMWF-
IFS in the range of 2017–2022, at a resolution of 0.25° × 0.25°. The
forecast issued twice a day at 0000 UTC and 1200 UTC,
respectively, with a lead time from 6 to 72 h. The ground truth
used in supervised learning is the ERA-5 dataset, which is often
seen as the actual condition in bias correction. Additionally,
elevation data from the ETOPO1 is also involved as correction
factor. These data can be downloaded from https://www.ecmwf.int
and https://www.ncei.noaa.gov/products/etopo-global-relief-
model (Hersbach et al., 2020; Amante and Eakins, 2009). The
study domain is located at 15°–54.75°N, 70°–134.75°E, which covers
the whole of China.

This study used 16,000 instances from the ECMWF-IFS and the
ERA-5, which were split into training (12000 instances) and testing

TABLE 1 The input variables of the correction model.

Dataset Variables Note

ERA-5 6 h-cumulative
precipitation

Initial field at the issue time, absolute
value

ERA-5 Land-sea mask

ERA-5 Lake cover

ERA-5 High vegetation cover

ERA-5 Low vegetation cover

ECMWF-
IFS

6 h-cumulative
precipitation

Forecast field to correct, absolute value

ECMWF-
IFS

2 m-temperature

ECMWF-
IFS

10 m-u wind

ECMWF-
IFS

10 m-v wind

ECMWF-
IFS

500 hPa-geopotential
height

ECMWF-
IFS

Sea level pressure

ECMWF-
IFS

Relative humidity

ETOPO1 Altitude

TABLE 2 The gradation of precipitation. Unit: mm.

Rain level 6 h cumulative precipitation

No rain <0.1

Light rain ≥0.1 and <2.5

Moderate rain ≥2.5 and <10

Heavy rain ≥10 and <20

Rainstorm ≥20

Frontiers in Environmental Science frontiersin.org02

Chen et al. 10.3389/fenvs.2023.1116672

https://www.ecmwf.int/
https://www.ncei.noaa.gov/products/etopo-global-relief-model
https://www.ncei.noaa.gov/products/etopo-global-relief-model
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1116672


datasets (4000 instances). The models are trained with data in all
lead times to increase the sample size. Nevertheless, the sample size
is somewhat small due to data incompleteness. The limited data
size may affect our evaluation of models, but does not affect our
cross-sectional comparison of WU-Net and U-Net performance.
The inputs of the correction models include forecasted
precipitation, 2 m-temperature, 10 m-wind, 500 hPa-geopotential
height, sea-level pressure and relative humidity from the ECMWF-
IFS, precipitation at the issue time, land-sea distribution, lake
cover, high vegetation cover and low vegetation cover from the
ERA-5 and elevation from the ETOPO1. The variables involved
have been listed in Table 1. The original precipitation data has been
converted to 6 h cumulative precipitation, and divided into five
levels as shown in Table 2.

2.2 Models

We applied U-Net (Figure 1) to realize the mapping from the
input variables to the output correction field (Ronneberger et al.,
2015). U-Net is a deep learning architecture consisting of a down-
sampling encoder and a symmetrical up-sampling decoder. The
encoder uses convolution and max-pooling layers to extract
features at different levels, while the decoder is a reverse process

using the same layers besides up-sampling layers to decode the
features into correction fields. Recently, U-Net has been utilized in
atmospheric science and proved to be effective and promising in
weather prediction (Larraondo et al., 2019; Han et al., 2021; Hu
et al., 2021).

Figure 1 illustrates the structure of the U-Net utilized in this
investigation. The blue arrows depict the flow within the encoder and
the decoder. The red arrows represent skip connections, which concatenate
features from different levels of the encoder to the decoder counterpart,
providing detailed information of different resolution. In this paper, the
input is consisted of 13 2D-fields concatenated along channel, which are
listed in Table 1, and the models would output a single-channel 2D-field of
precipitation level. We blended all the lead time from 6 to 72 h together in
the dataset, so there would not be the problem of cumulative errors
generated from iteration.

FIGURE 1
The architecture of the U-Net using in this study.

TABLE 3 Confusion matrix to calculate metrics. True or False is determined by the
chosen thresholds of 0.1, 2.5, 10, and 20 mm.

Confusion matrix Observation

True False

Prediction True Hit False alarm

False Miss True negative

FIGURE 2
The occurrence of each precipitation level in the dataset.
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2.3 Metrics

We mainly adopted Threat Score (TS) to evaluate the model
results, which can be calculated as follows:

TS � Hits

Hits + False Alarms +Misses

and False Alarm Rate (FAR) was also used, for comprehensive
knowledge, which is defined as:

FAR � FalseAlarms

Hits + FalseAlarms

where Hits, False Alarms, and Misses are determined by the
confusion matrix (Table 3). To distinguish whether the observation
and the prediction are True or not, we chose 0.1, 2.5, 10, and 20 mm as
thresholds, according to the gradation in Table 2. Model with high TS
and low FAR would be considered as well-performed.

2.4 The precipitation weights

Given the fact that precipitation quantity is not normally
distributed, with severe rainfall comprising a small proportion of
all sample points (Figure 2), ordinary models are unable to effectively
distill signals about heavy rainfalls, which are of interest to us. Thus,
we assigned a weight to each sample point according to its
precipitation level when training the model. The weights were
calculated by the formula:

wi � S

n × si

where S is the number of all the sample points, n is the number of levels
and si is the number of the sample points of level i. The loss function
correspondingly turns into the following form:

Loss x( ) � −wargyj�1∑
n

j�1
yjlogPj x( )

Among which j represents each component of probability vector,
and wargyj�1 means the weight gets wj when the ground truth of the
instance is in class j. The model is then referred as weighted U-Net
(WU-Net).

3 Improving the heavy rain prediction

Figure 3 displays the relative quantile error (RQE) of the ECMWF-
IFS relative to the ERA-5, using

RQE � ∑
D

d�1

Q̂d − Qd

Qd

where Q̂d and Qd are the quantiles calculated on NWP and ground
true, respectively, D = 25, corresponding to the percentiles from
75% to 99% with an interval of 1% (Pathak et al., 2022; Bi et al.,
2022). It is evident that NWP’s ability to forecast heavy rainfall is

FIGURE 3
Relative quantile error (RQE) of the ECMWF-IFS.

FIGURE 4
(A) TS and (B) FAR of the ECMWF-IFS, U-Net and WU-Net, respectively, under the thresholds of 0.1, 2.5, 10, and 20 mm. The orange, green, and blue
represent the ECMWF-IFS, U-Net and WU-Net, respectively.
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still deficient, as it tends to underestimate the intensity of large
precipitation. Similar limitations exist in the results of deep
learning models, which are primarily attributable to the small
number of extreme weather samples (e.g., Pathak et al., 2022).

This section will demonstrate how the WU-Net could improve the
heavy rainfall prediction.

Figure 4A presents the TS of the ECMWF-IFS, U-Net and WU-
Net, respectively. The TS rapidly decreases as the threshold increases

FIGURE 5
(A) TS and (B) FAR as Figure 4, but for different seasons.
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for the ECMWF-IFS, from 0.65 to 0.18, indicating its limitation in
heavy rainfall forecast. Compared to the NWP model, the two deep
learning models outperform it at all precipitation levels. The U-Net
model improves the forecast for each gradation by greater than 0.1,
particularly for that with a threshold of 20 mm, whose TS increases

from 0.18 to 0.34. By considering the sample weights, WU-Net further
improves the heavy rainfall forecast relative to U-Net, with a TS of
0.53, which is a 194.4% improvement over the ECMWF-IFS and a
55.9% improvement over U-Net. Note that the TS ofWU-Net model is
marginally inferior to U-Net at forecasting light precipitation. This

FIGURE 6
(A) TS and (B) FAR as Figure 4, but for different time.
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difference is mostly due to the reduced weight of light precipitation
which has large sample sizes. FAR is similar to TS, as shown in
Figure 4B. U-Net performs better than the ECMWF-IFS under all the
four thresholds. WU-Net, though beaten by U-Net at the first three
precipitation level, achieves a maximum improvement under
threshold 20 mm, with a 62.5% reduction over ECMWF-IFS and a
41.3% reduction over U-Net. Overall, the results illustrate that adding
a higher weight on the large precipitation events which seldom happen
can make a great improvement on the forecast skill of them.

This improvement can also be seen in different seasons (Figure 5).
For TS, WU-Net and U-Net both do better than NWP model at all
rainfall levels in all seasons. WU-Net gets even higher scores for

stronger rainfall (under thresholds 10 and 20 mm), but a slightly lower
score for light rain relative to U-Net. The biggest change happens in
spring, with improvements of 25.9%, 54.1%, 87.0%, and 112.5% for
U-Net and 19.0%, 51.4%, 130.4%, and 256.3% for WU-Net compared
to the ECMWF-IFS under thresholds 0.1, 2.5, 10, and 20 mm,
respectively. As to FAR, WU-Net makes the greatest improvement
for the highest precipitation level in all seasons, reaching 37.0%, 68.6%,
67.6%, and 64.1% for winter, spring, summer, autumn, respectively.

In addition to the improvement in different seasons throughout a
year, the two deep learning models have significantly enhanced the
forecasting skill on daily scale (Figure 6). For the maximum level of
rainfall, the highest TS occurs at 0 and 6 o’clock, generated by WU-

FIGURE 7
(A) The variation of TS for the ECMWF-IFS, U-Net andWU-Net, from top to bottom: thresholds 0.1, 2.5, 10, and 20 mm. (B) The TS improvement of U-Net
and WU-Net on the ECMWF-IFS as percentage, from top to bottom: thresholds 0.1, 2.5, 10, and 20 mm. The orange, green and blue represent the ECMWF-
IFS, U-Net and WU-Net, respectively.
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Net, 0.39 points higher than the ECMWF-IFS and 0.21 points
higher than U-Net. The lowest FAR also occurs at 0 o’clock,
achieving 0.22.

Figure 7A shows the variation of TS over increasing lead time. The
forecast skill of the ECMWF-IFS diminishes rapidly as lead time
increases, due to the chaotic effect of the atmosphere. In contrast, the

other two deep learning models exhibit a less pronounced decreasing
trend and higher TS. Comparison of the two suggests that WU-Net
outperforms U-Net for all lead time when the threshold is greater than
2.5 mm, but receives a slightly lower score when the threshold is less
than 2.5 mm. The comparison is generally consistent with Figure 4,
which suggests that WU-Net has a better forecast skill for heavier

FIGURE 8
(A) TS distribution, from top to bottom: the ECMWF-IFS, U-Net and WU-Net, and from left to right: thresholds 0.1, 2.5, 10, and 20 mm. (B) Spatial
improvement of TS as percentage, from top to bottom: U-Net on the ECMWF-IFS, WU-Net on the ECMWF-IFS and WU-Net on U-Net, and from left to right:
thresholds 0.1, 2.5, 10, and 20 mm. The blank areas derive from the denominator of zero when calculating the TS, due to all the samples on the grids are True
Negative (to see in Table 3). The areas out of China have been masked out.
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rainfall, but a slightly lower skill for lighter rainfall. Figure 7B shows
the TS improvement of WU-Net and U-Net on the ECMWF-IFS. The
enhancement in forecasting skill of the two deep learning models
relative to the ECMWF-IFS does not diminish as lead time grows, but
rather increases gradually, especially for WU-Net. This increase
suggests that WU-Net and U-Net can not only enhance the overall
forecast performance, but also the upper forecast limit.

Figure 8 displays the horizontal distribution of TS. For small
precipitation, all three models have better forecasts in East China,
North China, and South China, and inferior forecasts for Northwest
China, which may be related to the sparse observations there. For
stronger precipitation, the forecast skill is higher in eastern China than
in western China, which may be related to more observations in the
East and more complex and large topography (e.g., Tibetan Plateau) in
the West. Compared with the ECMWF-IFS, WU-Net and U-Net have
a substantial improvement in overall light rain forecast. For stronger
precipitation, the greater improvement of the deep learning models is
distributed in the eastern parts of China. As the threshold rises,
Northwest China gets great improvement under thresholds 0.1 and
2.5 mm, but misses value for heavier rainfall. It may be because that
precipitation above 10 mm per 6 h rarely happens in these areas.

Figure 9 provides three cases from the validation dataset, and case
1 occurred during the process of the severe rainstorm disaster in
Henan province on July 21, 2021. The ERA-5 precipitation field, the
ECMWF-IFS output, the U-Net andWU-Net correction are presented
sequentially. In these cases, the distribution and intensity accuracy are
enhanced after correction. More specifically, for light rainfall, both the
U-Net and the WU-Net correction fields are more related to the ERA-
5 than the ECMWF-IFS, butWU-Net tends to extend the precipitation
areas, which is consistent with the relatively high FAR on light rainfall
for WU-Net. For heavy rainfall, WU-Net outperforms other models,
as the distribution of “heavy rain” and “rainstorm” is very close to
those in ERA-5.

4 Conclusion

In this paper, we used U-Net based models to correct the
ECMWF-IFS forecast for 6 h cumulative precipitation, and
evaluated their performance. Via assigning larger weights to
heavier rainfall events, we partly solved the problem of imbalanced
data distribution.

FIGURE 9
Examples of precipitation forecasts by different models. (A) 21/07/2021 0000 UTC, lead time 48 h. (B) 13/08/2018 0600 UTC, lead time 42 h. (C) 27/07/
2021 1200 UTC, lead time 36 h.
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The results present that both U-Net andWU-Net can improve the
ECMWF-IFS forecast significantly, whileWU-Net outperforms U-Net
with regarding to intensive precipitation, by considering the sample
weights. Specifically, U-Net improves the forecast for each gradation
by greater than 0.1 in TS, particularly for heavy rainfall. The WU-Net
model does even better on the heaviest precipitation level, as is triple
the ECMWF-IF and 55.9% higher than the ordinary U-Net. Moreover,
the improvement increases with growing lead time, indicating an
extended upper forecast limit.

The quantitative results in the article should be treated with caution
due to sample limitations, but this does not prevent the conclusion that
WU-Net has the potential to enhance heavy rainfall forecasting skills.
The capacity of WU-Net should be further validated in the future using
a more complete and larger dataset.

Considering the normalcy, integrity, and accessibility of the data, the
study uses the reanalysis dataset as the ground truth which is common in
previous studies (e.g., Larraondo et al., 2019; Han et al., 2021; Hu et al.,
2021). Given that there are still discrepancies between the reanalyzed
precipitation data and observations, we will employ the observed data for
additional testing and modeling in the future. Moreover, it is worthwhile
to investigate how to integrate two deep learning models (U-Net and
WU-Net) to further improve forecasting skill.
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