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Introduction: The World Health Organization (WHO) recently revised its health
guidelines for Nitrogen dioxide (NO2) air pollution, reducing the annual mean NO2

level to 10 μg/m3 (5.3 ppb) and the 24-h mean to 25 μg/m3 (13.3 ppb). NO2 is a
pollutant of global concern, but it is also a criteria air pollutant that varies
spatiotemporally at fine resolutions due to its relatively short lifetime (~hours).
Current models have limited ability to capture both temporal and spatial NO2

variation and none are available with global coverage. Land use regression (LUR)
models that incorporate timevarying predictors (e.g., meteorology and satellite
NO2 measures) and land use characteristics (e.g., road density, emission sources)
have significant potential to address this need.

Methods: We created a daily Land use regression model with 50 × 50 m2 spatial
resolution using 5.7 million daily air monitor averages collected from 8,250
monitor locations.

Results: In cross-validation, themodel captured 47%, 59%, and 63%of daily,monthly,
and annual global NO2 variation. Daily, monthly, and annual root mean square error
were 6.8, 5.0, and 4.4 ppb and absolute bias were 46%, 30%, and 21%, respectively.
The final model has 11 variables, including road density and built environments with
fine (30 m or less) spatial resolution and meteorological and satellite data with daily
temporal resolution. Major roads and satellite-based estimates of NO2 were
consistently the strongest predictors of NO2 measurements in all regions.

Discussion:Daily model estimates from 2005–2019 are available and can be used
for global risk assessments and health studies, particularly in countries without
NO2 monitoring.
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1 Introduction

Outdoor air pollution is an environmental health hazard. The Global Burden of Disease
study estimates that outdoor air pollution was responsible for 6% (3.4 million) of global
deaths in 2017 (Cohen et al., 2017). Outdoor air pollution is a combination of multiple air
pollutants of concern, such as fine particulate matter, black carbon, ozone, organic
compounds, and nitrogen dioxide (NO2). NO2 is a criteria air pollutant strongly
associated with traffic-related air pollution and is often used in health studies as a
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marker of overall tailpipe emissions (Beckerman et al., 2008). Studies
suggest both acute and chronic exposure to ambient NO2 is
associated with adverse health outcomes. Acute ambient NO2

exposures are associated with child asthma hospital visits (Khreis
et al., 2017) and adult ischemic stroke (Wang et al., 2020), while
chronic NO2 exposure is associated with increased odds of adult and
childhood asthma incidence (Rice et al., 2013) and lung cancer
(Hamra et al., 2015). Based on epidemiological and animal evidence,
in 2021 the World Health Organization (WHO) revised its health
guidelines for NO2, reducing the annual mean NO2 level to 10 μg/m

3

(5.3 ppb) and the 24-h mean to 25 μg/m3 (13.3 ppb).
NO2 air pollution is a global concern, and recent years have seen

significant progress in advancing global NO2 estimates through
satellite measurements. Remote sensing columnar tropospheric
NO2 measurements from the TROPOspheric Monitoring
Instrument (TROPOMI) are available daily at 7 × 3.5 km2

resolution starting 30 April 2018 through 5 August 2019 and
5.5 × 3.5 km2 thereafter (VanGeffen et al., 2021). The Ozone
Monitoring Instrument (OMI) is the predecessor instrument to
TROPOMI, launched in July 2004 and is still active (Levelt et al.,
2018). While OMI reports data at a coarser resolution (24 × 13 km2)
than TROPOMI, the measurements are over a multi-decadal
timeframe, which makes it advantageous for performing
retrospective long-term trend studies (Duncan et al., 2016;
Krotkov et al., 2016; Jamali et al., 2020), such as this one. While
satellite NO2 measurements can be reported at finer spatial
resolution (~1 × 1 km2) when aggregated to monthly, seasonal or
annual timescales using a process called oversampling (Sun et al.,
2018; Goldberg et al., 2021), they still do not capture fine-scale (e.g.,
100 m) spatial gradients in NO2 concentrations around major
emission sources, such as roads.

Additional modelling methods are needed to capture fine-scale
spatial patterns of NO2 air pollution. Land use regression (LUR) is a
specialized application of regression modeling in which
environmental features (land use) are used as independent or
“predictor” variables to estimate air pollutant concentrations across
large geographical extents. Developing LUR models often includes a
variable selection step, in which a large collection of land use
characteristics averaged across multiple spatial extents are reduced
to a small subset of predictors used in the final regression model.
Global LUR models for annual NO2 are available at high spatial
resolutions (100 m) for single snapshots in time (Larkin et al., 2017).
Daytime and nighttime 2017 average global LUR models are also
available (Lu et al., 2020), and deterministic global models adjusting
OMI and TROPOMI measurements with the Geos-chem chemical
transport model exist at moderate spatial resolutions (~2.8 km2)
(Cooper et al., 2020). However, there are no global NO2 models
available with spatial resolutions < 1 km and temporal resolutions <
annual averages. Given that NO2 gradients near major roads
and highways rapidly decrease within 500 m (Patton et al., 2014;
Richmond-Bryant et al., 2017), that traffic-related NO2

concentrations are dependent on seasonal variations in traffic
and meteorology (Patton et al., 2014; Amini et al., 2016;
Richmond-Bryant et al., 2017), and that NO2 emissions and
meteorological conditions can rapidly change on a daily and even
hourly basis (Patton et al., 2014; Richmond-Bryant et al., 2017), there
is a need for new global LURmodels that capture both fine spatial and
temporal resolutions.

We developed a daily global NO2 LUR model with 50 × 50 m2

spatial resolution and coverage from 2005 to 2019. The model was
trained using 5.7 million daily averages of air monitor records
collected from 8,250 air monitor stations. We included a range of
important datasets for prediction, including remote sensing
measurements of tropospheric column NO2 from the OMI, road
networks, built up environments, and meteorological variables. This
model can improve retrospective global risk estimates of NO2

exposure and associated health burden, provide standardized
NO2 estimates for international health studies, and refine NO2

estimates for health studies in developing countries where city-
or country-specific measurements or retrospective models do not
exist.

2 Materials and methods

2.1 Data collection

2.1.1 NO2 air pollution monitoring
Hourly NO2 air monitor measurements from 2005–2019 were

collected from a wide range of data aggregators and environmental
and regulatory agency websites (Supplementary Table S1; Table 2).
This includes OpenAQ (n = 3.3 million daily averages), which is a
repository of air monitor data that is collected from multiple
countries and is openly available for public use. OpenAQ
prioritizes publishing air monitor records in near real time and
includes country specific monitoring network data for the European
Union (7.2 million daily averages), Japan (2.6 million daily
averages), United States (2.1 million daily averages), Canada
(0.8 million daily averages), Mexico (0.1 million daily averages),
and South Africa (0.1 million daily averages). For air monitors with
overlapping records in both OpenAQ and a country specific
database, the country specific records were kept and OpenAQ
records were discarded. After removing duplicate records, hourly
air monitor records were treated as a single cumulative dataset. The
following preprocessing and aggregating steps were equally applied
to all air monitor records, including those collected from OpenAQ.
We did not include records that required website navigation by
humans to download data since we wanted the modelling process to
be repeatable and easily updated for future GBD estimates. Rather,
estimates were downloaded using RESTful application
programming interfaces (APIs) provided by OpenAQ and
government agencies. For example, information about the US
EPA air quality API is available at https://aqs.epa.gov/aqsweb/
documents/data_api.html.

Most regulatory NO2 monitors use a chemiluminescence
technique that suffers from a well-characterized high bias
(Dunlea et al., 2007; Dickerson et al., 2019). This bias varies
from approximately +10% to > +100% and is smallest in high-
density urban (fresh emissions) and largest in rural, heavily forested
regions (highly oxidized emissions) (Dickerson et al., 2019). We
decided not to correct for this monitor bias since most
epidemiological studies are based on unadjusted regulatory
monitoring data. We excluded air monitor records prior to
2005 as several predictor variables, most notably OMI, are not
available prior to 2005. We calculated daily averages from hourly
measurements, monthly averages from daily averages, and annual
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averages from monthly averages. Daily 24-h averages (defined as
12 a.m. to 11p.m. local time) were considered valid if at least 18 of
the 24-h measurements were present. Daily averages greater than
250 ppb (above the 99.99th percentile) were excluded to remove
outliers and to prioritize a better linear regression fit for
concentrations below the 99.99th percentile. Monthly averages
were valid if at least 50% of the daily averages within a month
were present. Annual averages were valid if 50% of the daily averages
within the year and two monthly averages within each quarter were
present. For duplicate air monitor records in multiple databases,
validated air monitor records from regulatory agencies were kept

while unofficial hourly measurements from air quality websites were
discarded. The final database included 5.7 million daily air monitor
averages collected from 8,250 air monitor locations.

2.1.2 Predictor variables
We included a range of important predictor variables to create a

model based on our air monitoring dataset that maximizes prediction of
observedNO2measurements. Predictor variables and definitions derived
for each monitoring site are summarized in Table 1. OpenStreetMap is
an open source geodatabase with records collected from diverse data
sources including government records, surveys and crowd-sourcing.

TABLE 1 Predictor variables derived for 8,250 air monitor locations, ordered by temporal resolution available.

Variable Description Spatial
scale

Temporal
scale

Years Unit Source

Major roads primary and secondary
roads

na na 2018 na www.openstreetmap.org

Minor roads tertiary roads na na 2018 na www.openstreetmap.org

Residential roads residential roads na na 2018 na www.openstreetmap.org

Major railways mainline railways na na 2018 na www.openstreetmap.org

Minor railways minor railways and
monorails

na na 2018 na www.openstreetmap.org

Water body Boolean indicator of
water

30 m na 2018 indicator developers.google.com/earth-engine/datasets/
catalog/GLCF_GLS_WATER?hl=en

Elevation elevation 30 m na multiple
years

developers.google.com/earth-engine/datasets/
catalog/USGS_SRTMGL1_003?hl=en#description

Population density population density 1 km 5 year 2005–2020 persons/km developers.google.com/earth-engine/datasets/
catalog/CIESIN_GPWv411_GPW_Population_
Density?hl=en

Tree cover continuous, amount of
trees

30 m 5 year 2005–2015 % landsat.gsfc.nasa.gov/article/global-30m-landsat-
tree-canopy-version-4-released

Power plant emissions carbon footprint
estimate

na annual 2016 tons CO2/year developers.google.com/earth-engine/datasets/
catalog/WRI_GPPD_power_plants

Built environment Boolean indicator of
built surface

30 m annual 2005–2018 indicator developers.google.com/earth-engine/datasets/
catalog/Tsinghua_FROM-GLC_GAIA_v10?hl=en

NDVI continuous, amount of
vegetation

250 m monthly 2005–2019 normalized
units

developers.google.com/earth-engine/datasets/
catalog/MODIS_006_MOD13Q1

CEDS sector specific
NO2 emissions

emissions from sectors 0.5° monthly 2005–2019 total mass www.globalchange.umd.edu/ceds/ceds-cmip6-data/

Active fires fire intensity 0.1° daily 2005–2019 megawatts developers.google.com/earth-engine/datasets/
catalog/MODIS_006_MOD14A1?hl=en

Boundary layer height meteorological 31 km daily 2005–2019 m www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5

OMI NO2 column
density

NO2 across the
tropospheric column

0.25° daily 2005–2019 mol/m2 registry.opendata.aws/omi-no2-nasa/

Surface pressure meteorological 31 km daily 2005–2019 Pa www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5

Temperature meteorological 31 km daily 2005–2019 K www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5

Precipitation meteorological 31 km daily 2005–2019 m www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5

Downward UV
radiation

meteorological 31 km daily 2005–2019 Jm−2 www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5
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Google Earth Engine is a cloud computing platform with an extensive
data catalog of remote sensing products, including Landsat, MODIS,
Sentinel-2, and other satellite imagery.

Data were downloaded at the temporal resolution listed in
Table 1 and for each fine-scale land use characteristic, multiple
buffer variables were created, ranging from 50 m to 20 km in radius.
Buffers in this study consisted of unweighted averages of land use
characteristics within a set distance, such as average percent tree
coverage within a circle that has a 200 m radius (i.e., 200 m buffer).
Buffer variables and point estimates were calculated using Python
3.8.8 scripts written for automated analysis in ArcGIS Pro 2.8.0.
Python scripts are available at https://github.com/larkinandy/LUR-
NO2-Model.

The temporal scale of variable predictors varied substantially
based on availability. Road and railway networks were extracted
from an August 2018 snapshot of the OpenStreetMap (OSM)
geodatabase. We reclassified OSM road and railway networks
into the following categories: Major roads were derived from
OSM motorways, motorway links, trunks, trunk links, primary,
and secondary roads and links. Minor roads were derived from
OSM tertiary roads and tertiary road links. Residential roads were
derived from OSM residential roads and residential road links.
Other OSM road classifications (e.g., service roads and
bridleways) were excluded. Major railways were derived from
OSM mainline railways, and minor railways were derived from
OSM light rail and monorails. Other predictors were available for
temporal scales of 5 years, annually, monthly, or daily for our study
period of 2005–2009.

Daily temporal variables included NO2 tropospheric column
density measurements and meteorological data. Daily NO2

tropospheric column density measurements from the Ozone
Monitoring Instrument (OMI) version 4.0 (Lamsal et al.,
2021) were downloaded from NASA and linked to each
OpenAQ monitoring station location. Measurements were
preprocessed by NASA with a screen for snow cover, cloud
fraction <30%, and data unaffected by an instrument
obstruction called the row anomaly. Monthly averages were
calculated if 25% of the daily averages were valid, and annual
averages were calculated if 25% of the daily averages within the
year and 1 monthly average within each quarter were valid. This
screening will disproportionately affect polar and cloudy regions
and have no effect on areas with climatologically clear skies. For

meteorology, hourly boundary layer height, precipitation, surface
temperature, and near surface atmospheric pressure predictions
generated by the European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis Model v5 (ERA5) were
downloaded from the ECMWF database. Daily averages
(12a.m.–11p.m. local time) were calculated after adjusting for
local time zones.

2.2 Statistical analysis

Daily LURmodels were developed using Lasso variable selection
(glmnet package in RStudio, v. 1.4.1106). Regularization algorithms
such as Lasso and ridge regression are preferred over stepwise
regression when predictor variables are highly correlated (e.g.,
when the set of predictor variables includes multiple road density
metrics) (Larkin et al., 2017; Chen et al., 2019). We chose to use
Lasso rather than ridge regression to eliminate non-significant
predictor variables and thus increase the ease of model
interpretation (Larkin et al., 2017; Chen et al., 2019). Candidate
variables considered during Lasso selection are shown in Table 1.
The list of predictor variables selected by Lasso are discussed in
Section 3.2.2.

Air monitor records were weighted by geographical and
seasonal coverage during Lasso regression. Air monitor
network coverage from 2005–2019 varied dramatically across
the globe and between seasons. We used weights to account for
the different global and season coverage of the available NO2

monitoring data, to better model global NO2 concentrations and
predictors. In general, daily air monitor records from continents
with extensive spatial and/or temporal coverage or from seasons
with greater coverage were weighted less than air monitor records
from continents with spare networks and/or minimal historical
coverage. Supplementary Figure S1 describes the weighting
method used. Parameters for Lasso variable selection include
standardizing independent variables (standardization = True),
selecting variables to minimize mean-squared error
(type.measure = ’mse), and forcing the direction of variable
coefficients to conform to a-priori hypotheses (lower.lim = 0).
The lasso model with a lambda cross-validation score of one
standard deviation from the minimum cross-validation score was
selected as the model of choice to favor model simplification and

TABLE 2 NO2 air monitor summary statistics (2005–2019), stratified by region.

Region Daily
averages (n)

Monitors
(n)

Min
NO2 (ppb)

Max
NO2 (ppb)

Mean
NO2 (ppb)

SD
NO2 (ppb)

25th
%

50th
%

75th
%

90th
%

N America 1,315,926 1,056 0 139 10 9 4 8 15 23

S America 12,581 47 0 245 11 11 4 8 15 25

Europe 1,922,511 3,475 0 224 11 9 5 9 16 23

Africa 105,078 124 0 249 9 10 4 6 11 19

Asia 2,343,387 3,522 0 241 13 10 6 11 18 26

Oceania 14,674 25 0 87 4 4 2 3 5 8

Global 5,714,157 8,250 0 249 12 9 5 9 16 24
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inference over model prediction (s = lambda.1 se). To reduce
multicollinearity, multiple buffer sizes of the same land use
classification were only allowed in the final model if the radius
of the larger buffer size was at least five times greater than the
smaller buffer sizes. Predictor variables were included in the final
model if they significantly reduced the mean squared error of
model predictions (p < 0.05), increased adjusted R2 either
globally or within one or more continental regions by
1 percent or more, exhibited variance inflation factors less
than 5 for at least one region and less than 10 for all regions.

To evaluate the final model performance, we calculated root
mean squared error (RMSE) mean absolute error (MAE), adjusted
R-squared (Adj. R2), mean percent bias (MB) and mean absolute
bias (MAB) for the entire global dataset as well as each continental
region. Leave 10% out cross-validation was performed, in which 10%
of the monitors from each continental region were randomly
sampled into a testing dataset, with the remaining 90% combined
to create the model training dataset. Cross-validation was repeated
in a bootstrap fashion 10,000 times to generate cross-validation
estimates of RMSE, MAE, Adj. R2, MB, and MAB both globally and
within each continental region.

In chronic health studies, exposure estimates are often
aggregated to monthly or annual averages to better capture
seasonal and chronic NO2 exposure trends. To test the
performance of model aggregations, we derived monthly and
annual averages of daily model predictions and compared them
to monthly and annual averages of air monitor measurements. We
also created a separate LURmodel using annual rather than daily air
monitor records and predictor variables and compared the
performance of the annual and daily NO2 models in predicting
annual NO2 concentrations.

In our previous 2010–2012 model (Larkin et al., 2017), RMSE
and MB were greater in rural vs. urban areas. To test model
performance across urban development levels, we identified
urban development levels at air monitor locations using the
Global Human Settlement layer (Corbane et al., 2018) and
stratified daily, monthly, and annual cross-validation by
urbanicity.

To test the utility of a global daily LURmodel, we extracted daily
2012 NO2 estimates for four hospitals in four hemispheres and
calculated summary statistics and percent missing data. We also
generated unweighted 30-day moving averages to compare daily
predictions with monthly trends.

All of the R scripts used to create the LUR models, perform
model performance, and perform sensitivity analyses are
available at https://github.com/larkinandy/LUR-NO2-Model.

3 Results

3.1 Global NO2 database

The geographical distribution of NO2 annual averages are
shown in Figure 1. Summary statistics for daily NO2 averages
stratified by region are shown in Table 2. More than 5.7 million
days of valid measurements were collected from 8,250 air monitor
locations. Air monitor coverage is greatest in Asia, Europe, and
North America and sparse in Oceania, South America, and Africa.
Annual concentrations range from 0 to 59 ppb (mean = 11.8), while
daily concentrations range from 0 to 249 ppb (mean = 11.7). Mean
daily concentration is noticeably lower in Oceania (4 ppb) in
comparison to other regions (9–13 ppb). Daily standard deviation

FIGURE 1
Global distribution of NO2 air monitor and annual NO2 concentrations (2005–2019). For air monitors with multiple years of measurements themost
recent annual average is shown.
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is likewise lower in Oceania (4 ppb) compared to other regions
(9–11 ppb).

3.2 Global LUR model

3.2.1 Model performance
Global NO2 predictions are shown in Figure 2 for the final global

LUR model. Cross-validation performance is shown in Table 3. See
Supplementary Figure S3 for a closer look at model predictions
below 5 ppb. Additional performance metrics are available in
Supplementary Table S5. In 10% cross-validation, the regression
model performance is 47% adjusted R2 for daily, 59% adjusted R2 for
monthly, and 63% adjusted R2 for global annual NO2 predictions.
Similarly, RMSE is greatest for daily predictions (6.8 ppb) and
smallest for annual predictions (4.4 ppb). Regionally, daily
adjusted R2 ranged from 10% (Oceania) to 57% (North America).
In general, model performance improved in each region when

aggregating daily predictions to monthly and annual averages.
Except for Oceania, annual adjusted R2 ranged from 49% to 66%.
Adjusted R2 for Oceania is just 2% due to limited measured NO2

variation in our dataset.

3.2.2 Model structure
Predictor variables and contributions to model performance are

shown in Table 4. Predictor variables include satellite based NO2

estimates (OMI), meteorological conditions (temperature,
atmospheric pressure), land use characteristics with positive
coefficients (major, minor, and residential roads, population
density) and land use characteristics with negative coefficients
(tree cover, water body). The most significant variable is major
roads within 50 m. Buffer sizes range from 50 m (major roads) to
20 km (water body). Major roads and OMI each consistently explain
more than 5% of the NO2 variation both globally and within all
regions. However, the importance of other model variables varied
between regions. For example, built up environment explains 12% of

FIGURE 2
Global NO2 model predictions for the year 2018. Inserts of select cities for each continental region demonstrate within city variation of model
predictions.

TABLE 3 Cross-validation model performance at estimating daily, monthly, and annual NO2 concentrations.

Daily Monthly Annual

RMSE (ppb) Adj R2 (ppb) MB (%) RMSE (ppb) Adj R2 (ppb) MB (%) RMSE (ppb) Adj R2 (ppb) MB

(%)

Global 6.8 0.47 46 5.0 0.59 30 4.4 0.63 21

Region

N America 6.4 0.51 57 4.9 0.54 49 4.0 0.62 34

S America 6.2 0.37 55 4.4 0.50 37 3.4 0.66 28

Europe 6.4 0.45 39 4.8 0.53 26 4.3 0.56 17

Africa 6.7 0.35 54 5.1 0.39 23 3.8 0.49 22

Asia 7.3 0.40 45 5.2 0.53 24 4.6 0.54 17

Oceania 5.7 0.10 168 5.5 0.10 164 5.6 0.02 120

Global 6.8 0.47 46 5.0 0.59 30 4.4 0.63 21

RMSE, root mean square error; MAE, mean absolute error; Adj R2, adjusted R2; MB, mean percent bias; MAB, mean absolute bias.
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the NO2 variation within Africa, but only 1.6% globally. Similarly,
atmospheric pressure explains 5.1% of the NO2 variation in South
America, but less than 0.1% globally.

Variables in the model with daily temporal resolution include
OMI, temperature, and atmospheric pressure. The built up
environment variable has annual resolution, while the tree cover
and population density variables were updated every 5 years. Road
networks and water body predictors were derived from a single time
point and do not capture changes over time.

3.2.3 Spatial and temporal distribution
Figure 3 illustrates the different temporal predictors of the final

model with January, July, and annual 2011 averages for Delhi, India.
Delhi was selected as an example because of its heterogeneity in land
use characteristics, seasonal variation in air pollutant concentration
(Sharma et al., 2010), and because it iss a frequently used location for
evaluating air pollutant modeling methods (Sharma et al., 2010;
Karn et al., 2011; Larkin et al., 2017), thus facilitating inter-model
comparisons. Also shown in Figure 3 is the 3-year
2010–2012 average predictions from a previously published LUR
model developed with similar methodology and predictor variables
(Larkin et al., 2017). In general, the spatial distribution of NO2 is
similar for both monthly and annual averages. Concentrations are
greatest in areas with dense population density and built up

environment (Eastern Delhi) and alongside major road networks.
While spatial patterns are consistent across the year, the magnitude
of predicted NO2 concentrations differs between months and the
annual average. Predicted NO2 levels are noticeably above and below
the annual average in January and July, respectively, in agreement
with seasonal trends of NO2 lifetime in the Northern Hemisphere
(Karn et al., 2011). In comparison to 2010–2012 model published by
Larkin et al. (2017), inclusion of minor and residential roads in the
present model adds NO2 traffic-related gradients outside of the
dense urban core.

3.3 Sensitivity analysis

Cross-validation performance of annual predictions derived
from daily and annual NO2 LUR models are shown in Table 5
(see Section 2.2 for more details about the annual NO2 LUR model).
Globally, model performances are similar. RMSE and MAE differ by
0.1 ppb, MB, andMAB differ by 1% and 2%, respectively, and Adj R2

differs by 0.02. Regionally, the daily and annual models differ the
most in South America (RMSE and Adj R2 are 1.2 ppb lower and
0.09 higher, respectively for the daily model) and Oceania (RMSE is
0.9 ppb lower for the annual model, while Adj R2 is equal between
the daily and annual models). In general, results suggest the error in

TABLE 4 Global LUR model structure.

Variable Units IQR Trans-
formation

Buffer
radius (km)

β Std
err

Global %R2

reductiona
Regional %R2

reductionb

Major roads km2 0.00E+00 sqrt 0.05 9.29E+00 2.85E-
02

7.5 10.4

OMI molec./
cm3

1.80E+04 sqrt/blh NA 1.32E-06 5.20E-
07

6.2 15.2

Built
environment

% 5.10E-01 sqrt 2.5 2.90E+00 1.63E-
02

1.6 11.9

Population
density

persons/
km

3.34E+01 sqrt 3 8.00E-02 1.72E-
04

1.5 1.8

Tree Cover % 2.15E+00 sqrt 10 −3.92E-01 1.75E-
03

1.1 5.1

Major roads km2 1.74E+00 sqrt 1.5 1.15E+00 2.47E-
03

1.1 1.8

Minor roads km2 3.02E-01 sqrt 0.05 1.86E+00 2.27E-
02

0.9 1.9

Residential roads km2 7.17E-01 sqrt 0.2 6.27E-01 6.32E-
03

0.8 1.5

Water body % 4.13E-01 sqrt 20 −3.44E+00 1.28E-
02

0.7 4.1

Temperature K 1.14E+01 - NA −1.40E-01 4.50E-
04

0.5 4.8

Atm pressure Pa 3.40E-02 ln NA 9.53E-01 3.04E-
03

0.1 5.1

aGlobal reduction in explained variance after removing variable from the model.
bMaximum reduction in explained variance in each region after removing variable from themodel. Variables are listed in order of global %R2 reduction. All variables were statistically significant

(p < 0.001). OMI, ozone monitoring instrument, Atm, atmospheric.
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FIGURE 3
Comparison of NO2 estimates across Delhi, India. Top left: Annual 2011 averages of daily model predictions. Bottom left and right: Average model
predictions for January and July 2011, respectively. Top right: 3 year 2010–2012 average predictions from a previously published global NO2 land use
regression model using similar predictor variables (Larkin et al., 2017).

TABLE 5 Cross-validation performance of daily and annual LUR model performances in predicting annual NO2 concentrations.

Daily model - annual averages from daily predictions Annual model - annual predictions

Region RMSE
(ppb)

MAE
(ppb)

Adj
R2 (ppb)

MB
(%)

MAB
(%)

RMSE
(ppb)

MAE
(ppb)

Adj
R2 (ppb)

MB
(%)

MAB
(%)

N America 4.0 3.2 0.62 34 47 4.0 3.1 0.64 45 58

S America 3.4 2.6 0.66 28 45 4.4 3.3 0.57 1 38

Europe 4.3 3.1 0.56 17 34 4.1 2.9 0.59 16 33

Africa 3.8 2.8 0.49 22 43 3.6 2.6 0.52 16 38

Asia 4.6 3.4 0.54 17 32 4.5 3.2 0.57 17 33

Oceania 5.6 4.7 0.02 120 152 4.7 4.0 0.02 100 127

Global 4.4 3.2 0.63 21 36 4.3 3.1 0.61 22 38

RMSE, root mean square error; MAE, mean absolute error; Adj R2, adjusted R2; MB, mean percent bias; MAB, mean absolute bias.
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annual averages of daily model predictions does not significantly
differ from predictions generated by an LUR model optimized for
predicting annual concentrations.

Table 6 shows cross-validation model performance stratified by
urbanicity (urban vs. rural). RMSE is lower in rural settings vs. urban
settings. For example, annual RMSE is 4.6 ppb and 2.9 ppb for urban
and rural air monitors, respectively. However, RMSE relative to
mean concentrations are greater in rural than urban air monitors.
For example, the annual mean:RMSE ratio is 2.8 and 1.8 for urban
and rural air monitors, respectively.

Daily model predictions and moving average trendlines for four
hospitals are shown in Figure 4. We chose these four hospitals because
they are within well-known urban centers, distributed across the four
hemispheres, and have published latitude/longitude coordinates with
spatial resolution greater than or equal to model estimates. Mean

concentrations are greatest in Dhaka (28.6 ppb) and smallest in Cape
Town (12.0 ppb). Standard deviation is greatest in Buenos Aires
(2.4 ppb). Thirty-day trends demonstrate increased NO2

concentrations in winter months (December—February in New York
City and Dhaka, and June—August in Buenos Aires and Cape Town).
Percent dayswith coverage ranges from49.7% inNewYorkCity to 59.8%
in Dhaka. Missing days are due to missing OMI columnar estimates.

4 Discussion

We collected 5.7 million daily averages from 8,250 air monitors
(approximately 691 daily averages per monitor) and developed a
daily global NO2 model at 50 m resolution. The model captured 47%
of daily, 59% of monthly, and 63% of annual global NO2 variation.

TABLE 6 Cross-validation performance annual LUR model performances stratified by urbanicity.

Urbanicity Annual averages (n) Monitors (n) Mean (ppb) RMSE (ppb) Adj R2 (ppb) MB (%)

Urbana 29,957 6,402 13.1 7.2 0.48 43

Rural 6,024 1,319 5.2 4.5 0.41 61

aIncludes air monitors in urban and suburban locations.

FIGURE 4
Daily predictions for four urban hospitals across the globe. Figures also include an unweighted 30 days moving average trendline in black.
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Predictor variables for the model are available from 2005 to the
present, which allows for retrospective exposure estimates for global
burden of disease studies as well as in long running epidemiological
cohorts, particularly in developing countries where NO2 data and
models are limited or not available.

The model structure consists of variables with a range of spatial
and temporal resolutions that correspond to NO2 emission sources
and patterns. Road networks make up variables from 50 to 200 m in
resolution. Population density and built up environment variables
capture moderate spatial resolutions (2.5 and 3 km, respectively),
while OMI, meteorological variables, and protective land use
characteristics such as water and trees capture more regional
NO2 distributions (10 km–31 km). While OMI and
meteorological variables might have coarse spatial resolutions,
these variables have daily temporal resolution and thus are
responsible for the model’s ability to capture day to day variation
in NO2 concentrations.

Several model variables contributed little to global variation but
were highly significant to capturing regional NO2 variation. For
example, built environments explained 11.9% of NO2 variation in
Africa (specifically, South Africa), but only 1.6% of the global NO2

variation. This highlights one of the challenges of developing large
scale LUR models, in which associations between predictors and
outcomes may differ when stratified by sub-regions compared to
examining unstratified associations. This trade-off has been
highlighted in other studies examining global NO2 modelling
(Larkin et al., 2017). Other variables such as road networks may
have strong associations across all subregions, but the magnitudes of
those associations may differ due to regional factors such as fleet
composition, traffic levels and congestion, and emission standards.
We included Community Emissions Data System (CEDS)
(McDuffie et al., 2020) Sector Specific NOx Emissions, including
surface transportation emissions, in our list of candidate variables
(Table 1). However, none of the CEDS estimates were selected by the
Lasso algorithm. Future models may benefit from emission
inventories with higher spatial resolution.

Air monitor records are disproportionately greater in North
America, Europe, and Asia. To mitigate, we weighted air monitor
records to adjust for disproportionate spatial and temporal
representation. Still, confidence in model predictions is greatest
in these regions with greater coverage. The spatial extent of air
monitors in Africa, South America, and Australia represents a small
percentage of these continental regions and may therefore have
limited generalizability across all respective countries or territories.
Regression models were fitted to minimize mean square error
(MSE), the square of RMSE, and daily RMSE of continental
regions with large numbers of daily records (6.4–7.3 ppb) is
surprisingly greater than RMSE of regions with small numbers of
daily records (5.7–6.7 ppb). This may be due to the higher absolute

concentrations in areas where there are many monitors. In non-
polluted areas with lower absolute concentrations, RMSE of ~6 ppb
can still represent percent errors exceeding 100%. Despite this, for
global studies which aim to standardize RMSE as equally as possible
across multiple continents, the weighted modeling approach
implemented in this model appears to work well. However, while
RMSE is evenly distributed across regions, MB is noticeably higher
and Adj. R2 (0.10) is noticeably lower for Oceania than other regions.
Poor MB and Adj. R2 performance in Oceania is in partly
attributable to the inclusion of a small set of NO2 monitoring
data from Australia that was available in OpenAQ. The mean
and standard deviation of daily concentrations in Oceania is low
(4 and 4 ppb, respectively) and well below global values (9 and
11 ppb). The smaller daily averages lead to larger MB when RMSE is
the same. For example, an RMSE of 2 ppb with an air monitor record
of 2 ppb is a 100% MB, while an RMSE of 2 ppb with an actual
concentration of 20 ppb is 10% MB. In a larger and more
geographically diverse external validation dataset of annual
Oceania air monitor measurements (Larkin et al., 2017), model
performance in Oceania is noticeably better and similar to North
America and Europe (Table 7).

Compared to monthly or annual models, daily NO2 estimates
may be more susceptible to meteorological confounding, in which
both OMI coverage and NO2 concentrations are associated with
cloudy weather. Our model does not make predictions for days with
missing OMI values, and therefore has the same spatial-temporal
coverage as columnar OMI. In our sensitivity analysis we used
predictor variables selected by Lasso to develop new monthly and
annual NO2 models and compared these model cross-validation
performances to monthly and annual averages of the daily model
predictions. Differences between models were within 2%, which is
within the random variation observed between bootstrap cross-
validation instances. The geographic variables included in the
monthly and annual model (Supplementary Table S4) were
similar to the daily model, suggesting these are consistently the
most important predictors of geographical NO2 patterns. These
comparisons suggest using the daily model for deriving monthly and
annual exposures does not increase model error. Users should
evaluate the percent missing coverage for their date(s) and
region(s) of interest and might consider using statistical methods
such as moving averages (Figure 4) to fill in missing days. However,
it also suggests the additional computational costs of deriving daily
results is not needed unless health studies can leverage daily
exposure estimates to refine their health analyses. For acute
studies such as hospital admissions following extreme exposures,
daily estimates can be more useful than monthly or annual
estimates.

Sensitivity models suggest model performance differs between
urban and rural areas. Model predictions for rural locations have

TABLE 7 Comparison of model performance in oceania training and external validation datasets.

Dataset RMSE (ppb) MAE (ppb) Adj R2 (ppb) MB (%) MAB (%)

Train 4.7 4 0.02 100 127

Externala 1.9 1.6 0.58 21 35

aExternal dataset properties are described in detail in Larkin et al., 2017.
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greater error than their respective urban counterparts, which is not
surprising given the limited number of rural air pollution monitors
available. For studies with rural participants, we recommend either
using annual rather than daily or monthly model predictions or
restricting analyses to urban and suburban participants.

Our NO2 model has several limitations that should be considered
when applying the model. First, model predictions are dependent on
valid daily OMI measurements. We did not evaluate or exclude air
monitor records based on air monitor sampling quality as most records
from OpenAQ are semi-real time and do not include air monitor
sampling details. In addition tometeorological limitations such as cloud
cover, the number of valid daily pixel measurements from the OMI
sensor on the Aura satellite has gradually been decreasing over time due
to an instrument obstruction first noticed in 2007 (Schenkeveld et al.,
2017). From 2018 onwards, measurements are available from the
TROPOMI instrument, with substantially higher spatial resolution
compared with OMI. Future studies would benefit from an
adaptation of this model using TROPOMI rather than OMI as the
satellite-based measure of columnar NO2. Second, this model relies on
road networks as a secondary indicator for vehicle emissions. Travel
patterns have significantly changed since the onset of the COVID-19
pandemic and studies have demonstrated significant declines in NO2

during lock-down periods (Hoang et al., 2021). We therefore restricted
our model training and performance analysis to the years 2005–2019.
Future research should examine potential long-term changes in travel
behavior and how this impacts NO2 levels and patterns.

We created a daily global NO2 model with 50 m spatial
resolution, with coverage from 2005–2019. In bootstrap cross-
validation, the model captured 47%, 59%, and 63% of daily,
monthly, and annual variation in NO2 concentrations. We will
make these NO2 model estimates available, which can be used to
retrospectively estimate acute and chronic exposures for risk
assessments (e.g., global burden of disease studies), for multi-
national health studies, where measurements are ideally
standardized across regions, and for studies in developing
countries were NO2 monitoring data or detailed models are not
available. Interested epidemiologists should consider the strengths
and limitations of the documented model, particularly with respect
to the spatial and temporal extent and resolution of their cohort data
(Yin et al., 2020).
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