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Land use/ land cover (LULC) change has been identified as the main driving force
of global change. The study investigated LULC change in Tordzie watershed in
Ghana and predicted the future development. The supervised classification
procedure was applied to Landsat images of 1987, 2003, and 2017. The cellular
automata–Markov model embedded in IDRISI 17 software was employed to
model LULC for the years 2030 and 2050. The trend of LULC change was
exploited from 1987 to 2003, from 2003 to 2017, and projected to 2030 and
2050. Settlement and crop land, respectively, increased from 2.68% to 16.46% in
1987 to 3.65% and 53.47% in 2003 and finally to 20.61% and 58.52% in 2017.
Vegetation cover declined from 23.2% in 1987 to 13.9% in 2003 and finally to 11.3%
in 2017. The annual rate of change was determined. In 2030 and 2050, the
dominant land use type will be crop land (56%). However, it decreased between
2017 and 2030 by −1.73%. The findings of the study are very relevant to land and
water resource planners, policy formulators and implementers, and
environmental and climate change advocates. Sustainable land use policy and
its implementation are recommended.
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1 Introduction

The anthropogenic modification of the surface of the Earth by human activities
induced land use/land cover (LULC) changes. Although the modification of the Earth’s
surface by people existed since time immemorial to support livelihood for humankind’s
continual existence on Earth, the current state of LULC changes is alarming with its
attendant degradation of the ecosystem due to increasing population. The current LULC
changes are carried out in an unsustainable manner and thus negatively endangering
posterity. The mentioned changes are the driving forces behind the local, regional, and
global changes in the climate. The extreme climate events such as flush floods and
droughts could also be attributed to LULC (Nyatuame and Agodzo, 2017) since LULC
modifies the hydrology of a watershed or a catchment area.

The global change has become a topical issue and has attracted the attention of the world
leaders and scientists. In the study and analysis of global change, the LULC plays an essential role.
The data available on LULC changes and the rate of change provide critical information to aid in
decision-making of ecological management and environmental planning for the future
(Chowdhury et al., 2018; Mengist et al., 2022). The change detection procedure has an
objective of identifying LULC changes on digital images that provide change features between
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different timelines (Lu et al., 2019). Minale (2013) pointed out that the
increase in LULC changes is alarming and its implication is enormous at
local, regional, and global levels with high negative consequences. Schulp
et al. (2018) employed themapping andmodeling technique to assess the
impact of the past and future changes in LULC on Europe’s cultural
landscape. The study was aimed to decipher the threats to future cultural
landscape as a result of LULC changes.

LULC changes have direct and indirect impact on the
hydrological cycle and climate on the local, regional, and global
scale (Butt et al., 2015; Nyatuame et al., 2020). LULC does not only
impact the hydrological cycle but also biodiversity (Rawat and
Kumar, 2015) and land productivity. The hydrological cycle is
impacted by deforestation locally as trees with extensive root
networks and capable of accessing deep reservoirs of moisture
are replaced with pasture or crop land (Bagley, 2011). According
to Mengist et al. (2022), deforestation has a bio-geophysical impact
on the energy balance. Bagley (2011) reported the previous finding
leads to a sharp reduction in latent heat flux as a consequence and a
small reduction in net radiation. In addition, Bagley (2011) argued
that there is moderate increment in sensible heat flux and storage of
surface energy. Coe et al. (2011) further argued that runoff increases

as a consequence of deforestation to balance the excess moisture,
which alters the basin flow.

Remote sensing (RS) and geographical information systems
(GIS) are powerful tools employed to acquire accurate and timely
information on the spatial distribution of LULC changes (Das et al.,
2021). GIS offered an environment for gathering, storing,
presenting, and examining digital data for change discovery
(Liping et al., 2018; Kafy et al., 2020). Nicu and Stoleriu (2019)
employed RS and GIS techniques to land use changes and dynamics
over a century around churches of Moldavia, Bukovina, and
Northern Romania to ascertain the challenges and future
perspectives of LULC. The study of Nicu and Stoleriu (2019)
found out that the land use dynamic was dominated by
anthropogenic phenomena and therefore recommended the
deployment of the sustainable land use policy and the
conservation of the cultural landscape’s biocultural diversity.

Remotely sensed data are normally employed for differencing of
image, post-classification comparison (PCC), and vegetation index
differencing (Alam et al., 2020). The images from different periods
are compared independently so as to distinguish changes in land
cover (Kalra et al., 2013). The images from different dates are
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classified separately, which do not require modification for direct
comparison (Cheruto et al., 2016).

In Ghana, a number of studies have been conducted in recent
times to analyze LULC changes using the techniques of RS and GIS
to assess the changes of LULC both at the national and watershed
levels (Appiah et al., 2015; Basommi et al., 2016). It has been
reported by most researchers that human activities like illegal
lumbering, urbanization, and agricultural land expansion are
responsible for the LULC (Awotwi et al., 2018; Forkuor, 2014).
Sarfo et al.(2023) also conducted a study in south-eastern Ghana on
class dynamics and relationship between land use systems and
temperature, employing geospatial technologies on satellite
images and found out the drivers of LULC as political, social,
economic, scientific, and biophysical in nature.

However, a search of the literature revealed the gap of no LULC
change analysis employing remote sensing-based technology at the
microclimate level of Tordzie watershed. The LULC dynamics is not
expected to be the same across board but vary from one location to
another with its implications. Therefore, a study of LULC dynamics
in Tordzie watershed is justified. The Tordzie basin is an important
basin in the Volta region of Ghana. It has enormous economic
benefits to its catchment dwellers. The water from the basin serves
for domestic use, and for agricultural and industrial purposes among
others (Nyatuame et al., 2022). As has been established, LULC
changes influence the hydrology and the LULC assessment of
Tordzie is essential because of the implications for water
availability and others. Tordzie watershed encompasses key towns
such as Shia, Kpedze, Honuta, Kpetoe, and Tordzinu besides other

smaller towns. The 2021 national housing and population census in
Ghana estimated the population at Kpedze to be around 27,000, Shia
to be around 2000, Honuta estimated to be 1800, Kpetoe to be
around 40,000, and Tordzinu also estimated to be 20,000. According
to GSS (2021), the population around the watershed is increasing at
the rate of 2.5% per annum; therefore, the future LULC situation
could be precarious if the future scenario is not known andmeasures
are adopted to ensure sustainability. Against the aforementioned
background, this study seeks to assess the LULC and analyze its
futuristic ramifications. The findings of this research will guide the
environmental policy formulators and implementers by churning
out valuable information, the way forward and the adoption of more
sustainable development plans as a strategy in lines with sustainable
development goals (SDGs) 11, 13, and 15. Again, the scientific
knowledge and understanding of LULC dynamics are very
essential for both medium- and long-term watershed restoration
and management, as well as developing a strategy for soil and water
resource conservation plan.

For posterity’s sake, the historical LULC evaluation would be
accompanied with future development analysis. A modeling
technique is the answer to the quest for future demand and
supply analysis. A number of working models have been
employed by the scientists in modeling LULC changes (Karimi
et al., 2018). An example of such a model is the cellular automata
(CA) (Arunyawat and Shrestha, 2016) and Markov chain (Awotwi
et al., 2018) model used for the prediction of LULC change. In this
study, the CA–Markov model was employed to model the future
LULC change and analysis. The primary reason for choosing the

FIGURE 1
Map of Ghana in relation to the Volta region (A), Tordzie watershed, and DEM (B).
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CA–Markov model for this research is because of reports of its high
accuracy and other advantages over other models (Gidey et al.,
2017). It is also universal and effective. The CA–Markov model was
adopted by Luo et al (2015) to study the dynamics of landscape in
Central Asia. Matlhodi et al. (2021) also employed the same model
to analyze future land use and cover change in Botswana and its
implication for water resources.

The objective of the study is to investigate historical LULC
changes using satellite imagery and GIS in Tordzie watershed and
predict future LULC.

2 Materials and methods

2.1 Study area

The study was carried out in Tordzie watershed in Ghana,
Figure 1. The geocodes of stations in Tordzie watershed were
Honuta (6o83′0″N, 0053′0″E), Kpetoe (6033′0″N, 0069′0″E), and
Tordzinu (505′0″N, 0045′0″E). The digital elevation model (DEM)
of the watershed is shown in Figure 1. Tordzie is a trans-boundary
basin; the area in Ghana constitutes 83.7%, and the remaining in
Togo is 16.3% (WRC, 2010); however, the current study is
conducted in the area within Ghana.

2.2 Data used

A cloud-free Landsat multispectral scanner (MSS) and
Enhanced Thematic Mapper Plus (ETM+) imageries obtained on
January and February 1987, December 2003, and January 2017 were
downloaded from the USGS–EROS archive and used. The summary
of the Landsat imagery details is presented in Table 1. The Landsat
images used for processing were based on what is available and its
quality for the area of the study for the chosen years. The limitation
with the data was the unequal interval of good-quality Landsat
images available for the study area for analysis.

2.3 Image preprocessing

Image pre-processing was carried out to obtain useful data from
the satellite images. Data were pre-processed in ENVI 5.0 for geo-
referencing, mosaicking, and sub-setting of the image on the basis of
the area of interest (AOI). The pre-processing involves actions like
geometric corrections, image enhancement, noise removal, and
topographic corrections. The acquired data were stacked into
composite images as the first step. The layers were stacked to
create a multispectral image after combining the required bands.

To make the data compatible with each other, projection
transformation was carried out and assigned UTM WGS-84,30N
projection. The AOI was extracted from the images using the subset
option by employing a second-degree polynomial to rectify the
scene. The images were taken to ArcMap 10.2.2 for the clipping of
the AOI, which is the Tordzie basin. The changes in the LULC type
were detected on pixel count from the analysis in ArcMap.

2.4 Image classification

The image classification has the objective of automatically
categorizing all pixels in an image into land cover classes. In this
study, the images were classified into thematic maps using
supervised classification. A band combination of visible and
infrared color composites was prepared by delineating the
training areas. Signatures and overlapping signatures were
merged into one using a histogram tool to compare them. This
assisted in avoiding overlapping spectral signatures and thus clearly
representing the cover classes distinctly without any ambiguity. The
maximum likelihood algorithm (MLA)-supervised classification
procedure was adopted as it has more advantages (Talukdar
et al., 2020).

2.5 Post-classification

In order to improve the classification accuracy to avoid
misclassification, Google Earth Explorer was used to cross-check
or validate the classification on the ground. Based on the ground
verification, the necessary corrections were made.

2.6 Assessment of accuracy

In order for the classified land use classes to be dependable and
useful for analysis of changes, it is required that the accuracy
assessment for individual classification be performed. The
accuracy assessment technique of classification, which is the most
popular, is the error matrix. Kappa is a measure of agreement
between pre-defined producer ratings and user assigned ratings.
Kappa statistic was computed for the classification using error
matrices. It is calculated by the following formula:

K � P A( ) − P E( )
1 − P E( ) , (1)

where P(A) is the number of times the k raters agree and P(E) is the
number of times the k raters are expected to agree only by chance
(Flight and Julious, 2015).

TABLE 1 Characteristics of satellite images used.

Named year Path 193 row 56 Path 193 row 55 Landsat type Band/colour Resolution (m) Source

1987 08-02-1987 23-01-1987 Landsat 4 TM multispectral 30 USGS-GloVis

2003 29-12-2003 29-12-2003 Landsat 7 ETM + Multispectral 30 USGS-GloVis

2017 25-01-2017 25-01-2017 Landsat 8 Multispectral 15 USGS-GloVis
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2.7 LULC change detection

LULC identification is the procedure of recognizing changes in
the state of an object or phenomenon by observing it at different
times. Thus, a new thematic layer was also produced from the two
five-class maps, containing different combinations of ‘‘from–to’’

change classes. The general procedure for LULC detection employs
the PCC method by comparing the state of the land imagery at two
different independent dates (Hassan et al., 2016). The LULC-type
classification employed in the study is presented in Table 2. In
addition, the flow chart showing procedures followed in LULC
detection, quantification, and projection is displayed in Figure 2.

TABLE 2 LULC-type description.

S/N Land cover Description

1 Vegetation This is the area with evergreen trees largely developing naturally in the land, along the streams and on the slopes, grass land cover and
bush land areas with sparse trees and shrubs

2 Crop land This cover type is mostly utilized for growing food crops such as maize, green vegetables, beans, and cassava

3 Water bodies This land cover type denotes the areas covered with water either along the river bed or man-made earth dams, filled sand dams, and
ponds

4 Bare land This type covers the land without a vegetation cover. This is occasioned by an abandoned crop field, ploughed field not planted and burn
grasslands, paths eroded, construction sites, excavation sites, solid waste landfills, open space, and uncovered soil

5 Settlement This represents the land covered with buildings in the countryside and urban areas. It comprises commercial, residential, industrial, and
transportation infrastructures

Adopted from Olaleye et al.(2012).

FIGURE 2
Summary of LULC and the cellular automata (CA)–Markov model.
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FIGURE 3
LULC maps for Tordzie watershed.
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2.8 LULC-type computation

Subsequent to image classification, according to Meshesha et al
(2016), the geographical extent in hectares for the LULC type must
be calculated for each time period and the extent of change in the
LULC type within and between periods compared. The variation in
the LULC type was performed using ArcGIS 10.2.2 software. In the
analysis of the change, relation (2) was used to compute the rate of
change in hectares (ha) per year (ha/y.) and the percentage (%) share
of each class type in the period of study.

δA %( ) � At2 − At1

At1
x100, (2)

where δA represents the % change in the area of the LULC type
between the initial time At1 and time period At2, At1 represents the
area of the LULC type at initial time, and At2 represents the area of
the LULC type at final time according to (Shiferaw, 2011).

The rate of change of the LULC cover type was computed using
relation (3):

ΔR � ha

year
( ) � K − P

T
, (3)

where ΔR represents the rate of change, K represents the recent area
of the LULC type in ha, P represents the previous area of the LULC
type in ha, and T represents the time interval between K and P in
years.

For the purpose of achieving the objective of evaluating the
LULC change in Tordzie watershed, three land cover maps were
created with a blend of satellite image bands. With the aim of
limiting classification blunder and dissimilarities in the
vegetation development consistently, all data were gathered for

the periods of December, January, and February with the cloud
cover set to zero.

2.9 Land use modeling in the CA–Markov
model

IDRISI 17 embedded with land change modeling (LCM) was
employed to predict the future LULC for analysis. The following
procedures were followed: analysis of change, transition potential
modeling, prediction of change, and validation of the model.

2.9.1 Transition potential modeling
A number of transition maps were developed arising out of

location of change. The transition maps denote the suitability of a
pixel count to turn to other LULC classes in each transition. The
transition probability matrix was generated from the transition
maps to quantify the likelihood of a particular land use type
transitioning into another type in the future.

2.9.2 Change prediction
The change rates calculated previously with the LCM were

employed in addition to the transitional potential maps produced
subsequently to predict the scenario of future 2030 and 2050. The
land use map of 1987–2003 was used to predict the LULC map of
2017. The simulated LULC map of 2017 was compared with the
LULC map of 2017 classified as a way of validation. The LULC map
of 2017 was employed as the baseline for future prediction.

2.9.3 Model validation
The aim of the validation process was to determine the quality of

the map predicted in 2007 in relation to the 2017 LULC map. Kappa
indices of agreement (KIA) were employed to compare the spatial
proximity of land cover classes between two models. The validation
module in IDRISI was employed for validating the model resulting
in the parameters listed as Kno = 0.8302, Klocation = 0.7899, and
Kstandard = 0.6935. According to Mishra et al. (2018), Kno is the most
important parameter for the accuracy assessment of the simulation.
Klocation is the ability of the simulation to identify the location.

TABLE 3 Accuracy assessment statistics.

Statistics 1987 2003 2017

Overall accuracy (%) 93.13 93.28 96.22

Kappa coefficient 0.90 0.90 0.95

TABLE 4 LULC change statistics.

Land
cover
class

1987 2003 2017 Change
1987–2003

Change/
annum
(1987–2003)
(%)

Change
2003–2017

Change/
annum
(2003–2017)
(%)Area

(ha)
(%) Area

(ha)
(%) Area

(ha)
(%) Area

(ha)
(%) Area

(ha)
%

Vegetation 51,726.48 23.22 31,048.24 13.94 25,181.60 11.30 27,333.79 −12.27 −0.77 13,322.43 −5.98 −0.43

Water body 1,554.78 0.70 169.23 0.08 29.15 0.01 1,825.55 −0.82 −0.05 318.09 −0.14 −0.01

Bare land 126,875.38 56.95 64,327.44 28.87 21,275.68 9.55 82,587.59 −37.07 −2.32 97,761.91 −43.88 −3.13

Settlement 5,978.09 2.68 8,122.34 3.65 45,926.36 20.61 2,799.08 +1.26 +0.08 85,843.92 +38.53 +2.75

Crop land 36,665.27 16.46 119,132.76 53.47 130,387.21 58.52 108,254.00 +48.59 +3.04 25,553.65 +11.47 +0.82

NB (−) decrease and (+) increase in land use from the first year.
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Klocation of 1 is perfect for predicting the future LULC. As observed,
with a Klocation of 0.7899, it means there is uncertainty with the
future prediction with the CA–Markov model.

3 Results and discussion

The LULCmaps for the years of 1987, 2003, and 2017 are shown
in Figure 3. The assessment of accuracy of the LULC-type
classification was carried out using Kappa coefficient for different
years, as presented in Table 3.

3.1 The dynamics of LULC

The land cover, change rate, and the rate of change per
annum are summarized in Table 4 in area and in percentage
for Tordzie watershed. In the year 1987, the bare land was the
main LULC type with 57% (126,875.38 ha) of the total land area.
The mentioned LULC type was followed by vegetation (23.22%),
crop land with 16.46% (36,665.27 ha), settlement (2.68%), and
finally water bodies (0.70%). The vegetation cover, water bodies,
and bare lands progressively decreased from 23.22%, 0.70%, and
56.95% in 1987 to 13.94%, 0.08%, and 28.87% in 2003 and lastly
to 11.30%, 0.01%, and 9.55%, respectively, in 2017. However, the
settlement and crop land, respectively, increased from 2.68% to
16.46% in 1987 to 3.65% and 53.47% in 2003 and finally to
20.61% and 58.52% in 2017. When vegetation cover and water
bodies reduced at the given percentages mentioned, there was an
increment in settlement and the agricultural land area under
production. These observations are in line with the similar
studies in other jurisdictions (Awotwi et al., 2018). The
implications of the vegetation cover decline are enormous
such as the loss of biodiversity and reduction in land
productivity among others (Rawat and Kumar, 2015).

3.2 The rate of LULC change

The rate of change of the LULC type is indicated in Table 4.
The rate of vegetation loss per annum from 1987 to

2003 was −0.77% and from 2003 to 2017 was −0.43%. The
loss of bare land from 1987 to 2003 was −2.32% per annum
and −3.13% per annum from 2003 to 2017 and that of the water
body for the same stated period were −0.05% and −0.01%,
respectively, per annum. On the other hand, the rate of land
gain by settlement and crop land for the mentioned period were
+0.08% and +2.75%, and +3.04 and +0.82%, respectively, per
annum. The result implies the intensive gain in the settlement
and crop land is at the expense of massive loss of vegetation and
bare land. The result obtained is in agreement with Appiah et al.
(2015) and Basommi et al. (2016), who conducted a similar study
at different parts of Ghana.

3.3 Implication of LULC changes

The implication of the conversion of vegetation to crop land and
settlement is the modification of the evapotranspiration regime, thus
impacting the precipitation. This is because vegetation or forest has
high evaporation, which contributes to atmospheric circulation.
Thus, deforestation reduces evapotranspiration due to vegetation
loss with the consequences of reduction in atmospheric moisture
circulation and leads to declining precipitation. The aforementioned
assertion is buttressed by the contemporary literature (Snyder, 2010;
Spracklen et al., 2012).

The aforementioned scientific consensus on the negative impact
of deforestation is further supported by Aragao (2012). He stated that
the canopy of forest reprocesses water more efficiently through
evapotranspiration than sparsely vegetated surfaces like farmlands.
There is also an associated flood risk as a result of loss of vegetation.
This is because the canopies of forest intercept rainfall, increase soil
infiltration capacity, lower runoff, and reduce evaporation of water
from the canopy. The aforesaid deduction agrees with Fonseca et al.
(2022), who revealed in their study that 10% decrease in natural forest
is responsible for increased flood frequency of between 4% and 28%.
Lobell et al. (2011) related declining rainfall and rising temperatures to
de-vegetation, leading to a reduction in crop yield with an estimated
10% decline in crop yield due to 1% rise in temperature.

The reduction in the vegetation cover also has a health
implication as the quality of air is deteriorated because plants
give oxygen and absorb carbon dioxide. A typical example is

FIGURE 4
Land gain/loss from 1987 to 2003.
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where slash and burn are employed in converting vegetation to farm
land; air pollution results from emission of smokes. This smoke
includes carbon particles smaller than 1.5 µm in size, which is
harmful to human health.

3.4 Land loss/land gain

The trend of the LULC change generally is a shift of
vegetation, bare lands, and water bodies to crop land and
settlement. When the vegetative cover of the land is being lost
together with the water bodies and bare lands, there is a gain for
the farmland and settlement. The magnitude of the change from

1987 to 2003 and 2003 to 2017 is illustrated in Figures 4, 5. The
total vegetation loss from 1987 to 2017 was −26544.88 ha
(−11.92%) and that of the bare land was −105599.7 ha
(−47.4%). The gain in settlement and crop land for the same
period was +39,948.27 ha (+17.93%) and +93,721.94 ha
(+42.06%), respectively. The trend of the reduction of
vegetation cover corresponded with the expansion of the
settlement area and agricultural land to cater for the food
security needs of the burgeoning population. The negative and
positive trends in LULC detection corresponded to the gain or
loss of the specific land cover.

The implication of the fast rate of the vegetation decline and
the sprawl of urbanization is that climate change impacts will be

FIGURE 5
Land gain/loss from 2003 to 2017.

FIGURE 6
Projected LULC map of 2030 (A) and 2050 (B).
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exacerbated. As the urbanization sprawl, it leads to the
destruction of the natural ecosystem, water quality, and the
impairment of biodiversity due to development of the area.
Urbanization, as a result of vegetation loss, culminates in the
loss of terrestrial carbon stored in vegetation biomass and thus
increase carbon footprint in the ecosystem, which contribute to
climate change (Seto et al., 2012).

3.5 Prognosis of LULC based on the
CA–Markov Chain model

Land cover change has substantial influence on the functioning
of social, economic, and ecological systems and enormous benefits
for its sustenance (Mahmoud and Alazba, 2015). Predicting the
future impacts of land cover changes on an area necessitates an

TABLE 5 Markov Chain transition probability matrix for periods 1987–2003 and 2003–2017.

Year Vegetation Water body Bare land Settlement Cropland

Vegetation 1987–2003 0.4289 0.0012 0.0719 0.0057 0.4923

2003–2017 0.4415 0.0000 0.0041 0.0108 0.5437

Water body 1987–2003 0.0181 0.0361 0.5170 0.0358 0.3931

2003–2017 0.0000 0.0000 0.1216 0.5454 0.3330

Bare land 1987–2003 0.0254 0.0004 0.3388 0.0443 0.5910

2003–2017 0.0390 0.0004 0.1569 0.3211 0.4827

Settlement 1987–2003 0.0180 0.0000 0.2379 0.1105 0.6336

2003–2017 0.0145 0.0000 0.1758 0.2556 0.5542

Crop land 1987–2003 0.0935 0.0005 0.3162 0.0579 0.5319

2003–2017 0.0757 0.0001 0.0890 0.2564 0.5788

TABLE 6 Projected LULC statistics.

LULC type 2030 2017–2030 2050 2030–2050

Area (ha) Area (%) Change (%) Area (ha) (%) Change (%)

Vegetation 25,526.06 11.46 0.15 25,714.09 11.54 0.08

Water body 43.91 0.02 0.01 43.77 0.02 ~0.00

Bare land 22,014.04 9.88 0.33 22,245.60 9.98 0.10

Settlement 48,688.44 21.85 1.24 48,711.43 21.86 0.01

Crop land 126,527.60 56.79 −1.73 126,085.10 56.59 −0.20

FIGURE 7
LULC variations.
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understanding of the effects that historic land cover changes have
exerted on the environment. The projected land cover in 2030 and
2050 is shown in Figures 6A, B, respectively.

3.6 Transition probability matrix analysis

A significant part of detecting change is to determine what is
really changing and which LULC type is changing to the other.
Table 5 provides the probability that each land cover type will
change to the other type. Table 5 shows that the rows indicate the
older land cover types, while the columns represent the newer types.
The derived probability matrix was employed in predicting the
LULC of 2030 and 2050. For instance, between 2003 and 2017,
the probability of vegetation changing to crop land was 0.5437 or
54.37% and the converse was 0.0757 or 7.57%. The probability of
vegetation converting to crop land has increased from 0.4923 in
1987–2003 to 0.5437 in 2003–2017. The transition probability
matrix assists in knowing which changed land use type is due to
be converted to another land use type and thus aids in better
decision-making for mitigative strategies to manage the ecosystem.

3.7 The driving force of LULC change

Rapid deforestation, as a result of urbanization, may be due to the
increase in population, which is leading to change in the land use
pattern. According to GSS (2021), population is increasing at the rate of
2.5% per annum and may be playing a significant role in the LULC
dynamics. The implications of population increase are many and thus
put pressure on the use of natural land resources. The cutting of trees for
fuel wood, bush fires, and other economic activities of highmarket value
are the main causes of accelerated deforestation in the watershed. This
occurs as there is no alternate livelihood support for rural dwellers who
depend a lot on the natural resources for survival. Thus, an increase in
population drives the increase in the agricultural land area and the
settlement area since there is the need to produce food in response to
growing population and the demand for settlement. Evidence abounds
in the literature to buttress the point that human activities are the main
causes of LULC change dynamics (Shiferaw, 2011). Again, it was also
reported by Toma et al. (2023) that population growth, agricultural
expansion, illegal wood extraction, increase in the settlement area or
built-up area, urbanization, and environmental policy gaps are the
major drivers of LULC. The drivers of LULC have been categorized into
natural causes and human-induced or anthropogenic stresses. The
anthropogenic stresses in relation to biophysical factors may be
contributing to the LULC.

The anthropogenic stresses of LULC are further classified as
direct causes and underlying causes according to Sarfo et al. (2023).
According to Sarfo et al. (2023), five primary drivers of LULC,
namely, political, social, economic, scientific, and environmental
factors, are considered to be the underlying influencers on human-
induced factors.

In 2030 and 2050, the crop land will be 56.8% (126,527.6 ha) and
56.6% (126,085.10 ha), respectively, of the watershed. However,
there is a reduction in the crop land between 2017 and projected
2030 by −3,859.61 ha (−1.73%) with a decreasing rate of −0.13% per
annum for the stated period. The settlement will increase by 2.4% for

the same period. The settlement area projected will continue to
increase until 2030 and 2050, and it will be 21.85% (48,688.44 ha)
and 21.86% (48,711.43 ha) of the LULC type in the watershed,
respectively. The detail projected statistics are presented in Table 6
and Figure 7. The loss from the crop land in the projected will be
gained by settlement, bare land, and vegetation. Nonetheless, the net
change analysis reveals a decrease in the vegetation area from
1987 to the projected 2030 and 2050.

3.8 Implication of the projected LULC
change in the watershed

The changes in LULC in the future as simulated, especially the
increase in settlement and decline in the agricultural land area,
might impact the local population in several ways. It may lead to
overexploitation of the ecosystem and natural resources due to
socioeconomic factors, such as population increase, which drives
the settlement increase. The overexploitation of natural resources
may lead to resource use conflict as these resources get scantier and
there is a scramble for them.

As a vegetation cover, which serves as a carbon sink, decreases, it
may lead to the rise in temperature and reduction in rainfall and its
variability. The increasing temperatures may result in thermal
discomfort as heat waves are on the rise as a consequence. In
order to mitigate the excessive heats at homes, people may have
to resort to the use of air conditionings in their homes and thus may
lead to an increase in the energy cost.

The increase in settlement, virtually robbing the crop land, may
come with its challenges. The conversion of agricultural land to non-
agricultural uses may bring serious consequences of food insecurity.

It may also bring about unemployment among the users of
agricultural lands and migration of the users to big cities for better
opportunities. The conversion of crop land to vegetation may have
implications for ecosystem services including providing habitat and
biodiversity (Lawler et al., 2014).

Since forest serves as a carbon sink, thus a comparatively small
crop land conversion to vegetation may have an enormous impact
on the net GHG emissions. However, overall, vegetation has
decreased from 1987 to the projected 2050. The marginal
increase in the projected bare land could be as a result of the
expected increase in road infrastructure, construction sites, and
landfill sites due to the increase in the settlement area as a
consequence of the expected population rise.

The negative environmental consequences of LULC will worsen
if business as usual (BAU) is continued in the future. The
detrimental impact on the soil and water resources (water
scarcity) in the watershed will be heightened.

The aforementioned LULC changes and implications historically
have not been severe, as is expected in the projected LULC changes. The
loss of biodiversity associated with the decline in vegetation as simulated
may be more severe in the future compared to the historical changes,
along with drought severity, intensity, amount, and duration, as
projected by Nyatuame and Agodzo (2017), as a result of rainfall
variability due to climate and land cover change.

The local population may be severely impacted as there is land
productivity decrease, affecting their livelihood, since the local
economy is agrarian.

Frontiers in Environmental Science frontiersin.org11

Nyatuame et al. 10.3389/fenvs.2023.1139264

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1139264


3.9 LULC dynamics, the need for policy
intervention

In line with SDGs 13 and 15, and the protection of biodiversity
and ecosystem, there need to be a policy to guide the use of natural
resources with posterity in mind, which includes the following:

• Vertical development that maximizes the land area instead of
horizontal development.

• Planting of indigenous tree species to forestall de-vegetation
and to restore the ecosystem benefits of afforestation.

• Obtaining permission from relevant authorities before felling
of trees.

• Replacement plan provided and executed to the letter.
• Policy on the land use plan.
• Use of liquefied petroleum gas (LPG) instead of fuel wood.
• Alternative livelihood means instead of lumbering.

Figure 8 illustrates LULC changes and consequences of the
change. It also summarizes the drivers of the LULC and the
impacts of LULC.

4 Conclusion

LULC change has been acknowledged as the main driving
force of the climate change and variability. The study revealed a
progressive decrease in the land cover of vegetation, water
bodies, and bare land from 1987 to 2003 through to 2017.
The vegetation cover, water bodies, and bare lands
progressively decreased from 23.22%, 0.70%, and 56.95% in
1987 to 13.94%, 0.08%, and 28.87% in 2003 and lastly to
11.30%, 0.01%, and 9.55%, respectively, in 2017. However, the

settlement area and crop land, respectively, increased from
2.68% to 16.46% in 1987 to 3.65% and 53.47% in 2003 and
finally to 20.61% and 58.52% in 2017. The projected LULC
indicated that in 2030 and 2050, the dominant land use type
will be crop land (56%). The findings of this research are relevant
to environmental policy formulators and implementers, as well
as urban and water resource planners.

The limitation to this current study is the images of different
time intervals due to the difficulty of obtaining good-quality Landsat
images from the study area for the periods under study.

The recourse to land use policy and its effective
implementation is recommended to curtail the alarming
LULC in Tordzie watershed and its environs. The study also
recommends adapted mitigation strategies to protect vegetation
(forest cover) and improve the green spaces around the built-up
areas by planting more trees. It is further recommended that
technology be adopted in farming to increase productivity
instead of increasing the farm size. The urbanization in
relation to temperature rise, energy cost, and LULC is
recommended for further study by the future researchers.
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