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The morphology and phase state are critical physical properties of aerosol
particles. However, studies related to the analysis of these properties primarily
focus on laboratory experiments, and studies on real aerosol particles are limited.
Herein, fine particulate matter (PM2.5) filter samples were obtained to investigate
and compare the morphology and phase state of ambient aerosol particles in
South Korea. The PM2.5 samples were collected in the summer of June 2021 from
two different environments: Seoul (urban) and Seosan (coastal-rural). Optical
microscopy was combined with the poke-and-flow technique to determine
the morphology and phase state of the PM2.5 as a function of relative humidity
(RH) at 293 ± 1 K. At both sites, the PM2.5 droplets, which were extracted in purified
water, showed a multiphase nature that was dependent on the RH and chemical
composition. Based on the results and ambient average RH in Seoul, most of the
PM2.5 was observed in a liquid state on polluted days under an inorganic-dominant
condition, but in a semisolid state on clean days under an organic carbon-rich
condition. In Seosan, the PM2.5 predominantly existed in a liquid state, due to the
high RH caused by proximity to the Yellow Sea. Our study provides fundamental
physical properties of PM2.5 for both urban and coastal-rural environments. The
results have strong applications for atmospheric chemistry and predicting particle
size distributions.
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1 Introduction

In Asia, rapid industrialization and infrastructure developments have resulted in
environmental issues associated with an increase in air pollution and a decrease in air
quality (Masson-Delmotte et al., 2021). Among the various atmospheric pollutants, fine
particulate matter (PM2.5) significantly affects climate change and human health (Song Y.
et al., 2019; Bhattarai et al., 2020; Masson-Delmotte et al., 2021). These effects are influenced
by the physicochemical properties of PM2.5, including chemical composition, size, phase
state, and morphology (Seinfeld and Pandis. 2016). Field studies have reported that PM2.5 is
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predominately comprised of a mixture of thousands of organic
molecules and some inorganic substances (Jimenez et al., 2009;
Zhang et al., 2011; Kim et al., 2022).

PM2.5 can undergo phase transitions in the atmosphere,
resulting in different morphologies and phase states. Depending
on the relative humidity (RH), temperature, and particle chemical
composition, PM2.5 morphology can shift between being
homogeneous, core–shell, or partially engulfed (Reid et al., 2011;
Song et al., 2013). Studies using atmospherically relevant particles
have shown that aerosol particles often exhibit a phase-separated
morphology when the oxygen-to-carbon ratio (O: C) of their
organic materials is less than 0.8 (Bertram et al., 2011; Krieger
et al., 2012; Song et al., 2012; Zuend and Seinfeld. 2012). These
different morphologies can affect the heterogeneous chemical
reaction rate, water uptake, and gas-to-particle partitioning
(Zuend and Seinfeld. 2012; Lam et al., 2021; Mikhailov et al., 2021).

PM2.5 can exist in a liquid, semisolid, or solid phase state in the
atmosphere, and the phase state is vital for predicting the size
distribution, mass concentration, heterogeneous reactivity, and
ice nucleation efficiency of its particles (Shiraiwa et al., 2013;
Kim et al., 2019; Knopf et al., 2018; Li et al., 2018; Zaveri et al.,
2018). The phase state of PM2.5 can be determined by the range of
viscosity, where liquid (viscosity < 102 Pa s), semisolid (viscosity of
102–1012 Pa s), and solid (viscosity > 1012 Pa s) (Koop et al., 2011).
Various laboratory studies have shown that the RH, water affinity,
and chemical composition of aerosol particles significantly impact
their phase states (Koop et al., 2011; Grayson et al., 2016; Rothfuss
and Petters. 2017; SongM. et al., 2019; Champion et al., 2019; Petters
et al., 2019; Song et al., 2021; Ham et al., 2019; Jeong et al., 2022).
However, comparatively few field studies have observed the phase
states of real-world aerosol particles (Bateman et al., 2016; Liu et al.,
2021b; Cheng et al., 2021; Song et al., 2022). More data on the
morphologies and phase states of real-world aerosol particles are
required to accurately describe the impact of aerosols on
atmospheric chemistry and the climate.

To achieve this, PM2.5 was simultaneously collected at two
different sites in South Korea in June 2021 including Seoul
(urban) and Seosan (coastal-rural). Seoul is a highly populated
urban area and one of the world’s megacities, whereas Seosan is
a coastal-rural area surrounded by an agricultural complex, the
Yellow Sea, and coal power plants. Morphologies and phase states of
PM2.5 droplets were observed at 293 ± 1 K upon dehydration, using
optical microscopy and a poke-and-flow technique. The results of
these two methods were combined with ambient RH conditions to
estimate and compare the phase states of PM2.5 in these urban and
coastal-rural areas during summer.

2 Materials and methods

2.1 Measurement sites

PM2.5 filter samples were simultaneously collected in Seoul
(37.61°N, 126.93°E) and Seosan (36.78°N, 126.49°E) in South
Korea during June 1–30, 2021 (Supplementary Figure S1). Seoul
is a megacity with heavy traffic and dense residential areas (Kim
et al., 2022). The sampling site in Seoul was operated by the National
Institute of Environmental Research in Bulgwang-dong,

Eunpyeong-gu. Seosan is a coastal-rural area surrounded by
agricultural clusters, ~15 km from the Yellow Sea, and ~26 km
from petrochemical complexes. This site has one of the highest
annual PM2.5 levels in Korea, even though it is a rural area (Ju et al.,
2020). The Seosan measurement site was operated by the National
Institute of Environmental Research in Suseok-dong, Seosan-si,
Chungcheongnam-do.

2.2 Collection and generation of PM2.5

PM2.5 was collected on quartz filters (8 × 10 inches, Pall Co.,
United States) every 23 h (from 10:00 a.m. to 09:00 a.m., local time)
using high-volume air samplers at a flow rate of ~1000 L/m (HV-
1000R, SIBATA, Japan). The samples were immediately stored in a
freezer at ~255 K after collection. We focused on samples with high
PM2.5 concentrations at least one of the two sites, i.e., a daily mean
concentration ≥35 μg/m3, which is the standard daily level of PM2.5

in Korea (Ministry of Environment, 2021). Based on this, six cases
(Cases 1–6) were selected from both sites (yellow shaded regions in
Supplementary Figure S2), which included high PM2.5 episodes. The
samples in Cases 1–6 that were considered unsuitable for analysis
were excluded, such as the sample collected in Seosan on 28 June
2021, owing to the considerably low surface tension of the PM2.5

droplets on the substrate. In total, 17 filter samples (nine from Seoul
and eight from Seosan) were investigated for phase states. Table 1
provides information on the daily mean concentrations, chemical
compositions (Supplementary Section S1), O:C (Supplementary
Section S2), and aerosol liquid water content (Supplementary
Section S3) of PM2.5 for Cases 1–6 in Seoul and Seosan. An
overview of the measurements at the two different sites is
provided in Supplementary Section S4. The filter samples for
Cases 1–6 were extracted as water-soluble organic and inorganic
compounds in deionized water (18.2 MΩ cm, Merck Milli-Q®,
Millipore, United States) for morphology and phase experiments
within 3 months after collection. Previous studies showed that
water-soluble organic and inorganic species were comprised of
more than ~70% in PM2.5 (Huang et al., 2012; Liu et al., 2021a).
A nebulizer (MEINHARD®, United States) was used to nebulize the
extracted PM2.5 droplets onto a hydrophobic substrate for
morphology observation (Section 2.3) and poke-and-flow
experiments (Section 2.4).

2.3 Optical microscopy for PM2.5 droplets

A flow-cell was used to perform temperature- and RH-
controlled measurements for PM2.5 droplets on a hydrophobic
substrate (Song et al., 2012; Jeong et al., 2022). The PM2.5

droplets were equilibrated at ~100% RH and 293 ± 1 K for
~20 min at the start of the experiment. The RH was then
lowered at a rate of 0.5% RH/min. Morphological analysis was
carried out using an optical microscope; detailed procedures and
methods are described in previous reports (Gaikwad et al., 2022;
Song et al., 2022). An optical microscope (BX4 × 3, ×40 objective;
Olympus, Japan) was used to monitor and capture morphology
changes at 10 s intervals during the dehydration process, using a
camera with a charge-coupled device (CCD) (DigiRetina 16, Tucsen,
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China). The RH in the flow-cell was calibrated at 293 ± 1 K by
measuring the deliquescence RH of K2CO3 (at 44% RH) and NaCl
(at 76% RH) (Winston and Bates. 1960), resulting in RH uncertainty
of ±1.5%. The RH in the flow-cell was adjusted by the ratio of dry N2

gas to saturated H2O gas (total flow rate: 500 sccm). The
temperature range of the experiment (293 ± 1 K) was similar to
the actual mean temperature in Seoul (297 ± 3 K) and Seosan
(295 ± 3 K).

2.4 Poke-and-flow technique for PM2.5
droplets

A poke-and-flow technique was adopted to analyze the PM2.5

phase state as semisolid or solid, hereafter referred to as (semi)
solid as described by Renbaum-Wolff et al. (2013); Song M. et al.
(2019). The procedure was detailed in previous studies
(Renbaum-Wolff et al., 2013; Gaikwad et al., 2022). The PM2.5

droplets were conditioned at ~ 100% RH. Subsequently, the RH
was decreased to ~40% at a rate of ~1% RH/min, and the RH was

then adjusted from approximately 40% to 0% at ~ 10%
decrements. At a given RH, the droplets were conditioned for
~2 h before being poked. A sharp needle (Jung Rim Medical
Industrial, South Korea) was used to poke the droplets at each
decrement to determine the RH at which the particles cracked.
Subsequently, the geometry was observed for ~3 h to observe the
occurrence of fluid flow. Based on previous studies using the
poke-and-flow technique, when no flow was observed, the
viscosity was determined to be > ~1 × 108 Pa·s (Song et al.,
2015; Grayson et al., 2016). However, this technique did not allow
for measurements in the semisolid viscosity range of 102–108 Pa·s
because the PM2.5 was supersaturated with inorganic substances
such as ammonium sulfate and ammonium nitrate upon
dehydration. The PM2.5 droplets were observed with an
optical microscope (CKX5 × 3, ×40 objective; Olympus,
Japan) before, during, and after being poked; the process was
captured using a CCD camera (C11440-42U30, Hamamatsu,
Japan). A temperature of ~293 ± 1 K was maintained during
the experiments, which reflected the ambient temperature range
recorded at the two sampling sites.

TABLE 1 A summary of the average daily mass concentration, chemical composition, oxygen-to-carbon ratio (O:C), and aerosol liquid water content (ALWC) of
PM2.5, and ambient relative humidity (RH) based on filter sampling intervals in seoul and seosan for Case 1–6 in 2021. Phase state of the bulk of PM2.5 at mean
ambient RH is also included.

Date
PM2.5 NH4

+ NO3
− SO4

2- OC EC O:C ALWC Ambient RH Phase state

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (%) At mean RH

Seoul

06.05 45.9 7.9 12.4 10.0 5.1 1.2 0.45 41.2 71.1 Liquid

06.09 33.0 2.2 3.9 3.3 8.1 1.8 0.49 6.0 56.7 Semisolid

06.12 15.5 0.9 1.0 2.0 3.9 0.7 0.49 3.9 72.0 Semisolid

06.13 24.7 2.4 3.0 4.1 5.2 1.0 0.45 10.0 72.0 Semisolid

06.14 42.6 6.0 12.7 5.4 8.0 1.5 0.45 21.8 68.1 Semisolid

06.19 40.3 7.1 11.2 8.9 4.8 0.7 0.44 31.5 71.0 Semisolid

06.20 51.2 9.9 17.1 11.1 5.0 1.0 0.50 61.2 74.4 Liquid

06.24 37.8 5.9 8.9 7.8 4.3 0.8 0.46 24.5 70.3 Semisolid

06.28 15.9 1.6 1.0 4.0 3.2 0.6 0.51 7.5 77.1 Semisolid

Mean 34.1 4.9 7.9 6.3 5.3 1.0 0.47 23.1 70.3

Seosan

06.05 45.7 6.8 11.7 7.5 5.9 0.8 0.47 94.4 84.0 Liquid

06.09 31.5 3.7 3.8 5.1 8.2 1.0 0.46 23.2 66.9 Semisolid

06.12 24.3 4.0 6.5 4.4 4.8 0.6 0.46 44.2 79.8 Liquid

06.13 20.5 3.8 4.1 5.4 2.6 0.4 0.46 130.9 85.6 Liquid

06.14 24.3 4.5 6.1 5.4 3.6 0.6 0.47 28.1 82.3 Liquid

06.19 33.9 6.4 9.9 7.0 3.2 0.4 0.47 187.9 83.3 Liquid

06.20 48.7 9.1 15.3 9.2 5.2 0.8 0.51 152.1 81.3 Liquid

06.24 26.0 4.2 6.8 4.5 4.0 0.5 0.47 132.9 82.3 Liquid

Mean 31.9 5.3 8.0 6.1 4.7 0.7 0.47 105.4 80.7
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FIGURE 1
Optical images of the morphology changes of PM2.5 droplets at 293 ± 1 K with decreasing relative humidity (RH) for (A) seoul and (B) seosan. “NA”
denotes the droplet morphology that was not observed optically. Cartoons are provided to assist in the interpretation of the observed morphologies.
Cyan: liquid organic/inorganic phase; blue: liquid inorganic-rich phase; green: liquid organic-rich phase; dark yellow: (semi) solid inorganic-rich; and dark
grey: (semi) solid organic/inorganic phase. The scale bar in the optical images denotes 20 µm.
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3 Results and discussion

3.1 Morphology of PM2.5 droplets

PM2.5 was collected in the summer of 2021 in the urban and
coastal-rural environments of Seoul and Seosan, respectively,
including high PM2.5 episodes. The samples for each site were
labeled as Cases 1–6 (per site), and the morphology of the PM2.5

was studied at a temperature of 293 ± 1 K. Figures 1A, B show the
changes in PM2.5 morphology during the dehydration process in
Seoul and Seosan, respectively, for each date. All components
were dissolved in the droplets at an RH of ~100–90%, exhibiting a
single liquid state (as shown in the second column in Figures 1A,
B). The evaporation of water from the droplets caused the size to
decrease with decreasing RH. At an average of ~87–89% RH, all
PM2.5 droplets showed liquid-liquid phase separation (LLPS)
(third column in Figures 1A, B). This LLPS has been observed
in numerous laboratory studies and modeling work, and
commonly occurs when the O: C ratio of organic materials in
the presence of inorganic salts is below 0.8 (Bertram et al., 2011;
Song et al., 2012; Zuend and Seinfeld. 2012). LLPS has also been
observed in ambient aerosol particles from different
environments, within a specified range of O: C ratios (Pöhlker
et al., 2012; You et al., 2012; Gaikwad et al., 2022; Song et al.,
2022). In this study, the average O: C of the PM2.5 droplets was
~0.47 at both sites (Table 1), which is within the appearance
range for LLPS.

The equilibrium morphology of liquid-liquid-phase
separated droplets (i.e., core−shell or partially engulfed) can
be determined by the surface and interfacial tensions and
spreading coefficients of the two phases (Kwamena et al.,
2010; Song et al., 2013). In the droplets from both sites, a
core-shell morphology was observed on a hydrophobic
substrate. Previous studies have shown that liquid-liquid-
phase-separated particles with a core-shell morphology
predominantly consist of organic and inorganic species on
their outer and inner phases, respectively (Ciobanu et al.,
2009; Reid et al., 2011; Song et al., 2013). This can be
explained by the fact that organic compounds possess a lower
surface tension than inorganic salts (Ciobanu et al., 2009).

With a further decrease in RH, crystals abruptly appeared
inside the PM2.5 droplets (fourth column of Figures 1A, B),
leading to a three-phase coexistence of a liquid-liquid-(semi)
solid state, occurring at an average RH range of ~76–27% for
Seoul and ~71–33% for Seosan. The crystals may be solid organic
materials or inorganic substances such as ammonium sulfite and
ammonium nitrate. This morphology has not yet been observed
in laboratory-made aerosol particles. However, recently, the
coexistence of the three phases consisting of liquid-liquid-
(semi) solid has been discovered in the PM2.5 of different
environments (Gaikwad et al., 2022; Song et al., 2022). This
suggests that atmospheric aerosol particles could display more
complicated and multi-phase morphologies than their laboratory
counterparts. This finding can be used to predict more accurate
results for heterogeneous reactions and in atmospheric chemistry
(Riemer et al., 2019). As shown in Figure 1 (last column), a
further decrease in RH led to the efflorescence of a large portion
of the inorganic fractions.

3.2 Phase states of PM2.5 as a function of RH

To determine a (semi) solid state of the PM2.5, a poke-and-flow
experiment was performed at ~293 ± 1 K. All PM2.5 droplets cracked
when poked by a needle at average RHs of ~27% and ~33% for
particles collected in Seoul and Seosan, respectively (Figure 2). After
cracking, no flow was observed for a period of ~3 h, indicating a
viscosity lower limit of ~108 Pa·s (Song et al., 2015; Grayson et al.,
2016), which corresponds to a (semi) solid state (Koop et al., 2011).

From the result of the optical microscopy and poke-and-flow
experiments, the phase states of the “bulk” of PM2.5 were determined
as a function of RH at a temperature of ~293 ± 1 K. The bulk of the
PM2.5 was characterized as “liquid” for single liquid and liquid-
liquid phase separated particles, “semisolid” for liquid-liquid-(semi)
solid particles (although not all phases in the particles were
necessarily semisolid), and “(semi) solid” for semisolid or solid
particles (Song et al., 2022). Based on this characterization,
Figure 3A presents the phase states of PM2.5 in Cases 1–6 from
the two study sites (dates are shown for increasing daily PM2.5

concentrations). The bulk of the PM2.5 from Seoul exhibited a liquid
state at mean RHs > ~87%, semisolid state at ~27% < mean RHs <
~76%, and (semi) solid state at mean RHs < ~27%. In Seosan, the
bulk of the PM2.5 was a liquid state at mean RHs > ~89%, semisolid
state at ~33% < mean RHs < ~71%, and (semi) solid state at mean
RHs < ~33%. The average RH range of the liquid state was similar in
the two sites, while the RH range of the (semi) solid state was slightly
higher in Seosan (~33%) than that in Seoul (~27%).

Interestingly, a clear difference in the RH boundary of semisolid
and (semi) solid state was observed in Seoul. It was ~38% RH on
polluted days (PM2.5 ≥ 35 μg/m3), but the RH value was dropped
down to ~13% on clean days (PM2.5 < 35 μg/m3) as shown in
Figure 3A. This is most likely due to the different chemical
compositions of Seoul PM2.5 on polluted and clean days;
Figure 3B and S3a illustrate the abundance of major chemical
compositions of PM2.5 in Seoul for polluted versus clean days,
including organic carbon (OC), elemental carbon (EC), and
inorganic substances (sulfate, nitrate, and ammonium). A distinct
difference in PM2.5 chemical compositions was monitored in Seoul
that inorganic fraction increased to ~81% on polluted days while it
was decreased to ~55% with enhancement of organic fraction on
clean days. Recent laboratory studies have shown the effect of
inorganic salts on viscosity and phase state in aerosol particles
(Richards et al., 2020; Jeong et al., 2022). Jeong et al. (2022)
showed that the viscosity of inorganic-rich particles
(i.e., ammonium sulfate) was approximately 8 orders of
magnitude higher than that of organic-rich particles at low RH
levels close to their efflorescence RH. In the current study, the effect
of inorganic substances on phase state in real-world aerosol particles
was consistent with the results of previous laboratory studies.

In contrast to the Seoul urban area, in Seosan, a significant
variation on the RH boundaries for the phase states of the PM2.5 was
not observed on the polluted versus clean days (Figure 3A). This
could be resulted from the similar chemical compositions during the
entire periods. Figure 3B and S3b show that the abundances of the
major chemical species of the PM2.5 was insensitive depending on
the concentrations. This can be extrapolated to a similar range in the
RH boundary of the phase states over the entire period in the
coastal-rural area.
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3.3 Estimated phase states of PM2.5 in urban
and coastal-rural areas

The primary impact on the phase state of aerosol particles on RH
has been previously studied (Renbaum-Wolff et al., 2013; Song et al.,
2015; Reid et al., 2018; Rovelli et al., 2019). From these studies, they
explained that aerosol viscosity and phase states are strongly RH-
dependent. To estimate the phase state of the bulk of the PM2.5, we
first related our results to the ambient RH condition of the two sites.
Box plots in Figure 3A display the daily ambient RH in Seoul and
Seosan. The mean ambient RH during summer was ~70% in Seoul
and ~81% in Seosan, with some variations (Figure 3A; Table 1).

Based on the measured phase states of the bulk of the PM2.5

(Section 3.2) and mean ambient RH in Seoul (box plot of Figure 3A),
PM2.5 was estimated in a liquid or semisolid state. The liquid phase
state of PM2.5 became more dominant as the PM2.5 concentration
increased when the RH and ammonium nitrate were enhanced. The
ambient RH in Seoul (Figure 3A) ranged higher than the
deliquescence RH of ammonium nitrate (65.5% RH at 293 K)
(Winston and Bates. 1960). This indicates the high ambient RH
led to liquefy the PM2.5 dominated by ammonium nitrate (Seinfeld
and Pandis. 2016). The result is consistent with findings of our
recent study of Song et al. (2022) in Seoul during winter where the
liquid phase state was dominant on high PM2.5 days and a semisolid
state was dominant on low PM2.5 days. Liu et al. (2017) observed a
similar phenomenon where the particle phase state was liquid

during heavy haze events in Beijing. Under high RH conditions,
rapid chemical reactions can occur between PM2.5 and surrounding
gas molecules, accelerating the production of high PM2.5 mass
concentrations.

Most of the PM2.5 in Seosan was in a liquid state at the mean
ambient RH values, except on June 9, when the RH value was
relatively low with an average of ~67% (Figure 3A; Table 1). This
coastal-rural area is close to the Yellow Sea (~15 km); therefore, high
ambient RH conditions are common. Due to the geographic
characteristics of Seosan, PM2.5 was commonly existed in a liquid
phase state.

In addition to RH, the chemical composition of PM2.5 is another
important parameter for determining phase states. Several studies have
shown that the phase states of aerosol particles were determined by the
presence of organic materials, inorganic salts, and their ratios (Rovelli
et al., 2019; Richards et al., 2020; Jeong et al., 2022). Using the RH and
PM2.5 chemical compositions (Supplementary Section S3), the aerosol
liquid water content (ALWC) at the two sites were calculated
(Figure 3B). As discussed above, a high fraction of inorganic
substances in PM2.5 was observed at both sites during high PM2.5

episodes (Supplementary Figure S3). High inorganic composition and
RH could result in abundant liquid water molecules in the PM2.5,
leading to PM2.5 pollution (Supplementary Figure S4). Moreover, a
distinct difference in ALWCwas observed at the two different sites, with
Seosan exhibiting a significantly greater ALWC than Seoul, resulting in
a predominantly liquid state of PM2.5 in Seosan. To gain more

FIGURE 2
Optical images of the poke-and-flow experiment obtained pre-poking, poking, and post-poking of PM2.5 droplets in (A) Seoul and (B) Seosan for
cases 1–6. The scale bar represents 10 µm.
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comprehensive results of the effect of chemical composition on the
phase state of ambient aerosol particles, further studies are requiredwith
more extensive datasets. In addition, environmental factors such as
wind and precipitation could also affect phase variation of PM2.5. These
parameters should be also considered to explore phase behavior
of PM2.5.

4 Conclusion and implications

In this study, optical microscopy was combined with the poke-and-
flow technique to determine themorphology and phase state of PM2.5 at
293 ± 1 K collected in Seoul (urban) and Seosan (coastal-rural) in June
2021. Upon dehydration, the PM2.5 droplets from Seoul and Seosan
exhibited different morphologies and phases, including single liquid,
semisolid, and (semi) solid states. Based on the ambient average RH
level and the results obtained from the laboratory experiments at 293 ±
1 K, which is considered similar to ambient temperature, the phase
states of bulk PM2.5 in the urban and rural areas were estimated. The
PM2.5 in Seoul was to be in both liquid and semisolid states and results
showed that a liquid state was abundant during highly polluted summer
days. However, PM2.5 was to be present in a liquid state due to the high
ALWC, as well as meteorological and geographic characteristics of
Seosan. Our results could have several limitations in providing of
quantification of viscosity for PM2.5 particles, and potential effects of

water-insoluble materials on the morphology and phase state.
Therefore, to obtain more concrete conclusion for the phase state of
PM2.5, more experimental dataset and incorporation with different
methods are required.

The phase state of aerosol particles can be affected by particle size
distribution. Several recent laboratory and modeling studies
demonstrated that liquid particles allow the partitioning of gas
molecules into the volume of the whole particle with fast reaction/
uptake of ambient gasmolecules (Shiraiwa et al., 2013; Slade andKnopf.
2014; Berkemeier et al., 2016; Houle et al., 2018). However, for solid
particles, gas molecules can only partition onto the surface of the
particles. As a result, the phase states of particles can influence particle
growth, internal mixing, and particle size distribution (Zaveri et al.,
2014; Song et al., 2022). To build on the results from this study, more
detailed data is needed to understand the fundamental physical
properties of PM2.5, and its environmental consequences, which are
still largely unknown, and how the physical properties are linked to the
chemical compositions that cause PM2.5 pollution.
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FIGURE 3
Daily average measurement results for PM2.5 in Seoul and Seosan on clean (PM2.5 < 35 μg/m3) and polluted (PM2.5 ≥ 35 μg/m3) days in cases 1–6. (A)
Phase states of the bulk of PM2.5 as measured at 293 ± 1 K. Green: liquid; blue: semisolid; and grey: (semi) solid. The box plot indicates daily ambient
relative humidity (RH). (B) PM2.5 mass concentrations, and chemical compositions (minor ions: Cl−, Na+, K+, Mg2+, and Ca2+) and aerosol liquid water
content (ALWC). (C) Ambient temperature. In the box plot, the box represents the mean, 25th, and 75th percentiles, and the whisker represents the
minimum and maximum values. Dates are arranged from low to high PM2.5 mass concentrations for cases 1–6.
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