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The vertical slots of fish passes represent bottlenecks thatmust be passed by every
fish migrating upstream. The hydraulics in fish passes are well investigated but less
is known about the small scale behaviour of fish while passing the vertical slot.
Understanding the species-specific swimming behaviour during the passage
could allow for creation of future fish passes with hydraulics adapted to the
swimming requirements of desired target species. We recorded the swimming
trajectories of three fish species as point coordinates per video frame using
cameras. Then, two common machine learning algorithms were used to
identify species characteristic swimming patterns in the trajectories. A Random
Forest model trained on 21 trajectory features revealed that water discharge, the
spatial trajectory position, and the trajectory length were most distinct trajectory
features among species. The model identified the species with a mean F1 score of
0.86 ± 0.08 SD for round goby [Neogobius melanostomus (Pallas, 1814)], 0.81 ±
0.12 SD for gudgeon (Gobio L.), and 0.58 ± 0.20 SD for bullhead (Cottus gobio L.).
A Convolutional Neural Network achieved a mean F1 score of 0.89 ± 0.03 SD for
round goby, 0.76 ± 0.05 SD for gudgeon, and 0.67 ± 0.02 SD for bullhead if
exclusively trained on the point coordinates of the swimming trajectories. These
results demonstrate that fish species exhibit distinct swimming patterns when
passing through a vertical slot, and how these patterns can be used for species
identification using machine learning algorithms. Because round goby achieved
the highest F1 scores, we conclude that round goby showed the most
characteristic swimming trajectories among the species tested. Future fish
passage research should account for the individual swimming patterns of the
fish in these bottleneck flow fields and on adapting the flow to the individual
swimming patterns of the target fish. Flow conditions being supportive for
swimming patterns of the desired fish could have the potential to improve the
river connectivity and thereby support the aquatic biodiversity.
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1 Introduction

More than 1.2 million instream barriers fragment European
rivers (Belletti et al., 2020) and the majority of the world’s river
systems is fragmented (Nilsson et al., 2005). Fish passes are
frequently used to enable passage of fish across river obstacles
(Katopodis and Williams, 2012), but how the fish behave to
overcome the critical flow fields in such fish passes is widely
unknown. Mechanistic studies on the performance of fish in fish
passes, aiming at understanding why fish may succeed or fail
passage, are needed to enable passage for a wide species
spectrum, (Roscoe and Hinch, 2010). Roscoe and Hinch (2010)
further reported that studies about fish passage behaviour in
different hydraulic environments would be applicable to other
passage facilities and expand the knowledgebase of fish pass
science in general. Numerous types of fish passes have been
developed after a trial-and-error approach, predominantly for
salmonid species, while smaller, bottom dwelling fish were out of
focus (Katopodis and Williams, 2012). The need to reduce river
barriers to all species in aquatic ecosystems was raised by the
Convention on Biological Diversity (United Nations, 1992).

Fish pass assessments can be based on numerous biological
dimensions, which describe passage success quantitatively (Castro-
Santos, Cotel, andWebb, 2009). Catching the migrating fish (such as
Benitez et al., 2015), description of the hydraulics (Puertas et al.,
2004; Wang et al., 2010; Fuentes-Pérez et al., 2018), and modelling
approaches (Plesiński et al., 2018; Sanchez et al., 2020) can be used to
assess the functionality of fish passes. Nevertheless, knowledge about
the fine scale swimming behaviour of migrating fish in fish passes is
scarce. Such insight about preferred swimming routes, behaviour
response to flow fields, and differences in the swimming behaviour
among species, might provide important mechanistic insight to
understand how fish behave in specific flow regimes and how
fish passes can be modified to support selected species.

Only few studies have recorded the passage behaviour on a
trajectory level of fish migrating upstream the vertical slot
(Rodríguez et al., 2015; Tan et al., 2018; Li et al., 2021; Wiegleb
et al., 2022a). Schizothorax prenanti (Tchang 1930) preferred areas
in the flow field with lowest velocity and turbulent kinetic energy
(TKE), near the side walls (Li et al., 2021), which corresponds to the
findings of (Rodríguez et al., 2015), who reported that four tracked
fish species preferred low velocity areas near the side walls while
passing a vertical slot. Rodríguez et al. (2015) reported further that
all of the assessed fish species (Iberian barbell (Luciobarbus bocagei
(Steindachner 1864), Mediterranean barbell (Luciobarbus guiraonis
(Steindachner 1866)), Iberian straightmouth nase
(Pseudochondrostoma polylepsis (Steindachner, 1864)), and brown
trout (Salmo trutta L.) followed similar trajectories and crossed the
same flow regions while swimming through the vertical slot. In
general, all species increased swimming speed immediately before
the vertical slot, while the speed was decreased if the vertical slot was
passed. Rodríguez et al. (2015) did not provide a deeper description
of the swimming behaviour between species. Another comparison of
swimming trajectories in a vertical slot fish pass has been performed

byWiegleb et al. (2022a), who tested a protective barrier for invasive
fish and were able to predict the fish species using Artificial
Intelligence based on information about the swimming
trajectories of migrating fish.

Swimming behaviour of fish differs among species and depends
on the individual species biology (Cano-Barbacil et al., 2020; Lothian
and Lucas, 2021). Whether fish can handle the complex flow
conditions and have the capacity to overcome fish passes depends
on swimming capacities (Tudorache et al., 2008), fish body shape, and
fish size (Ohlberger et al., 2006). In addition, personal traits, such as
boldness and exploration activity can determine whether a fish passes
a fish pass or not (Hirsch et al., 2017; Lothian and Lucas, 2021). Fish
can prefer specific flow conditions (Liang et al., 2021) and assess flow
fields for suitability prior deciding for or against passage (Williams
et al., 2012). While vertical slot fish passes are designed to create
standardized flow fields passable by desired fish species (Katopodis
and Williams, 2012) and the flow conditions created in vertical slot
fish passes are well described (e.g., Wu, Rajaratnam, and Katopodis,
1999; Liu, Rajaratnam, and Zhu, 2006; Quaranta et al., 2017), less is
known about swimming behaviour and the swimming trajectories of
individual fish species in such fish passes.

Fish create thrust by inducing vortices using their fins in the
liquid environment (Sfakiotakis et al., 1999; Lauder and Madden,
2007). For propulsion, some fish move their body and their caudal
fin, or propulse using their pectoral fins (Sfakiotakis et al., 1999). In
flowing water, fish species experience different hydraulic forces,
depending on their body shape (Wiegleb et al., 2022a) and different
strategies have been developed to overcome flow. For instance,
adaptation of body shape to increased flow (Imre et al., 2002;
Pennuto and Rupprecht, 2016), the use of microhabitats (Facey
and Grossman, 1992; Davey et al., 2005), and usage of specific
turbulence conditions allow for reduced energetic costs when
swimming in flowing water (Facey and Grossman, 1992; Liao
et al., 2003). Salmonid fish can make use of vortex structures to
propulse passively (Beal et al., 2006). Nevertheless, fish have to leave
flow sheltering structures and move actively through the high
velocity region of passing vertical slots. Thereby, they can assess
flow fields prior passage and choose routes allowing passage
corresponding their individual swimming performance
requirements (Williams et al., 2012). Which routes fish choose to
overcome specific flow conditions, and how these routes differ
among species, is presently unknown. We fill this knowledge gap
in the present study by comparison of the swimming behaviour of
three different and comparable fish species (round goby Neogobius
melanostomus (Pallas, 1814), gudgeon Gobio gobio L., and bullhead
Cottus gobio L.).

Round goby is an aquatic invasive species, native in the Ponto-
Caspian Sea, that is a prominent invader in the Laurentian Great
Lakes in America and European river systems, as well as the Baltic
Sea (Kornis et al., 2012). Round goby is a bottom dwelling fish with a
characteristic burst-and-hold swimming style that improves its
critical swimming speed (Tierney et al., 2011; Gilbert et al.,
2016). A specialized strategy for overcoming flow resistance via
station holding at the bottom at higher flow using pectoral fins has
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been described for the round goby (Hoover et al., 2003; Carlson and
Lauder, 2011; Tierney et al., 2011). A similar flow resistance strategy
has been reported for bullhead (Tudorache et al., 2008; Egger et al.,
2020), which inhabits a similar ecological niche as the round goby
(Roje et al., 2021). Bullhead live in smaller tributaries with strong
water velocities, which are potential invasion areas for the round goby.
Compared to round goby, bullhead was reported to orient to higher
velocity areas in laboratory experiments (Roje et al., 2021), while
bullhead was listed as “weak” swimmer together with gudgeon
(Tudorache et al., 2008). Gudgeon also occurs in such tributaries
but has a different, subcarangiform swimming style and is described a
semi-pelagic swimmer (Egger et al., 2020;Wiegleb et al., 2022a). In the
present study, we questioned whether the species show different
swimming patterns when swimming upstream in a vertical slot 1),
how the swimming patterns differ among species 2), and how the fish
adapt their behaviour at higher water discharge in the vertical slot 3).
We compared the swimming trajectories displayed by round goby,
gudgeon, and bullhead at three different water discharge rates in a
vertical slot fish pass using two common machine learning
approaches. Different features from the trajectories were computed
and used to train a Random Forest model to predict the fish species
using trajectory features and identify the features most important for
discrimination between species. Then, we trained Convolutional
Neural Networks (CNNs) on the trajectory coordinates to test
whether the CNNs can use more complex patterns in the
trajectories for discrimination among species, which were not
accounted by the Random Forest analysis. With this approach, we
expected to identify swimming patterns characteristic for the different
species to understand how fish differently overcome flow fields with
such ecological relevance as a vertical slot in a fish pass that represents
the river connectivity bottleneck.

2 Materials and methods

The present study reports data obtained from an experiment
conducted in spring 2019 at the Theodor-Rehbock Hydraulic
Engineering Laboratory at the Karlsruher Institute of Trechnology,
Karlsruhe, Germany (KIT). The swimming behaviour of 39–45 live
round goby, gudgeon, and bullhead (species were tested separately, see
Supplementary Material S1 for individual numbers per trial) was
tested in a nearly full scale (1:1.6) vertical slot fish pass. After releasing
the fish at the downstream end of the test rig, the fish were free to
swim upstream through the first vertical slot, which had a width of
28.0 cm. Fish swimming further upstream encountered a prototype
hydraulic barrier, which was installed in the second vertical slot. In
previous publications we compared frequencies of specific behaviours
of the fish between first slot and barrier (Egger et al., 2020), described
the performance of the prototype hydraulic barrier (Wiegleb et al.,
2022a, and described the impact of hydraulic forces of the passage
success of the fish in the first vertical slot (Wiegleb et al., 2022b) with
data from the same experiment. In the present study, we compare the
swimming behaviour among fish species when swimming through the
vertical slot on a trajectory level and focus on understanding the small
scale swimming behaviour of the fish. In the following, “trajectories”
are understood as time series of fish location observations (Cartesian
coordinates) and “swimming routes” describe the prevailing course
across the vertical slot of multiple trajectories.

2.1 Fish catch, maintenance, and ethical
approval

Bullhead and gudgeon were sampled in the River Alb in
Karlsruhe, Germany, in March 2019 by means of electrofishing
and transported to the KIT immediately. Round goby were caught
between 22 and 29 March 2019 in the High Rhine in Basel,
Switzerland, using minnow traps. We used dog food (Frolic ®) as
bait. Details about the fish catchments andmaintenance are reported
in Egger et al. (2020). All animal experiments were approved by the
Swiss cantonal authorities (permits Nr. 2,934 and 2,846) and the
German regional authorities (permit Nr. G217_17-IWG).

2.2 The swimming experiment

One of the most challenging tasks in training machine learning
models for discrimination between species on swimming trajectories
is obtaining sufficient training data (trajectories displayed by fish of
doubtlessly known species). Fish species identification by eye from a
real fish pass can be challenging and some species can only be
identified reliably using DNA analysis approaches, such as Atlantic
salmon (Salmo salar L.). The most accurate approach for obtaining
training data of fish with known species was to separate a section in a
fish pass and release only fish of one species. This species was released
in the downstream end of the test rig and was immediately free to
swim in the fish pass for 2 hours, unaffected by human presence. A
camera (Security-Center IR CCTV-Camera, 380 TV-lines, Abus,
Wetter, Germany) was installed vertically above the vertical slot
with submerged lens. This camera recorded the area of the vertical
slot, between the partition walls, which had to be crossed by every fish
migrating upstream. After the experimentation period of 2 h, we
reduced the water supply and collected all fish by nets, placed them in
the flow through aquatic system for regeneration and continued the
experiment with the next species. All three species were once tested at
80 L/s water discharge. Then, we increased the water discharge and
tested all three fish species once at 105 L/s. Finally, we tested the fish at
130 L/s for three times each species because this water discharge was
assumed representative for real fish passes (Bombač et al., 2017). The
same fish individuals were used across the entire experiment,
wherefore learning effects in the fish may have supported passage
at the higher water discharges. The fish were tested once a day with at
least one night regeneration time between trials. Because increasing
the water discharge between the trials reduced the water level
downstream from the vertical slot slightly, which reduced the
camera view, there was a need to readjust the camera slightly at
the 130 L/s water discharge. The water level downstream the vertical
slot was 38 cm at 130 L/s water discharge, 47 cm at 105 L/s and 56 cm
at 80 L/s. The water level upstream the vertical slot was 48 cm at
130 L/s water discharge, 53 cm at 105 L/s and 56 cm at 80 L/s.

After the experiment, the videos were undistorted in Blender
(v.2.79) (Blender Community, 2017) and the fish trajectories were
recorded by hand using the integrated object tracking tool in Blender
(see Supplementary Material S2 for the trajectory data). The
generated trajectories were imported in R v4.0.2 and a palette of
21 features describing these trajectories was computed using the
“trajr” (McLean and Skowron Volponi, 2018) package to obtain
simple numerical descriptions of the trajectories that could be used
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for training the Random Forest model (Table 1). Similar to Egger
et al. (2020) andWiegleb et al. (2022a), the trajectories were assigned
to categories: “Passage” (the fish entered the camera view from
downstream and left in upstream direction), “Return” (the fish
entered the camera view from upstream and left in downstream
direction), and “Approach” (the fish entered the camera view from
downstream and left in downstream direction again). These event
types were included in the features data set. Code used to analyse the
data is provided in Supplementary Material S3.

2.3 Predicting the species using a random
forest model

Random forests represent powerful machine learning classifiers,
which were chosen in the present study because of their high
prediction accuracy and the ability to determine the importance of
the different features for the prediction (Cutler et al., 2007). To test the
Random Forest prediction accuracy on all trajectories of the data set,
we performed cross validation. The fish were free to swim through the
slot voluntarily and especially bullhead showed generally a small
number of voluntary trajectories during the experiment, resulting in a
small number of available training data for the Random Forest model

(Table 2). Similar to Wiegleb et al. (2022a), we created three data sets
with equal species proportion to ensure that similar proportions of
species trajectories were present in the cross validation data sets
(Figure 1). After computing the trajectory features (Table 1, see
Supplementary Material S4 for the features data), we used the
“randomForest” package (Liaw and Wiener, 2002) in R to train
random forest models, which consisted of 1,000 trees and
10 variables randomly sampled at each split:

species ~ water discharge + event type +mean speed

+ speed variation +Maximumacceleration +Distance

+ Sinuosity+ Straightness +Directional change

+Variation of Directional change +Duration

+Bounding box area + Bounding box centreX

+Bounding box centre Y + Sumof left turn angles

+ Sumof right turn angles + Count of slow swimming

+Mean slow swimming duration + Slow swimming duration

+ Length + Emax

Cross validation was performed with the three balanced data sets
to determine the mean prediction accuracy of the species with

TABLE 1 Features describing the trajectories that were computed for the random forest analysis.

Trajectory feature Description

Water discharge The water discharge of the experimental run (80, 105, or 130 L/s)

Event type Type of the behavioural event observed (passage, return, approach)

Mean speed [m/s] The mean swimming speed of the fish over ground

Speed variation [m/s] The standard deviation of the fish swimming speed between video frames

Maximum acceleration [m/s2] The standard deviation of the fish swimming speed between video frames

Distance [cm] The distance between the point in the first and the last frame of the trajectory

Length [cm] The fish swimming distance of the entire trajectory

Sinuosity Sinuosity index as described by (Bovet and Benhamou, 1988)

Emax Dimensionless estimate with larger values representing straighter paths (Cheung et al., 2007)

Straightness Straight distance between start and end of the trajectory divided by length (D/L)

Directional change Change in swimming direction over time (Kitamura and Imafuku, 2015)

Variation of directional change Standard deviation of Directional change

Duration [frames] The duration of a trajectory in frames

Bounding box area [cm̂2] The area of a bounding box drawn around the maximum x- and y-coordinate and the minimum x- and y- coordinate of a
trajectory

Bounding box centre X [cm] The x-coordinate of the trajectory bounding box centre

Bounding box centre Y [cm] The y-coordinate of the trajectory bounding box centre

Sum of left turn angles [°] The sum of the angles when a fish turned left between video frames

Sum of right turn angles [°] The sum of the angles when a fish turned right between video frames

Count of slow swimming Number of events when a fish was slower than 1.0 cm/sec

Mean slow swimming duration per slow event Mean number of frames per event at which the fish swam slower than 1.0 cm/sec per trajectory

Slow duration [frames] Number of frames the fish moved less than 1.0 cm per second
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TABLE 2 Number of trajectories and their proportion from the total data set (1,273) for the different species, water discharges, and event types. The total numbers
and percentages of trajectories per species are highlighted in bold.

Water discharge [L/s] Event type Number of trajectories Proportion from the total data set [%]

Round goby 610 47.92

n = 45 80 186 14.61

Passage 70 5.50

Return 49 3.85

Approach 67 5.26

n = 45 105 164 12.88

Passage 56 4.40

Return 40 3.14

Approach 68 5.34

n = 45, 40, 39 130 260 20.42

Passage 65 5.11

Return 27 2.12

Approach 168 13.20

Gudgeon 480 37.71

n = 44 80 9 0.71

Passage 3 0.24

Return 2 0.16

Approach 17 0.31

n = 44 105 176 13.83

Passage 55 4.32

Return 66 5.18

Approach 55 4.32

n = 44, 40, 44 130 295 23.17

Passage 53 4.16

Return 70 5.50

Approach 172 13.51

Bullhead 183 14.38

n = 39 80 36 2.83

Passage 16 1.26

Return 3 0.24

Approach 17 1.34

n = 39 105 31 2.44

Passage 18 1.41

Return 5 0.39

Approach 8 0.63

n = 39, 39, 39 130 116 9.11

Passage 31 2.44

Return 12 0.49

Approach 73 5.73

Frontiers in Environmental Science frontiersin.org05

Wiegleb et al. 10.3389/fenvs.2023.1156248

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1156248


inclusion of all recorded trajectories. The mean prediction
accuracy per species (Aca) among the three models was
computes as follows:

Aca � Cpreda

Cpreda + Fpredb + Fpredc
* 100

With Cpreda being the number of correct predictions of species
a, Fpredb being the number of false predictions to be species a
although it is actually species b, and Fpredc being the number of false
predictions to be species a although it is actually species c. Because
the prediction accuracy is a measure for the amount of correctly
predicted trajectories of a category and does not account for the
amount of false positive predictions, we computed the F1 score
following Tharwat (2018):

F1 � 2 * TP
2 * TP + FP + FN

With the number of true postitive (TP), false positive (FP) and
false negative (FN) predictions. The F1 score ranges from 0 (bad
model performance) to 1 (perfect model performance). To describe
the importance of the variables for the species prediction, we

computed the mean decrease of accuracy if training the model
without this variable (MDA).

2.4 Species prediction using convolutional
neural networks

The Random Forest model accounted for multiple features of
the trajectories. Nevertheless, it is possible that more complex
patterns exist between species than included by the features of
the Random Forest model. For instance, the species showing a
burst-and-hold swimming style (round goby and bullhead) might
interact with gravel at the bottom, while meso-pelagic species, such
as gudgeon, might choose different routes. To account for these
complex patterns, we trained a Convolutional Neural Network for
predicting the fish species on the raw trajectory coordinates. To
focus our analysis on the swimming behaviour while passage of the
vertical slot, the CNN was trained on “passage” trajectories only and
we excluded “returns” and “approaches”.

Convolutional Neural Networks are inspired by the structure
of the visual cortex of animals and are able to recognize complex

FIGURE 1
Pre-processing (1.–3.) of the trajectory features data set prior cross validation of the random forest model (4.). Three data sets of similar size were
created for cross validation. Because we recorded different amounts of trajectories per fish species and event types, we distributed the trajectories of
these categories with equal proportion between data sets to ensure the categories were represented in the training data as well as in the validation data
sets.
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patterns from data on their own with minimal data pre-processing,
such as raw pixels (Gu et al., 2018). We designed a simple CNN
network architecture (Figure 2), consisting of three convolutional
blocks and a fully connected block. Every convolutional layer
(Conv1D) provides filters (convolutions) that can be activated
(we used the common “relu” activation function) if specific
patterns are identified in the trajectory. The higher the level of
the layer, the more complex can be the patterns, which lead to an
activation. The number of filters increases with the level of the
convolutional block, which allows for recognition of a higher
number of patterns in the trajectories. The combinations of
activated filters in the third convolutional block are further

combined within the fully connected block. This fully
connected block consists of a layer (Flatten) that reduces the
filters to one dimension, Dense, and Dropout layers, which
reduce the information until the network provides three output
values in the output layer (softmax activation function). Every
value of this output layer provides a prediction score for one
species. The length of the trajectory is reduced along the entire
network to condense the trajectory information from 250 input
values (125 x- and y-coordinates) to these output values. We
implemented MaxPooling layers at the end of every
convolutional block and Dropout layers in the fully connected
part of the model to prevent the model from overfitting while

FIGURE 2
A convolutional neural network was designed and trained on the passage swimming trajectories to predict the fish species. The trajectories of
standardized length (125 point coordinates) were rescaled and fed to the input layer, which was followed by three convolutional blocks. These
convolutional blocks were followed by a fully connected block and three model output nodes, which provide the classification signal for the three fish
species.
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training. Please see Gu et al. (2018) for further details about the
design of CNNs. The model provided in total 870,467 trainable
parameters.

Because the recorded trajectories had different length and CNNs
require input of the same size, we trained the model on the last
5 seconds of the trajectories, which was the time frame when the fish
commonly passed the vertical slot. All shorter trajectories were filled
up with zeros and we only used trajectories longer than six frames.
Under these conditions, we obtained a data set of 914 swimming
trajectories.

Training CNNs on larger data sets improves the model
performance. We applied data augmentation, a common
approach to increase the amount of training data if small
original data sets are available. The trajectory coordinates
were transformed using a slight random scatter using the
numpy.random.normal () function (random numbers were
sampled from normal distribution with Standard Deviation
around a point coordinate of 0.3 cm), which changed the
trajectories slightly but did not affect the overall appearance
of the trajectory course (please see Gu et al. (2018) for details
about data augmentation), until we obtained a balanced data set

of 1800 trajectories per prediction category (fish species). We
assessed the prediction accuracy of the trained CNN on all
original (unaugmented) trajectories using cross validation.
We split the data set to three training sets of the same size
and split only the original trajectories to three test sets of the
same size (Figure 3). Now, cross validation was performed by
combining two training sets, training the model on these sets,
and predicting the species or water discharge on the third test
set, whose trajectories have not been included in training. The
trained weights of the CNNs are provided in Supplementary
Material S5.

2.5 Ground elevation

Because we observed resting of especially round goby and
bullhead behind the gravel, predominantly when they
approached the vertical slot, we described the ground
structure in the vertical slot area. We therefore took
70 pictures of the vertical slot area with a camera (Nikon
D3500) and triangulated these pictures to a 3D model of the

FIGURE 3
1.: The passage trajectories were used for training and validation of the convolutional neural network. The data were separated after categories (fish
species and water discharge). Data augmentation was applied to create three data sets for every species of same size (1800 trajectories). 2.: The species
data sets were combined and split to create three balanced training data sets with equal proportion of augmented trajectories, species, and water
discharge categories. In addition, we created three test sets from the original trajectories to validate themodels only on original data. For every cross
validation, two training sets were combined and used for training the network. This network was then validated on the third test set, whose trajectories
have not been seen by the model while training.
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vertical slot area using Regard 3D (x64 1.0.0). The generated
3D model was imported in Blender, where the scale was
adjusted and the 3D coordinates of the point cloud were
exported to.csv files. An elevation chart (x and y dimension
representing spatial coordinates and z dimension representing
the ground elevation) was then created in R v4.0.2. The data of
the 3D ground elevation model are provided in Supplementary
Material S6.

3 Results

3.1 The trajectories of fish swimming across
the vertical slot

The video tracking analysis revealed one passage route
(prevailing course of multiple fish) across the vertical slot for
all species and across all water discharges (Figure 4). The fish

FIGURE 4
Fish trajectories of round goby, gudgeon, and bullhead recorded with a camera above a vertical slot at different water discharges (B–D,F–H,J–L).
The swimming direction for the corresponding event (passage, return, or approach) is provided in (B–D) by grey arrows in the upper right corner, with
black arrows indicating the water flow direction. The camera view is provided at the left side (A,E,I) with one round goby displayed (white ellipse in A).
Ground elevation in the vertical slot area (M) was determined using triangulation of 70 camera images of the slot area.
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frequently entered the camera view from the downstream right
side, swam along the right partition wall, and left the camera
view in the right, upstream direction (Figure 4). Especially
gudgeon and bullhead followed this route. Beside to this
general route, especially round goby displayed an alternative
passage route: some round goby (13 fish at 80 L/s, 11 at 105 L/s,
4 at 130 L/s) entered the screen from the left side, crossed the
slot area and passed the slot at the right side close to the
partition wall (see Figures 4B, F). Bullhead (5 fish at 80 L/s,
2 at 105 L/s, and 3 at 130 L/s) and gudgeon (2 fish at 105 L/s and
2 at 130 L/s) sometimes made use of this alternative route. In
general, round goby showed the tendency to swim along the
centre of the vertical slot across all water discharge rates, while
gudgeon and bullhead oriented more to the right. Round goby
predominantly returned at the left side while predominantly
passing at the right in the vertical slot. This was not observed for
gudgeon, which returned where they passed, at the right side of
the slot. Also in approaches gudgeon oriented to the right, while
round goby approaches were generally distributed over the slot
area at 80 and 105 L/s with a slight tendency to the right half of
the slot area at 130 L/s water discharge. These swimming
patterns in the spatial course of the swimming trajectories
(Figure 4) were predominantly accounted by the Random
Forest model in the trajectory features describing the location
of trajectories (such as “Bounding box centre X”, “Bounding box
centre Y”) and features describing the course of a trajectory
(such as “Length”).

Most round goby trajectories were recorded at lower water
discharge (186 trajectories at 80 L/s water discharge, 164 at
105 L/s, and mean 91.00 trajectories ±48.22 SD at 130 L/s),
while most trajectories for gudgeon were recorded at the
intermediate water discharge (9 trajectories at 80 L/s water
discharge, 176 at 105 L/s, and mean 109.67 ± 14.29 SD at
130 L/s), and there was no clear change in the amounts of
bullhead trajectories across all water discharges
(36 trajectories at 80 L/s water discharge, 31 at 105 L/s, and
mean 44.00 ± 3.61 SD at 130 L/s) (Table 2).

3.2 Fish species prediction based on
trajectory features using a random forest
model

The Random Forest was trained on trajectory features that were
extracted from the trajectories, which allowed for identification of
the features being most important for species prediction. Cross
validation revealed that the model performed best for prediction of
round goby, as revealed by the highest mean F1 score (mean F1 score
0.86 ± 0.08 SD), whilst the mean F1 score for gudgeon (0.81 ± 0.12)
was slightly lower, and the mean F1 for bullhead (0.58 ± 0.20) was
lowest (Figure 5). The water discharge, the position of the trajectory
in the slot area, and the length of the trajectories were the most
important features for the fish species identification using the
random forest model. The variable “water discharge” showed
82.98 MDA (mean decrease of accuracy if training the model
without this variable) ± 32.50 SD, the “centre of the bounding

FIGURE 5
F1 scores (circles) and mean F1 scores across all cross validation
models (crosses) of round goby (Nm), gudgeon (Gg), and bullhead (Cg)
species prediction from the random forest cross validation (top).
Corresponding confusion matrices are provided below.
Numbers in the grey shaded boxes represent the number of correctly
predicted trajectories for the corresponding fish species. Numbers in
white boxes represent false predictions.
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box in x-direction” showed 72.58MDA ±10.67 SD, the “centre of the
bounding box in y-direction” showed 68.46 MDA ±1.78 SD, and the
“trajectory length” showed (32.64MDA ±6.32 SD). The least
important variables for species prediction were the “count of
station holding in a trajectory” 18.56 MDA ±4.12 SD, “Emax”
(20.95 MDA ±5.83 SD), and “sinuosity” (23.00 MDA ±5.94 SD)
(Figure 6).

3.3 Trajectory metrics being most and least
important for species prediction

The features of high importance for the species prediction
(X- and Y-coordinates of the bounding box centre, the length
of the trajectories) showed high variation between species and
water discharges (Figure 7). “Mean duration of station
holding” was on rank number five for features being most
important for species prediction but showed predominantly
low values. Only bullhead (mean 33.56 s ± 60.92 SD) and round
goby (mean 7.25 s ± 10.73 SD) showed extended station
holding behaviour at the vertical slot at lower water
discharge (80 L/s), while station holding was remarkably
decreased for these species at 105 and 130 L/s and nearly
played no role in gudgeon swimming (Figure 7). Contrary,

the features with small impact on prediction of the species
showed similar behaviour response between species to
increased water discharge. We observed for all species
remarkable increases in mean swimming speed (round goby
200.00%, gudgeon 51.11%, and bullhead 463.63%) and
variation in swimming speed (round goby increase: 72.22%,
gudgeon 74.55%, and bullhead 168.57%) (Figure 7). Round
goby were the fastest swimmers through the vertical slot at
130 L/s (mean swimming speed 1.59 m/s ±0.68 SD), while
gudgeon passed with a mean swimming speed of 1.36 m/
s ±0.76 SD and bullhead was the slowest fish while passage
with 1.24 m/s ±0.74 SD.

3.4 Species prediction using a convolutional
neural network

The CNNs were trained on exclusively the trajectory
coordinates. Therefore, the CNNs were able learn complex
patterns within the trajectories, and able to use these patterns
for fish species identification. The high F1 scores of the trained
CNNs on the validation data sets revealed that it is possible to
predict the species on trajectory coordinates. We observed the
highest F1 scores for round goby (mean F1 0.89 ± 0.03SD), whilst

FIGURE 6
Prediction importance for the trajectory features (abszissa) measured as mean accuracy decrease when predicting without the corresponding
feature (ordinate). Error bars indicate the standard deviation between the models of the cross validation.
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the gudgeon F1 score was slightly lower (0.76 ± 0.05SD). Bullhead
showed the lowest F1 score across all species (0.67 ± 0.02SD)
(Figure 8).

Because the CNN was trained on the trajectory coordinates and
not on features extracted from the trajectories, such as the Random
Forest, the CNN was able to generalize across patterns within the
trajectories that the CNN identified itself and that might be more
complex than the features applied at the Random Forest. The
relevance of such complex patterns was especially relevant at the

FIGURE 7
Selection of features for fish passage trajectories recorded in the
vertical slot at different water discharges.

FIGURE 8
F1 scores (circles) and mean F1 scores across all cross validation
models (crosses) of round goby (Nm), gudgeon (Gg), and bullhead (Cg)
species prediction from the convolutional neural network cross
validation (top). Corresponding confusion matrices are provided
below. Numbers in the grey shaded boxes represent the number of
correctly predicted trajectories for the corresponding fish species.
Numbers in white boxes represent false predictions.
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prediction of bullhead, when the F1 score was 15.51% higher at the
CNN compared to the Random Forest prediction.

4 Discussion

4.1 Swimming patterns of the fish species in
the vertical slot: Filling the research gap

The prediction of the Random Forest models and the
Convolutional Neural Networks revealed distinct swimming
patterns among species when they challenged the flow in a
vertical slot. The number of trajectories per species recorded
at the different water discharges, the spatial position of the
trajectories, and trajectory length made the most important
difference in the swimming patterns among species. There
might be various reasons why the fish displayed these
different swimming patterns as the behaviour of fish is
complex and depends on the individual species’ biology
(Cano-Barbacil et al., 2020; Lothian and Lucas, 2021). Flow
regimes can have supportive, as well as disadvantageous
energetic effects on the swimming fish (Liao, 2007) and we
therefore assume that the fish chose the most advantageous
swimming behaviour, corresponding to their individual
requirements. The flow field of a vertical slot has been shown
to differently affect the fish species physically as different
hydraulic burden the fish have to overcome in a vertical slot
have been reported by Wiegleb et al. (2022a) and Wiegleb et al.
(2022b). These findings, together with the present study,
suggests that the flow induced by vertical slots affect the
swimming behaviour of fish differently. Because fish passes
function as bottlenecks and must be passed by every fish
migrating upstream, we conclude they have the potential to
act as ecological filters and impact the species composition in
ecosystems (Rahel and McLaughlin, 2018).

4.2 Differences and similarities in the
swimming patterns between species

One of the two general passage routes (fish swam along the
right partition wall) was favoured across all water discharges by
several fish of all species. This observation agrees with
Rodríguez et al. (2015) who observed that fish [they tested
Iberian barbell (Luciobarbus bocagei Steindachner, 1864),
Mediterranean barbell (Luciobarbus guiraonis Steindachner,
1866), Iberian straightmouth nase (Pseudochondrostoma
polylepsis Steindachner, 1864), and brown trout (Salmo trutta
L.)] exploited similar flow regions when passing a vertical slot
and displayed similar trajectories. It is possible that the fish of
the present study chose specific routes because they provide the
most supportive conditions for fish to overcome flow field in the
vertical slot. This route along the right partition wall
represented the shortest way across the vertical slot and flow
velocities were reported lower near the side walls than in the
centre of the vertical slot (Wiegleb et al., 2022b). Li et al. (2021)
observed a similar orientation of Schizothorax prenanti Tchang
(1930) to areas of reduced water velocity and increased

Turbulent Kinetic Energy near the partition wall while
passage of a vertical slot.

One alternative passage route was observed for predominantly
round goby, which frequently swam from the left separation wall to
the right wall prior passage, especially at 80 and 105 L/s water
discharge. Potentially, round goby explored the flow field by
swimming from the left to the right, while deciding for or against
passage. One important factor for the decision whether to pass the
slot or not might be the hydraulic force experienced by the fish. We
observed a reduction of the passage probability of live round goby
and bullhead when the fish experienced larger hydraulic burden at
the higher water discharge (Wiegleb et al., 2022b). This would
explain the high number of round goby which approached the
slot from the left, and then left the camera view on the right, after
deciding against or being prevented from passage.

In general, round goby showed an orientation to pass through
the vertical in the centre of the vertical slot, where round goby rested
at the bottom frequently while showing the typical burst-and-hold
swimming style (Hoover et al., 2003; Carlson and Lauder, 2011;
Tierney et al., 2011). Some bottom-dwelling fish can use specialized
body postures and fin adjustments adapted to the bottom substrate
to resist the water flow (Carlson and Lauder, 2010; Carlson and
Lauder, 2011). Potentially, round goby found conditions supporting
this station holding behaviour in the vertical slot centre when
following this characteristic passage route. Bullhead showed a
similar station-holding behaviour (Egger et al., 2020) but
oriented, contrary to round goby, strictly to the right partition
wall. Overall, bullhead showed least trajectories across the vertical
slot of all species tested, but single individuals rested for extended
periods at specific locations until an individual passed. The free place
was then quickly occupied by another fish, which stayed there for a
long period until passage. This suggests that bullhead is quite
specialized in the conditions that allow for passage, follows
specific routes and waits for supportive flow conditions. Based on
this observation we raise the question whether such “queueing”
effects have the potential to limit the passage of bullhead across fish
passes. If fish are limited in the number of potential routes across a
flow field and fish wait for supportive flow in the entrance of such
routes, the overall passage of a population may be limited by the fish
pass hydraulics.

It should be noted that the fish were able to learn the most
advantageous passage routes in our experiment because the same
fish were tested for multiple times and at the different water
discharges. The experiment was started at the lower water
discharge. The higher water discharge was tested later, wherefore
the fish were more experienced in passage at the higher water
discharge. In addition, the fish were tested in groups, which
means that the fish may affected each other while swimming and
shoaling effects could affect the swimming behaviour as shown by de
Bie et al. (2020) and Magnhagen. (2012). This was especially
observed for gudgeon, which passed the vertical slot in groups of
multiple fish frequently.

Gudgeon has a bentho-pelagic swimming style and was reported
as “weak” swimmer, together with loach and bullhead in comparison
to trout, roach, and carp (Tudorache et al., 2008). Egger et al. (2020)
reported a low swimming activity at lower water velocity, while
gudgeon increased swimming at higher flow velocities. This was also
observed in the present study, when gudgeon displayed least
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trajectories at the smallest water discharge tested. Most gudgeon
trajectories were recorded at 105 L/s, while the number of
trajectories was lower at 130 L/s, together with an expressed
orientation of the trajectories to the right partition wall and
shorter trajectories. These observations support that gudgeon
experienced more unsupportive flow for passage at 130 L/s and
reacted on this unsupportive flow with orientation to the partition
wall to reduce the length of the passage trajectories.

Overall, our observations agree with reports that fish can prefer
specific flow conditions, supporting their individual swimming styles
(Liang et al., 2021) and that corridors of specific turbulence conditions,
supporting individual swimming styles can reduce energetic costs
(Facey and Grossmann, 1992; Liao et al., 2003). Potentially, the own
motivation for passage, the possibility to wait for supportive conditions,
and the ability to explore the flow field during the multiple trials
allowed for the remarkable swimming performance of all three tested
species when passing the vertical slot at the highest water discharge.
With mean swimming speeds of 1.59 m/s over ground for round goby,
1.36 m/s for gudgeon, and 1.24 m/s for bullhead, every species achieved
much higher speeds than observed during Usprint tests (round goby
Usprint: 0.43 m/s, gudgeon: 0.56 m/s, bullhead: 0.55 m/s) (Egger et al.,
2020) and Ucrit tests [round goby Ucrit: 0.21 m/s (Hoover et al., 2003),
round goby Ucrit: 0.36 m/s (Tierney et al., 2011)]. Beside the individual
species swimming behaviour and the hydraulics the fish encounter,
further factors like motivation or personality traits can affect fish
passage (Hirsch et al., 2017; Lothian and Lucas, 2021). Here, further
research is needed to understand how personality, motivation, learning,
and further factors affect the swimming trajectories of fish to
understand how much the behaviour is determined by the flow
conditions the fish encounter while passage.

4.3 Fish species identification based on
swimming trajectories using artificial
intelligence

We achieved high F1 scores for the fish species prediction based
on swimming trajectories in a vertical slot using machine learning
approaches, such as Random Forest and Convolutional Neural
Networks (CNN). The CNN predicted the species on the
trajectories with higher accuracy than the Random Forest model,
although it was trained on a smaller data set of trajectories (CNN
data set size with the original, unaugmented trajectories was 71.0%
of the Random Forest data set) and the feature most important for
the Random Forest prediction (water discharge) was not included in
the CNN prediction. That the CNN was nevertheless able to achieve
such high accuracies if trained on trajectory coordinates shows, the
model was able to use species specific patterns in the trajectories for
its prediction. Because the prediction accuracy of the CNN was
highest for round goby and lowest for gudgeon, we conclude that
round goby showed the most characteristic swimming patterns
within their trajectories, whilst the swimming trajectories of
gudgeon were least characteristic among the tested species.

Because the CNN requires input trajectories of the same length,
we trained the CNN on trajectories with a maximum length of
125 frames (5 s). The patterns learned and used to discriminate
between species do not become evident from the CNN due to the
methodical properties. Indeed, CNNs find relevant patterns

themselves and are able to make use more complex patterns than
the features computed for the Random Forest (such as mean
swimming speed, trajectory length, or maximum acceleration). An
example for such a pattern is the potential variable use of the ground
structure of the fish. The species swam predominantly at the bottom
and round goby, as well as bullhead, make use of the reduced velocity
between rocks and gravel. The measurement of the bottom elevation
shows several small rocks in the vertical slot area with elevation up to
3 cm. We observed round goby and bullhead at station holding
between these rocks frequently and therefore included station
holding when training the Random Forest. To account for more
complex patterns in the swimming trajectories, such as multiple fish
swimming around the same rocks, we performed the Neural Network
analysis and trained the CNN on the swimming trajectories. This
inclusion of complex patterns in the prediction is one important
advantage of the CNN, which led on the one hand side to the better
prediction accuracy of the CNN compared to the Random Forest. On
the other hand, the feature importance for the classification became
evident only from the Random Forest, while it is not possible to
determine which exact patterns in the swimming trajectories allowed
for the species identification of the CNN.

Similar to the present study, Wiegleb et al. (2022a) predicted
the species of round goby, gudgeon, and bullhead with trajectories
from the same experiment but from an upstream hydraulic barrier.
Wiegleb et al. (2022a) trained their model with a smaller data set
(131 trajectories) and with fewer trajectory features (8 features),
which should lead to lower prediction accuracy. Indeed, Wiegleb
et al. (2022a) achieved higher prediction accuracies (round goby:
85.24%, gudgeon: 92.16%) with the same Random Forest model
configuration. One important difference between both studies,
which might have improved the prediction in the Wiegleb et al.
(2022a), was that the fish were forced to swim across a hydraulic
barrier. Because of the barrier, the fish were longer exposed to the
camera and longer trajectories were recorded, which may have led
to more precise trajectory features. Due to the diagonal camera
configuration at the lower water discharges (80 and 105 L/s) in the
present study, some fish were visible for only 2 frames while
passage and less precise features were recorded. For future
applications of fish species identification based on swimming
trajectories, structures that lead to longer trajectories
recorded, such as hydraulic barriers, can improve the prediction
accuracy.

Bullhead achieved a small prediction accuracy compared to the
other species at the Random Forest prediction, similar to Wiegleb
et al. (2022a). This comparable low prediction accuracy probably
resulted from the small amount of bullhead trajectories, which
imbalanced our data set (Mirus et al., 2020). At the CNN
prediction, we supplemented underrepresented groups with
augmented trajectories to balance our data and also increased the
amount of training data (Basheer and Hajmeer, 2000; Mirus et al.,
2020), which resulted in a high prediction accuracy for bullhead.

4.4 Application of artificial intelligence in fish
ecology

Artificial Intelligence applications are already applied in fish
abundance estimation (Mandal et al., 2018), and fish pass
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monitoring (Kandimalla et al., 2022). Commonly, such fish
detection approaches are based on species identification using
the fish shape contours, which requires high quality footage of the
fish (Rodríguez et al., 2015; Kandimalla et al., 2022).
Furthermore, such footage is commonly taken from lateral
view, which impedes the detection of benthic fish which
commonly swim at the bottom, outside of the camera view.
Our study demonstrates that recording the fish from bird’s
perspective allows for identification of benthic species based
on the fish swimming trajectories. This approach also works at
lower image quality, as no sharp contours of the fish are required.
Nevertheless, we examined this approach only for three species
under realistic, but laboratory conditions. Further research is
required to test our approach on more species and under field
conditions.

4.5 Swimming trajectories in a vertical
slot–lessons for fish pass design

The species specific swimming patterns, the dependency of
the swimming behaviour on hydraulic conditions, the
importance of the bottom substratum for passage, and the
improved passage at the vertical slot compared to the
homogenous flow over the prototype hydraulic barrier
(Wiegleb et al., 2022a) highlight the importance to create
variable flow conditions in fish pass areas that must be
passed by the migrating fish in fish passes (Franklin and
Bartels, 2012). These variable flow conditions allow fish of
different species and various size to choose ideal passage
routes, corresponding to the individual fish’s requirements
(Li et al., 2021). Such variable flow conditions could be
created by use of gravel substrate or insertion of additional
structures near the vertical slot, such as vertical cylinders
(Franklin and Bartels, 2012; Calluaud et al., 2014). Fish
passage research frequently focus on flow conditions in the
basin. Nevertheless, together with Wiegleb et al. (2022a) and
Wiegleb et al. (2022b), we show that the flow in the vertical slot
is an important factor for passage success. Therefore, future fish
passage research should focus on improving bottleneck flow
fields to improve passage of various fish species and fish sizes to
follow the Convention on Biological Diversity and reduce
barriers to all species in aquatic ecosystems (United Nations,
1992).
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