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This work aims to propose a more accurate assessment method for forest health
in natural larch pine forests of the Arxan by integrating remote sensing technology
with tree crown feature analysis. Currently, forest health assessment of natural
Larch pine forests relies mainly on ground surveys, and there is a gap in the
application of remote sensing technology in this field. This work introduces deep
learning technology and proposes a spectral-Gabor space discrimination and
classification model to analyze multi-spectral remote sensing image features.
Additionally, quantitative indicators, such as tree crown features, are incorporated
into the forest health assessment system. The health status of natural Larch pine
forests is evaluated using forest resource survey data. The results show that the
health levels of natural Larch pine forests in different areas vary and are closely
related to factors such as canopy density, community structure, age group, and
slope. Both quantitative and qualitative indicators are used in the analysis. The
introduction of this innovative method enhances the accuracy and efficiency of
forest health assessment, providing significant support for forest protection and
management. In addition, the classification accuracy of the health assessment
model suggested that the maximum statistical values of average classification
accuracy, average classification effectiveness, overall classification accuracy, and
Kappa were 74.19%, 61.91%, 63.18%, and 57.63%, respectively. This demonstrates
that the model can accurately identify the health status of natural larch forests.
This work can effectively assess the health status of the natural larch forest in the
Arxan and provide relevant suggestions based on the assessment results to offer a
reference for the sustainable development of the forest system.
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Introduction

As one of the important components of the Earth’s ecosystem, forests contain substantial
species essential for soil and water conservation, climate improvement, and air purification
(Torres et al., 2021; Ecke et al., 2022). Statistics show that the Three-North Shelter Forest
Program extends fromnortheast China to northern China and northwest China, with a total area
of nearly 1.5 million square kilometers. Its afforestation area in desertified areas has exceeded
300,000 square kilometers, and the total proportion of green area has reached more than 80% of
the desertification land area in China (Cherubini et al., 2021). The resources and services
provided by this protective forest are highly correlated with the health of the forest ecosystem. For
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example, species rich and healthy forests produce sufficient timber and
ecological services while maintaining the food chain and biodiversity in
the forest well; forests with simple structures and in a critical state of
health are only able to sustain basic tree survival (Iglhaut et al., 2019;
Guimarães et al., 2020; Carnegie et al., 2022). The natural Larch pine
forests in the Greater KhinganMountains are currently facing a state of
system destabilization, decreased vitality, and forest area reduction due
to various factors, including climate change, human activities, and
pests. These changes have resulted in more frequent occurrences of
severe weather phenomena, such as dust storms, which have had
adverse effects on both the ecological environment and socio-
economic development in the area. Therefore, the understanding of
tree characteristics and health assessment in forest ecosystems has
become the focus of research scholars in related fields.

Of course, due to the complexity of the forest ecosystem, the
understanding of the health status of forest trees in the forest isn’t the
same, and there is no unified forest health assessment standard. Saha
et al. (2021a) employed advanced geospatial techniques to evaluate the
forest health status of the Buxa Natural Reserve in the Himalayan
Mountains, revealing varying degrees of forest pests and human
interference in the region. In a similar vein, Malik et al. (2020)
utilized geospatial analysis to investigate seasonal changes in the
vegetation status of the subtropical deciduous forest, indicating
significant fluctuations throughout the seasons. Moreover, Saha
et al. (2021b) assessed and analyzed forest cover dynamics using a
forest canopy density model, which demonstrated a close correlation
between forest cover spatial distribution and changes in topography
and land use types. Forestry remote sensing technology has been
extensively studied by scholars as a means of evaluating forest
species, structure, growth, and health status using airborne or
satellite remote sensing data. Pal et al. (2018) combined the forest
canopy density model with satellite data to achieve remote sensing
monitoring and mapping of forest cover in the Sali Basin of West
Bengal. Ahmadi et al. (2023) used high-resolution remote sensing
technology to predict the distribution of major tree species in forests
with insufficient climate data. Their findings suggested that integrating
high-resolution remote sensing data could improve the accuracy of
species distribution models. Despite these advancements, a unified
standard for forest health assessment has yet to be established.
Additionally, remote sensing data quality is affected by factors such
as clouds, fog, and occlusion, resulting in limited accuracy in tree crown
feature extraction. Therefore, the effective extraction of spectral features
in remote sensing images is extremely important. The deep learning
algorithm canmine the relationship between data through independent
learning of remote sensing images, which can greatly improve the
accuracy and stability of image classification and recognition while
improving efficiency, like reference (Tian et al., 2021).

In conclusion, it is of great significance to explore the health
status and assessment methods of natural larch forests under the
guidance of forestry remote sensing integrated with the analysis of
canopy characteristics for the sustainable development of
subsequent forest systems and the formation of biodiversity. The
innovations of this work are as follows. First, the health status of
natural larch forests is analyzed by collecting 2A sentinel standard
reflectance images with a spatial resolution of 10 m and forest class II
survey data using Gurban Forest Farm of the Arxan Forestry Bureau
as the study area. Secondly, the health of natural larch forests is
assessed by quantitative and qualitative indicators. Third, a feature

extraction and classification model based on spectral-Gabor spatial
discriminant analysis is proposed to analyze the features of the
acquired multi-spectral remote sensing images. Finally, the
performance of the health assessment method and model
reported here is verified through experimental analysis to provide
a reference for the follow-up health status analysis and ecologically
sustainable development of the forest system.

Recent related work

Advances in forest health evaluation and
analysis

Many scholars have researched the state of forest health. Cortés
et al. (2020) discussed predictive genomic approaches. They found
that these approaches promise to increase the accuracy of adaptive
selection and reduce generation intervals. Besides, exploring
genome-wide prediction methods can help detect novel allelic
variants in tree germplasm and reveal the genomic potential for
adaptation to different environments. Jakovljević et al. (2021) con-
ducted passive ozone measurements and monitoring of forest health
indicators in holly oak (Quercus ilex L.), brash oak (Quercus stellata),
Larch pine (Pinus koraiensis Sieb. et Zucc.), and black pine (Pinus
thunbergii Parlatore) forests. Results showed that the ozone levels of
all species were close to reaching a reasonable upper limit (100 ppb)
for passive monitoring of air quality in forest sites, with the highest
values for the uptake-based indicator on black pepper. At the same
time, the relationship between environmental variables and forest
health response indicators could be found to be significantly related
to the soil moisture content at different depths of canopy defoliation;
besides, tree growth is related to different forest health response
indicators. Kayet et al. (2022) assessed and predicted the forest
health risk in forest areas affected by mining based on the Analytic
Hierarchy Process model of multi-criteria analysis. In total, they
considered parameters including climate, natural or landform,
forestry, topography, environmental, and anthropogenic factors.
Very high-risk grades were found in mines surrounding forest
subdivisions, based on FHR assessment and prediction results,
with FHR negatively correlated with distance from mine and leaf
flour dust concentration. Their research provided fundamental
guidance for effective planning and management of forestry
research in mining-affected areas. Tan et al. (2021) assessed the
impact of nature-based solutions in urban design on forest
ecosystem service performance based on a spatially explicit
modeling approach by using a recent nature-centered town in
Singapore as a case study. The authors found that designing
towns with ecosystem services in mind and incorporating nature-
based solutions into the urban design can help improve performance
in delivering ecosystem services, with significant benefits for tree
health assessments in forests.

Current situation of AI applied to remote
sensing image recognition

Since each sample in hyperspectral remote sensing images
consists of high-dimensional features and contains rich remote
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sensing features, feature selection, and mining become even more
difficult. Algorithms such as deep learning in artificial intelligence
technology can independently learn and mine features in images,
effectively improving the ability to identify features in remote
sensing images. Scholars in many related fields have conducted
research. Ge et al. (2020) compared the classification performance
of k-nearest neighbor, random forest (RF), support vector machine
(SVM), and artificial neural network (ANN) in land use and cover
change (LUCC) in Chinese oases. They found that ANN, SVM, and
RF achieved statistically similar accuracy. The RF algorithm
performed well in several aspects, such as stability, ease of use,
and processing time during parameter adjustment. It was capable
of analyzing spectral indices (e.g., NDVI, MSAVI2, and MNDWI)
and providing a reference for the extraction of LUCC information
in arid regions with oasis-desert mosaic landscapes. Alam et al.
(2021) applied the convolutional neural network to the semantic
segmentation of remote sensing images. The authors also
improved the encoder-decoder CNN structure SegNet with
index pool-ing and U-net, making it suitable for remote sensing
Multi-object Semantic Segmentation of Images. The results
showed that the comprehensive algorithm could segment multi-
object remote sensing images. Cai et al. (2021) proposed a multi-
attention residual integrated network algorithm. The analysis of
multiple multi-class public data sets revealed that the algorithm
adds feature fusion while reducing redundant features, which
makes the recognition capability of hyperspectral images
effectively improved. Han et al. (2022) presented a building
extraction method for remote sensing images combining
traditional digital image processing methods and convolutional
neural networks. Experiments showed that the method improves
detection accuracy and reduces computation time compared with
the Region-CNN algorithm.

To sum up, the research and analysis of the above-mentioned
scholars indicate that forests, as one of the important components of
the Earth’s ecosystem, are closely related to the sustainable
development of the economy and the improvement of social
benefits to evaluate the health of forests.

Research area and methodology

Study area

Arxan Forestry Bureau is located in the northeast of the Inner
Mongolia Autonomous Region and the middle and low
mountainous area in the south of the main line of the Greater
KhinganMountains. It belongs to the transitional zone type of forest
and forest grassland and has a typical volcanic landform type
(Quesada-Román and Mata-Cambronero, 2021). Figure 1
displays the geographical location of the study area.

As shown in Figure 1, the research area is located in the Gurban
Forest Farm of Arxan Forestry Bureau. The dominant tree species
are white birch and larch, and the natural larch forest is taken as the
research object. The elevation of Gurban Forestry Station of the
Arxan Forestry Bureau gradually decreases from east to west, with
an average elevation of 1023m; the annual average temperature
is −3.2°C; the annual extreme maximum temperature is 34.1°C; the
annual ex-treme minimum temperature is −45.7°C; the frost-free
period is 77 days; the rainfall is 451.2 mm. Overall, it is characterized
by cold and humid, long winter, and large temperature differences
between day and night. At the same time, due to the influence of
climate factors, the snow cover is thinner in sunny slopes and river
valleys where there are no trees and vegetation, and the snow cover is
unevenly distributed due to the effect of wind blowing (Dainelli
et al., 2021). Ruidas et al. (2022b) and Ruidas et al. (2021) have
conducted a vulnerability assessment of water resources based on
hydro-geochemical characteristics. The study revealed that water
resources in lakes were impacted by both human activities and
natural processes, emphasizing the importance of effective
management and planning of water resources.

The soil in the study area was gray forest soil and brown
coniferous forest soil in order with the elevation increasing.
Moreover, the regional distribution law is mainly reflected in
the formation of different recessed soils due to the redistribution
of water and heat caused by changes in topography and landform.
For example, meadow soil is distributed on both sides of rivers

FIGURE 1
Geographical map of the study area.

Frontiers in Environmental Science frontiersin.org03

Ri and An 10.3389/fenvs.2023.1171660

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1171660


and valleys and in the low and flat areas of marshes; swamp soil is
distributed lower than meadow soil, and the soil is humid, with
seasonal or perennial water accumulation on the surface; stony
soil is only distributed on the gravel ejected by modern volcanoes,
and there are large pores. The Gurban Forest Farm of the Arxan
Forestry Bureau is located on the gentle slope of the middle
section of Greater Khingan Mountains, a forest-grass transition
area from forest land to meadow, and the soil type is brown
coniferous soil (Chen et al., 2022). Ruidas et al. (2022a) proposed
a metaheuristic optimization process integrating rainfall and
geological data to develop 15 flood-susceptibility factors. The
study found that this approach could accurately assess flood
susceptibility.

The vegetation types of the Arxan Forestry Bureau
include forest, shrub, meadow, swamp, and aquatic plants. Its
forest vegetation is clearly distributed vertically and
roughly divided into four vegetation zones: the forest zone
domi-nated by the zonal plant Xing’an larch (Larix gmelinii
(Rupr.) Kuzen) (above 1200 m in elevation), the mixed
conifer-broad forest formed by Xing’an larch and white birch
(Betula platyphylla Suk.) (1000–1200 m in elevation), the forest-
steppe zone (below 1000 m), and the stone pond forest
(1100–1250 m) (Wang et al., 2021; Yang, 2022). The larch

forest in Gurban Forest Farm of Arxan Forestry Bureau has
neat margins and is a middle-aged forest with a forest age of
29 years. The average tree height is 16 m; the average diameter is
15 cm; the canopy density is 0.85; the soil type is brown
coniferous soil. The understory shrub is rose thorn with a
coverage of 5%, and the herb is sedge with a coverage of 60%.
There are logging residues piled up under the forest. The birch
forest is a natural forest with an age of about 21 years. The average
tree height is 7 m, the average diameter is 8 cm, and the canopy
density is 0.7.

Data acquisition and processing

This work downloads the Sentinel-2A remote sensing image
data of the research area of the study area from https://scihub.
copernicus.eu/. The Sentinel-2A data has a spatial resolution
of 10 m. Among all the optical images, the Sentinel-2A data is
the only one that contains three bands in the red edge range. This
feature is useful for monitoring the vegetation health of
the natural larch forest in the study area. The information is
very effective. The image was produced at 12 September
2019 and radiation calibration and atmospheric correction are

FIGURE 2
Sentries in the study area: 2A preprocessing result map (four sample plots, namely, (A1–A4)).
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further performed on the Sentinel-2A image. Figure 2 reveals the
preprocessed Sentinel-2A image in the study area.

As shown in Figure 2, the acquired Sentinel-2A image is
preprocessed to obtain a Sentinel-2A image pixel with a size of
2000 * 2000. It is evenly divided into four sample plots for
research, namely, A1, A2, A3, and A4. The natural larch forest
remote sensing images in the study area were extracted from the
sentinel spectral image. The classification accuracy was evaluated
for the health status of the larch forest in the study area by using
the following spectral-Gabor spatial discriminant method (Diez
et al., 2021).

Further, the forest resource type II survey data were collected in
the study area. The type II data includes community conditions such
as tree species structure canopy density, understory shrub coverage,
herbaceous coverage, and tree crown characteristics, as well as
environmental conditions such as slope, aspect, soil type, and soil
thickness. Arc GIS 10.1 software was utilized to confirm the sample
data, reasonably move slightly to reduce the edge effect, and divide
the obtained samples into training samples and verification samples.
There are 337 training samples and 186 validation samples. Table 1
lists the specific statistics.

Analysis of health assessment methods of
natural larix pine

According to the characteristics of the basic data used here, this
work uses different indicators to comprehensively evaluate the health
level of each evaluation object (small class) in the study area. The state
of each indicator is divided into several grades. Then, a score is assigned
to each grade. Finally, the health evaluation index system of the natural
larch forest is constructed, as shown in Figure 3.

The health evaluation system illustrated in Figure 3 presents a
comprehensive approach for assessing the health status of natural larch
forests in the Gurban Forest Farm, utilizing both quantitative and
qualitative indicators. In addition to the quantitative indicators such as
depression, shrub cover, herbaceous cover, soil thickness, and humus
thickness, this study incorporates canopy characteristics including tree
height, diameter at breast height, crown width, and regeneration as
qualitative indicators. The quantitative indices are categorized into five
classes based on index values measured in the forest resources second-
class survey data. The qualitative indices, such as community structure,
age group, slope, slope direction, and soil texture, are classified into 3 to
8 classes according to the forest resources second-class survey protocols

TABLE 1 List of data sources.

Type of data Resolution Acquisition method

Sentinel-2A remote sensing image map data 10 m Public data (from https://scihub.copernicus.eu/)

Forest resources type ii survey data - Survey data

FIGURE 3
Health evaluation index system of natural larch forest.

FIGURE 4
Classification of quantitative indicators for forest health
assessment.
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in China. The inclusion of both quantitative and qualitative indicators
provides a more comprehensive evaluation of forest health status.

Among the quantitative indicators, the indicator of
depression reflects the proportion of the total projected area of
the tree canopy on the ground in direct sunlight to the total area
of the forest stand and the density of the stand. Both un-derstory
shrub cover and herbaceous cover indicators influence forest
ecosystem health from the perspective of forest community
hierarchy and species diversity. Soil and humus provide
support for various life activities of trees, shrubs, and grasses
in the forest through nutrient supply. Therefore, soil layer
thickness and humus thickness ultimately affect the health of
the forest ecosystem. In addition, the tree height, DBH, crown
width, and regeneration of pine trees in natural deciduous forests
reflect the health status of forest resources from the perspective of
system vitality (Falťan et al., 2021; Pan et al., 2022). Figure 4
illustrates the classification of each indicator.

As shown in Figure 4, among the quantitative indicators, the
scores of each level are calculated as follows. Level 1 means
100 points; level 2 means 80 points; level 3 means 65 points;
level 4 means 50 points; level 5 means 35 points.

The qualitative indicators used in this work include community
structure, age group, slope, slope direction, and soil texture, as
shown in Table 2. Community structure reflects the species
diversity and stability of the forest community, age group is used
to assess the age structure in the forest, while slope and slope
direction are important factors affecting the moisture in the
terrain. Soil texture is another important physical property that
influences soil aeration, water retention, and fertility status.

The weight value of the health evaluation index of the larch
forest was determined by AHP to evaluate the health degree of the
natural larch forest in the forest. Finally, the health level is divided
into four levels according to the health value of each index and the
specific conditions of the research area: healthy (>4 points), sub-
health (3-4 points), general health (2-3 points), and unhealthy
(<2 points).

Spectral feature extraction and health
classification model design and analysis

This work preprocesses the acquired spectral data information
to obtain the Sentinel-2A multi-spectral map and extracts its
features to reduce the information redundancy caused by the
high-dimensionality and band nature of the data set.

First, the principal component analysis (PCA) method is used to
obtain the principal components of remote sensing images.
Secondly, Gabor filters of different scales and directions are
performed on the extracted principal component images to
obtain Gabor spatial features of many different scales and
directions. Third, the original spectral features and the obtained
Gabor space features are fused in a certain way to form a fusion
feature. Besides, the fusion feature is further modeled. The scatter
matrix between classes and the scatter matrix within a class in the
fusion feature space is constructed to describe the compactness of
different types of objects and the same type of objects. The optimal
transformation matrix is obtained by transforming the feature space.
Finally, the transformation matrix is used to transform the original
high-dimensional data into the fusion space to enhance the
nonlinear feature learning ability and generalization performance
of subsequent classifiers, thereby improving the overall classification
accuracy.

When using the spectral-Gabor space discriminant method to
extract information from the Sentinel-2A multi-spectral image, the
training sample set is defined as, which can be written as Eq. 1.

χ � xi: xi ∈ Rd{ } m*n( )
i�1 (1)

In Eq. 1, d stands for the number of band features of the original
image data, that is, the number of original spectral features; m*n
signifies the size of each spectral remote sensing image. Assume that
the data set has c categories, and each category contains ni pixels.
m*n is expressed as Eq. 2.

m*n( ) � ∑c

i�1ni (2)

TABLE 2 Forest health evaluation qualitative indicator ranking.

Indicator
factors

Affiliation level

1 2 3 4 5 6 7 8

Community
structure

Complete
structure
(100 points)

Relatively complete
structure
(80 points)

Simple structure
(60 points)

Age group Young forest
(60 points)

Middle-aged forest
(80 points)

Near mature
forest
(90 points)

Mature forest
(100 points)

Overripe forest
(60 points)

Slope Flat slope
(100 points)

Gentle slope
(90 points)

Slopes
(75 points)

Steep slopes
(60 points)

Rapid slope
(50 points)

Dangerous
slope
(35 points)

Slope direction Southwest slope
(100 points)

Southeast slope
(90 points)

Western slope
(80 points)

Eastern slope
(70 points)

Northwest
slope
(60 points)

Northeast slope
(50 points)

South slope
(40 points)

North slope
(30 points)

Soil texture Loam
(100 points)

Sandy loam
(90 points)

Light loamy soil
(80 points)

Heavy loam
(70 points)

Sandy soil
(60 points)

Silt (50 points) Clay
(40 points)

gravel soil
(30 points)
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The data set needs to be preprocessed before feature extraction
due to the high dimensionality of the acquired spectral remote
sensing image data set and the correlation and redundancy between
bands. Firstly, PCA (Cruz-Ramos et al., 2021) is used to extract
pi(1≤ i<d) principal components. Secondly, Gabor filters of
different scales and directions are performed on the extracted pi

principal components to obtain 40*pi individual spatial features.
Usually, a two-dimensional Gabor filter is a Gaussian kernel
function adjusted by a complex sinusoidal plane wave, which is
defined as Eq. 3.

ψf,θ �
f2

πγη
exp −x′

2 + γ2y′2

2σ2
( ) exp j2πfx′ + ϕ( ) (3)

In Eq. 3, f refers to the central angular frequency of the complex
sinusoidal plane wave; ϕ represents the phase; σ denotes the
standard deviation; γ refers to the space ratio used to specify the
ellipticity supported by the Gabor function. x′ and y′ indicate
different scales and different directions, which can be written as
Eq. 4 and Eq. 5.

x′ � x cos θ + y sin θ (4)
y′ � −x sin θ + y cos θ (5)

In Eq. 4 and Eq. 5, θ refers to the normal parallel stripe direction
of the Gabor function. The Gabor filters with different scales μ and
different directions ] are defined to ensure that the frequency and
direction of Gabor filtering can be changed within a certain range to
cover the entire two-dimensional image area:

fμ � π

2
×

	
2

√ μ
(6)

θ] � π

8
× ] (7)

The two-dimensional convolution result Gi of the Gabor
features of each scale and direction of the principal component
of the spectral remote sensing image is obtained through the
convolution of the spectral remote sensing image Ai and the
Gabor filter cluster, as shown in Eq. 8.

Gi � Aiψfμ ,θ]
(8)

Denote Zi(1≤ i<d) as the spatial filtering features of the image
at different scales μ and different directions ], as shown in Eq. 9.

Zi � Z1, Z2,/, Zpi[ ] (9)

Moreover, the spectral feature matrix Yi is fused with the
obtained Gabo, space feature matrix Zi, generating the Spectral-
Gabor spatial fusion feature matrix Fi, as presented in Eq. 10.

Fi � Yi, Zi[ ] (10)
It is necessary to minimize the distance within a class while

maximizing the distance between classes to improve the
classification performance of spectral features in spectral remote
sensing images. Therefore, the fusion feature optimization model
shown in Eq. 11 is established.

W � argmax
W

WTSSGb W

WTSSGw W

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (11)

In Eq. 11, SSGb refers to the inter-class scatter matrix of the
spectral-Gabor space, and SSGw represents the intra-class scatter
matrix of the spectral-Gabor space. Assume that (d + 40*pi)
training samples of dimensions can be obtained from the
spectral-Gabor space fusion feature matrix Fi. SSGb and SSGw are
expressed as Eqs 12, 13.

SSGb � ∑c
i�1
ni fi − f0( ) fi − f0( )T (12)

SSGw � ∑c
i�1
∑ni
j�1

xj
i − fi( ) xj

i − f( )T (13)

In Eqs 12, 13, c refers to the number of classes; ni represents the
number of training samples in the ith class; fi stands for the mean
vector of the ith class; f0 signififes the mean vector of all training
samples; xj

i denotes the jth fused feature vector of the ith class.
The projection feature matrix x a test sample f can be obtained

through optimal transformation W2, as shown in Eq. 14.

x � WT
2f (14)

Eqs 9, 10 indicate the Gabor space feature matrix Zi and the
Spectral-Gabor space fusion feature matrix Fi of the test set I in the
spectral remote sensing image data set, respectively. In actual
analysis, the fusion feature optimization model in Eq. 11 can be
transformed into the eigenvalue problem in Eq. 15.

SSGb W � λSSGw W (15)
In solving Eq. 15, the first step is to maximize the inter-class

scatter matrix in the spectral-Gabor space by Singular Value
Decomposition (SVD). The second step is to solve the
generalized eigenvalue problem. The key problem of using SVD
to maximize the inter-class scatter matrix in the spectral-Gabor
space is to deal with the optimization problem shown in Eq. 16. First,
it is essential to deal with the following optimization problem A.

A � argmax
ATA�I

tr ATSSGb A( ) (16)

Based on the above discussion, the spectral remote sensing
image dataset L acquired in this work is processed by PCA
method. Then the spatial features are extracted by Gabor filter
clusters, which can be written as Eq. 17.

F � fi: fi ∈ R d+40*pi( ){ } m*n( )
i�1 (17)

Then, the feature space transformation is used to obtain effective
feature vectors to reduce the computational complexity while
improving the classification accuracy. Eq. 18 describes the
optimal transformation matrix W2

′.

W2
′ � Ub1∑−1

2

b1
Uw∑−1

2

w
∈ R d+40*pi( )×r (18)

In Eq. 18, Ub1 ∈ R(d+40*pi)×r refers to a column-orthogonal
matrix; ∑b1 ∈ Rr×r represents a diagonal matrix with non-
increasing and positive diagonal elements; Uw ∈ Rr×r signifies an
orthogonal matrix; ∑w ∈ Rr×r denotes a diagonal matrix.

The Sentinel-2A multi-spectral remote sensing image
obtained is used as a data set to evaluate the performance of
the spectral feature extraction and health classification model
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based on spectral-Gabor spatial discrimination reported here. It
provides rich detailed features for the subsequent nonlinear
feature learning of the classifier from different scales and
different directions, including a total of 14 features. They are
consistent with the quantitative and qualitative indicators
mentioned above. At the same time, the model reported here
is compared with the benchmark model PCA, linear
discriminant analysis (LDA) (Dos Reis et al., 2020), Kernel
PCA (KPCA) (He et al., 2021), Kernel Discriminant Analysis
(KDA) (Shen et al., 2019), and the model proposed by Kayet et al.
(2022) in terms of four evaluation metrics for performance

verification. The four assessment criteria are the average
classification accuracy (AA), the average classification
effectiveness (AV), the overall classification accuracy (OA),
and Kappa.

Results

Result analysis of factor indicators

Figures 5, 6 provide the analysis results of the quantitative and
qualitative indicators to evaluate the health status of natural larch
forests in different sites in the study area.

As shown in Figure 5, among the quantitative indicators, the
scores of canopy density, understory shrub coverage, herbaceous
coverage, soil layer thickness, and humus thickness in the A3 sample
plot are all higher than 9.5 points, which are in a certain range.
Specifically, the canopy density is 0.5–0.7; the understory shrub
coverage is 0.4–0.6; the herb coverage is 0.4–0.6; the soil layer
thickness is higher than 60 cm; the humus thickness is higher
than 30 cm. In addition, the scores of plots A1 and A2 are all
between 60 and 90, meaning that each quantitative index is at the
second or third level. The score of plot A4 is about 50, indicating that
each quantitative indicator performs at level four. In addition, the
tree height, DBH, crown width, and regeneration grading effects
reflecting the vitality of the forest system in each site are discussed. It
is found that the overall performance is still the same as in A3 plots.
The tree height, DBH, crown width, and regeneration in plots
A1 and A2 are grade 2 or grade 3, while the scores of tree
height, DBH, crown width, and re-generation in plot A4 are the
lowest, which are grade 4. The health of natural larch forests in each
sample plot is best in A3, followed by A1 and A2, and the worst
in A4.

According to Figure 6, the scores of all qualitative indicators
in the A3 sample plots are at level 1. In other words, the

FIGURE 5
Results of quantitative indexes in various fields (A) quantitative indicators (B1: canopy density; B2: understory shrub coverage; B3: herb coverage; B4:
soil layer thickness; B5: humus thickness); (B) quantitative indicators related to tree crown characteristics (B51: tree height; B52: DBH; B53: crown width;
B54: renewal).

FIGURE 6
Score results of qualitative indicators of forest health assessment
(C1: community structure; C2: age group; C3: slope; C4: aspect; C5:
soil texture).
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community structure is basically intact, the number of age
groups is mostly mature forests, the slope is basically flat, the
slope orientation is basically southwest, and the soil texture is
loamy. However, plots A1 and A2 are classified as grade two or
grade three; plot A4 has the worst performance in classification
and is basically simple in terms of com-munity structure, age
group, slope, aspect, and soil texture. In terms of structure, young
forests or over-mature forests account for more, and the slope is
steeper, and the slope also shows a northward direction, and the
soil texture is mostly gravel soil type. From the analysis of the
qualitative index factors, it can be found that the health of
natural larch forests in each sample site is best in A3,
followed by A1 and A2, and the worst in A4.

Figure 7 classifies the health classes of natural larch forests
from healthy, sub-healthy, generally healthy, and un-healthy
according to the specific conditions of various places in the
study area.

According to the weights of each index in Figure 7, the health
classification of natural larch forests in the four sample plots A1, A2,
A3, and A4 are not the same. In plot A1, the health evaluation score
of the natural larch forest is 3.1798 points, which can be divided into
the sub-health level. In plot A2, the health evaluation score of the
natural larch forest is 2.9687 points, which can be divided into the
general health grade. In plot A3, the health evaluation score of the
natural larch forest is 4.3354 points, which can be divided into the
health grade. In plot A4, the health evaluation score of the natural
larch forest is 1.8764 points, which can be classified as unhealthy.

Classification accuracy analysis

Furthermore, the spectral feature extraction based on the
Spectrum-Gabor space discrimination and health classification
model is employed to analyze the recognition accuracy of each
index. The model is compared with benchmark models PCA, LDA,
KPCA, KDA, and the model proposed by Kayet et al. (2022) in terms

of four evaluation indicators: AA, AV, OA, and Kappa coefficient, as
shown in Figure 8.

As shown in Figure 8, the statistical values of AA, AV, OA, and
Kappa are analyzed with the Sentinel-2A multi-spectral remote
sensing image as the data source. It can be found that with the
increase in the number of features, the statistical values of AA, AV,
OA, and Kappa all first increase rapidly and then reach a relatively
stable state. The AA, AV, OA, and Kappa statistical values of the
model reported here are the highest. This may be due to the fact that
the method used here can demonstrate its superb feature extraction
ability and the nonlinear feature learning ability and generalization
performance of the subsequent classifier. The model proposed by
Kayet et al. (2022) has the second-highest classification accuracy,
and the KDA algorithm has the worst classification results.
Moreover, the classification accuracy of the model reported here
is optimal when the feature data is 7 or 8; the maximum statistical
values of AA, AV, OA, and Kappa are 74.19%, 61.91%, 63.18%, and
57.63%, respectively. Therefore, the model can accurately identify
the health status of natural larch forests.

Discussion and suggestion

Discussion

This work reveals that an accurate assessment of the health
status of natural larch forests in the Arxan Forestry Bureau can be
achieved through the analysis of remote sensing data and feature
extraction methods. The results highlight significant differences in
the health status of different plots. Plot A1 showed the lowest health
status and was classified as sub-healthy, while plot A4 exhibited the
worst health status and was classified as unhealthy. The most
significant indicators for assessing the health status of natural
forests were found to be quantitative indicators such as canopy
density, understory shrub cover, humus thickness, tree height, and
canopy regeneration. Among these, age group, soil texture, and
community structure were identified as having the most significant
impact on the health status of natural forests.

Further analysis of the spectral-Gabor spatial discriminant
method proposed in this work for spectral feature extraction
reveals higher precision and accuracy than those achieved by
scholars in related fields (Reddy, 2021; Thakur et al., 2021).
Compared with Fernandez-Carrillo et al. (2020), this study uses
more refined remote sensing data and feature extraction methods,
providing better reflection of the health status of natural Larch pine
forests.

This work has some limitations that need to be acknowledged.
Firstly, the sample size is relatively small, including only four plots,
which may not comprehensively reflect the health status of natural
larch forests in the Greater Khingan Mountains. Secondly, the
impact of human activities and climate change has not been
considered, indicating the need to include more factors in
assessing the health status of natural larch forests. Therefore,
future research should focus on increasing the sample size,
integrating more data sources and feature extraction methods,
and comprehensively considering the effects of various factors on
natural larch forest health to improve the accuracy and reliability of
health assessment.

FIGURE 7
Health classification results of natural larch forests in various
fields.
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Suggestion

Based on the aforementioned discussion, this work proposes
three recommendations:

Firstly, it is highly recommended to manage and protect the sub-
healthy and unhealthy natural larch forests. The density of forest
stands in natural larch forests can be optimized by adopting
ecological thinning, replanting, understory mowing and
irrigation, and pruning and shaping (Weller et al., 2021). In this
way, the natural larch and understory irrigation can grow normally
in the natural larch forest, increasing the health grade in the
study area.

Secondarily, the community hierarchy in natural larch forests
should be adjusted to enhance intra-forest permeability and
ventilation by strengthening the management of canopy and
depression and by thinning, single plant selection, or pruning
(Schuldt et al., 2020; Lin et al., 2022). Ultimately, the natural
larch forest will have a multi-level community structure. It is
feasible to achieve biodiversity by adjusting the age structure, soil
texture, and other measures. Therefore, the richer the biodiversity,
the more stable the community structure, and the more pronounced
the forest benefits.

Lastly, it is recommended to integrate multiple data sources for
the health assessment of natural forests. Along with remote sensing
data, other data sources such as topography and hydrological data
should be incorporated to enhance the accuracy and reliability of the
health assessment. Additionally, regular monitoring of the
distribution and health status of natural Larch pine forests
should be performed using remote sensing technology. The
timely data acquisition capability of remote sensing should be
combined with field survey data to promptly assess the health
status of natural Larch pine forests.

Conclusion

In this work, a novel approach is proposed for assessing the
health status of natural larch forests in the Arxan by incorporating
tree crown features and utilizing a spectral-Gabor space
discrimination analysis and classification model to extract
multispectral remote sensing image features. The results
demonstrate the effectiveness of this approach in accurately
assessing the health status of natural larch forests. Furthermore,
this work highlights the close relationship between forest health

FIGURE 8
Classification results of each evaluation index under different algorithms (A) AA; (B) AV; (C) OA; (D) Kappa).
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status and environmental factors, human disturbances, and other
factors, providing scientific evidence for developing targeted
protection and management measures for sustainable
development of natural larch forests. This work also presents a
promising method for monitoring forest health on a global scale,
which can rapidly and accurately evaluate forest health status and
provide critical support for forest protection and management. The
findings of this work have significant implications for the sustainable
utilization of forest resources and ecological environment
protection, indicating its substantial scientific research value and
social significance. Still, there are some deficiencies here. For
example, natural larch is the dominant species in natural larch
forests in the study area, and a few other replanting species still
present, such as artificial larch forests. Therefore, future research will
further distinguish the tree species in the study area to enhance the
precision and confidence of the results.
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