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Fisheries provide high-quality protein for many people, and their sustainable use is
of global concern. Light trapping is a widely used fishing method that takes
advantage of the phototropism of fish. Remote sensing technology allows for
the monitoring of lit fishing vessels at sea from the air at night, which supports the
sustainable management of fisheries. To investigate the potential of different
nighttime light remote sensing data for lit fishing vessel identification and
applications, we used the fuzzy evaluation method to quantitatively assess
images in terms of their radiometric and geometric quality, and Otsu’s method
to compare the effects of lit fishing vessel identification. Three kinds of nighttime
lighting data from the Defense Meteorological Satellite Program/Operational
Linescan System (DMSP/OLS), Visible infrared imaging radiometer suite day/
night band (VIIRS/DNB), and Luojia1-01(LJ1-01) were analyzed, compared, and
application pointers were constructed. The results are as follows. ①In the image
radiation quality evaluation, the information entropy, clarity, and noise
performance of the LJ1-01 image are higher than those of the DMSP/OLS and
VIIRS/DNB images, where the information entropy value of the LJ1-01 image is
nearly 10 times that of VIIRS/DNB and 23 times that of DMSP/OLS. The average
gradient value is 14 times that of the image fromVIIRS/DNB and 1,600 times that of
DMSP/OLS, while its noise is only about 2/3 of the VIIRS/DNB image and 1/3 of the
DMSP/OLS image. In the geometric quality assessment, the geometric positioning
accuracy and ground sampling accuracy of the VIIRS/DNB image is the best
among the three images, with a relative difference percentage of 100.1%, and the
LJ1-01 and DMSP/OLS images are relatively lower, at 96.9% and 92.3%,
respectively. ② The detection of squid fishing vessels in the Northwest Pacific
is taken as an example to compare the identification effects of three types of data:
DMSP/OLS, VIIRS/DNB, and LJ1-01. Among these data, DMSP/OLS can effectively
identify the position of the lit fishing boat, and VIIRS/DNB images can accurately
estimate the spatial position and number of lit fishing boats with large distances.
However, in the case of fishing boats gathering or clustering, the number of fishing
vessels could not be identified. This led to the detected number of lit fishing
vessels being less than the real value. For the VIIRS/DNB and LJ1-01 images with a
5′×8′ span in the same spatiotemporal range using the samebatch of pelagic squid
fishing vessels, LJ1-01 extracted 18 fishing vessels. VIIRS/DNB extracted 15,
indicating that LJ1-01 can distinguish multiple fishing vessels in the lighted
overlapping area, thus accurately identifying the number of fishing vessels. The
application pointing table generated based on the results of the three data
analyses can provide a reference for sensor/image selection for nighttime light
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remote sensing fishery applications and a basis for more refined fishing vessel
identification, extraction, and monitoring.
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1 Introduction

In recent years, the global demand for aquatic products has
grown with the increase in the global population, improvement in
the standard of living, and rise in food prices (Subasinghe et al., 2009;
Ottinger et al., 2016; Li, 2020; Azra et al., 2021). As one of the oldest
industries in the history of marine development, marine fishing has
always been an important source of fishery products and the
mainstay of fisheries (Hilborn et al., 2020). According to the
FAO’s The State of World Fisheries and Aquaculture 2022, global
capture fisheries and aquaculture production will reach 214 million
tons in 2020, and 17% of the world’s animal protein intake will come
from fish products (Rousseau et al., 2019). Since the 20th century,
marine capture fisheries have accounted for more than 70%–80% of
the world’s total fisheries production (Rousseau et al., 2019).
However, over the last 50 years, the proportion of global fish
stocks within bio-sustainable limits has been on the decline
(FAO, 2022), About a quarter of fish stocks are overexploited,
depleted, or recovering from depletion (17%, 7%, and 1%,
respectively) (Beddington et al., 2007). This indicates a
continuing decline in the state of the world’s marine fisheries
resources. The distribution of fishing vessels is a direct reflection
of fishing efforts, which indicates the intensity of human
exploitation of fishery resources.

Meanwhile, to a considerable extent, the distribution of fishing
vessels is also a manifestation of the variability of fishery resources,
which is essential to the quantitative assessment of the
spatiotemporal distribution of fishery resources. (Uchida and
Wilen, 2004; Jung et al., 2013). Managers generally collect the
number and catch of fishing vessels in different areas to assess
the status of fishery resources; this allows them to formulate
protective policies, develop management policies, reduce fishing,
and protect fishery resources (Seo, 2005). However, most countries
rely on sales records of catches, direct shipboard collections, and
fishermen’s questionnaires to assess fishery resources (Blanco et al.,
2007; Barkai and Meredith, 2010; Yang et al., 2023). These
assessment methods can only obtain a single type of data, and
the acquisition of this data relies chiefly on individual record-
keeping efforts, which are often subjective and inaccurate (Rudd
and Branch, 2017).

Light trapping is a method of using artificial light to lure
scattered fish into groups to increase catches by using the
phototropism of different fish groups (Ben, 1976). Light trapping
has been widely used to catch various kinds of fish and benthic
organisms in the ocean (Ortiz et al., 2016; Solomon and Ahmed,
2016; Nguyen et al., 2017). The catch accounts for about 10% of the
world’s marine fishing production (FAO, 2022). Light trapping has
the advantages of high efficiency, low cost, and high yield (Syah et al.,
2016). However, the number of lit fishing vessels has been
increasing, leading to negative impacts such as overfishing,
bycatch, plastic, garbage, and greenhouse gas emissions due to

artificial light (Mills et al., 2014; Solomon and Ahmed, 2016). In
an era of declining global fish species diversity (FAO, 2022), this
poses a potential threat to developing global sustainable fisheries.
Sustainable fisheries are a prerequisite for the “blue growth” of
healthy marine ecosystems (Eikeset et al., 2018). It is important to
understand the changes in the distribution of lit fishing vessels to
help understand the fishing efforts and illegal fishing (Chen, 2021).

There are various ways of monitoring lit fishing vessels, but
methods based on the on-site survey, port sampling survey, and
fishing logbook collection have issues such as a small observation
range and being time-consuming and laborious (Huang et al., 2018).
In addition, the fishing vessel monitoring system and the general
shipboard automatic identification system (AIS) also have problems.
The terminal cannot be used when it is closed, small vessels without
equipment cannot be monitored, and the systemmaintenance cost is
high (Li et al., 2021). The use of nighttime light images to obtain
visible/near-infrared electromagnetic spectrum information under
cloud-free conditions at night, thus recording the lighting situation
of fishing vessels at sea, can directly reflect real human activities
(Huang et al., 2014; Li et al., 2016; Exeter et al., 2021) and has the
merits of a high timeliness, wide observation range, and low cost
(Elvidge et al., 2001; Klemas, 2013; Liu et al., 2015). Most of the
current sensors with night light detection capability are not open to
the public, making their application scope limited (Levin et al.,
2020). Among them, Defense Meteorological Satellite Program/
Operational Linescan System, DMSP/OLS, visible infrared
imaging radiometer suite day/night band (VIIRS/DNB), and
Luojia1-01(LJ1-01) have been widely studied and applied due to
the convenience of image acquisition and wide coverage (Cheng
et al., 2016; Elvidge et al., 2017; Li et al., 2019). However, most of the
current studies on these three kinds of satellite images in fisheries
focus on a single data type or a single area (Waluda et al., 2004;
Wang et al., 2020; Zhong et al., 2020), without systematically sorting
out the differences between the three kinds of night light remote
sensing data with regard to the image quality values and lit fishing
vessel identification effect, which results in issues with fishing vessel
extraction and management.

Therefore, we quantitatively analyzed the advantages and
disadvantages of night light remote sensing data from DMSP/
OLS, VIIRS/DNB, and LJ1-01 based on the image quality values
and lit fishing vessel identification effect to create an image selection
reference for carrying out lit fishing vessel identification work and
evaluating night light images in fisheries. We also constructed
application pointers to explore the advantages of different data,
thus providing a basis for fisheries’ resource protection.

2 Materials and methods

In this paper, we compared images from DMSP/OLS, VIIRS/
DNB, and LJ1-01. For the image quality values, we calculated the
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information entropy, the average gradient value, and the average
Inverse Coefficient of Variation (ICV). We used the root mean
square error and ground sampling accuracy to represent the
geometric quality to obtain quantitative indexes of the image
radiation quality and geometric quality. We then scored the
overall quality of the images using fuzzy evaluation. For the
recognition effect of lit fishing vessels, the spatial position of lit
fishing vessels was extracted uniformly by Otsu’s method after
preprocessing operations such as cloud masking, denoising,
radiation correction, and geometric correction of the images.
Vessel position data were introduced to check the recognition effect.

2.1 Research data

The DMSP/OLS and VIIRS/DNB single-day images were
obtained from the National Geophysical Data Center (NGDC) of
the NOAA (National Oceanic and Atmospheric Administration).
The LJ1-01 images were obtained from the Hubei Data and
Application Center of the High-Resolution Earth Observation
System. Because the images do not have the intersection of space
and time, and to ensure the consistency of the extracted lit fishing
vessel types, images from the squid fishing area in the North Pacific
Ocean were selected. The imaging time, coverage, and sources are
shown in Table 1.

2.2 Methods

2.2.1 Numerical evaluation method of the image
quality

The quality evaluation of remote sensing digital images is mainly
determined via radiometric quality and geometric quality (Yin et al.,
2014). To make a comprehensive evaluation of the quality of the
remote sensing images, we introduced the fuzzy evaluation method
(Wang, 2004; Liang et al., 2019).

(1) Radiation quality

Radiation quality is the most critical and complex index in the
quality evaluation of remote-sensing images (Wang, 2014). The
radiation quality of nighttime light images has important effects on
the identification of illuminated fishing vessels, including the
information richness, clarity, and noise of the image. Therefore,
three indicators (information entropy, sharpness, and noise) were
selected for evaluation (Li, 2009). Sharpness was expressed by the

average gradient value of the image elements, and the noise was
expressed by the ICV.

1 Information entropy is the average amount of information
contained in an image (Zhen, 2006): the larger the entropy value,
the more information it contains (Deng, 2009). The formula for
calculating image entropy is expressed as follows (Liu et al.,
1999):

H � −∑n

i�1pilog2pi (1)

where pi is the frequency of occurrence of pixels with the DN value i
in the image, and H is the value of the information entropy.

2 Sharpness reflects the contrast of small details in an image and
the clarity of its boundaries (Wang, 2000): the larger the average
gradient value ∇�g of the image pixels, the more precise the image
(Wang, 2014).

∇�g � ∑M−1
i�0 ∑N−1

j�0

������������
ΔI2x + ΔI2y( )/2√
M × N

(2)

where ΔIx represents the first-order difference of pixel (x,y) in the x
direction, ΔIy is in the y direction, M × N is the size of the image,
and ∇�g is the average gradient value.

3 The effect of noise throughout the entire imaging process
results in reduced image quality (Fu et al., 2013). We used the
average ICV the most frequently as an indicator of image noise
(Bouali and Ladjal, 2011).

ICV � Ra

Rsd
(3)

where Ra is the mean value of the regional image and Rsd is the
variance of the regional image.

(2) Geometric quality

The geometric quality evaluation of single-band images
generally includes the accuracy of the geometric positioning and
ground sampling, as follows (Eikeset et al., 2018).

1 The geometric positioning accuracy of the image directly affects
the overall accuracy (Tao and Zhang, 2017). We referred to Li’s
geometric positioning accuracy evaluation based on Google Earth
images using road network intersections as matching points to
compare the Root Mean Squared Errors (RMSE) (Liu et al.,
2019).

TABLE 1 Satellite data of nighttime light.

Sensor Imaging time Coverage Image data source

DMSP/OLS 1 September 2011 (19:30) (155°50′E–160°0′E, 40°0′N–45°0′N) NOAA/NGDC

VIIRS/
DNB

19 September 2018 (01:34) (143°47′E–144°4′E,
39°42′N–42°14′N)

NOAA/NGDC

LJ1-01 18 September 2018 (22:14) (143°47′E–144°4′E,
39°42′N–42°14′N)

High Resolution Earth Observation System of Systems Hubei Data and Application Center
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2 The ground sample distance (GSD) directly reflects the
resolution of the image. The ground sample distance is the
average distance between the center points of multiple pairs of
image elements in the same area as measured by Mercator
projection. Figure 1

2.2.2 Fuzzy evaluation method
In the fuzzy comprehensive evaluation, we first determine the

factor universe U and the comment universe V. The factor universe
refers to the evaluation indicators considered in the evaluation, and
the comment universe refers to the quality level in the evaluation (Yi,
1983). In this study, the factor universe U included the five
evaluation factors, and the comment universe V set the three
grades of excellent, good, and qualified. The fuzzy evaluation
matrix can be calculated by combining the evaluation results and
the fuzzy evaluation threshold:

R �
r11
r21
r31
r41
r51

r12
r22
r32
r42
r52

r13
r23
r33
r43
r53

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where the element rij is the membership of the index (Li, 2009), and
0 ≤ rij ≤ 1. The weight matrix A is determined according to the
degree of importance of each evaluation factor in the decision, A =
(information entropy, average gradient value, ICV, RMSE, and
GSD). The comprehensive evaluation results are obtained using
Eq. 5.

B � A•R (5)

2.2.3 lit fishing vessels extraction
(1) Image preprocessing

The preprocessing steps mainly include cloud mask processing,
image denoising, radiometric correction, and geometric correction.
Clouds and noise are common problems with all three images, where
radiometric calibration is required for the DMSP/OLS images
(Elvidge et al., 1999), and negative values and outliers need to be
removed for the VIIRS/DNB images. LJ1-01 performs radiometric
brightness conversion processing and geometric correction of
images using road network intersections (Liu et al., 2019).

(2) lit fishing vessel extraction

To compare the effect of lit fishing vessel recognition for the
three data, we used Otsu’s method, a widely used algorithm for
image thresholding segmentation, to extract the lit fishing vessels
(Xu et al., 2011). Otsu’s method divides the image into two parts,
background, and foreground, according to the grayscale
characteristics of the image. Given that the variance is a measure
of the uniformity of grayscale distribution, the larger the interclass
variance between the foreground and background of the image, the
greater the difference between the two, allowing the interclass
variance to maximize the segmentation, indicating the minimum
probability of misclassification. For the image I(x, y), the

FIGURE 1
Flow chart of the evaluation process.
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segmentation threshold of the target and background is T, the
number of pixel points belonging to the target as a proportion of
the whole image is δ0, and the average grayscale is μ0. The number of
background pixel points as a proportion of the whole image is δ1,
and the average grayscale is μ1. We use Eq. 6 to calculate the mean
value μ of the entire image.

μ � δ0μ0 + δ1μ1 (6)
The objective function g(t) is then established,

g t( ) � δ0 μ0 − μ( )2 + δ1 μ1 − μ( )2 (7)
where g(t) is the expression of the interclass variance when the
segmentation threshold is T. The optimal threshold is the one that
corresponds to the global maximum value when g(t) is taken.

3 Results and analysis

3.1 Numerical evaluation of image quality

The results of the remote sensing image quality assessment can
be used as a reference to evaluate an image’s merit (Liu et al., 2011).
Using Eqs 1–3, the information entropy, average gradient value, and
ICV were calculated separately for the nighttime light images in
Table 1 to evaluate the image radiation quality. The results are
summarized in Table 2. According to the actual application and the
importance of each indicator, the weight value of each indicator was
assigned (Deng, 2009), A � (0.1, 0.2, 0.2, 0.1, 0.3), and calculated
using Eq. 5, B � (0.383, 0.769, 0.784). The calculations indicated
that the LJ1-01 image has the highest score.

In the identification of fishing vessels from light images, the
higher the radiation quality of the images, the better it is for the
monitoring and identification of lit fishing vessels. As can be seen
from Table 2, in the radiation quality evaluation, the DMSP/OLS
image is deficient in radiation quality compared with the latter two,
mainly in the average gradient value and the ICV. The average
gradient value is about 1/100 of the VIIRS/DNB image and 6/
10,000 of the LJ1-01 image. The ICV is two times that of the VIIRS/
DNB image and three times that of the LJ1-01 image, indicating that
the image needs to be corrected to be more accurate by a researcher
at a later stage. Compared with the DMSP/OLS image, each index of
VIIRS/DNB significantly improved the radiation quality. However,

there are still considerable deficiencies in the information entropy of
the DMSP/OLS and VIIRS/DNB images, which are 1/10 and 1/23 of
LJ1-01, respectively. LJ1-01 is an order of magnitude ahead and has a
much lower average ICV than the other two sensors. The advantages
of LJ1-01 are rich image information, high definition, and low image
noise Table 3.

The higher geometric quality helps to reduce the deviation
between the identified fishing vessel position and the actual
position and also helps to improve the identification ability of
small lit fishing vessels. The DMSP/OLS and LJ1-01 images are
relatively close in RMSE. Still, their spatial resolution difference
leads to a larger gap in the ground sampling distance index, and LJ1-
01 is slightly higher than DMSP/OLS in the relative difference
percentage. However, the spatial resolution of VIIRS/DNB is
limited, resulting in a large difference in the ground sampling
distance.

The combined fuzzy scoring results show that the LJ1-01 image
has the highest score among the three images, followed by the
VIIRS/DNB and DMSP/OLS images.

3.2 Comparison of the recognition effect of
lit fishing vessels

Due to the difference in the archiving time of the DMSP/OLS,
VIIRS/DNB, and LJ1-01 images and the different times of night
imaging by the three satellites (Table 4), we were unable tomatch the
same type of lit fishing vessels everywhere in the same time and
space. However, the lit fishing vessels entering the North Pacific
squid fishing area generally have strict regulations on their vessel size
(Fei et al., 2022), so the lighted image pixels extracted from DMSP/

TABLE 2 Quantitative indicators of image radiation quality and geometric quality.

Image Radiation quality Geometric quality

Ground sampling accuracy

Information entropy Average gradient value ICV RMSE GSD/
m

Relative difference percentage (%)

DMSP/OLS 0.0392 0.0081 317.18 1.5324 923 92.3

VIIRS/DNB 0.0863 0.8825 145.31 0.9362 726 100.1

LJ1-01 0.9073 13 99.91 1.2266 126.3 96.9

Ideal value ∞ ∞ 0 0 0 100

TABLE 3 Fuzzy evaluation index threshold.

Evaluation indicators Excellent Good Qualified

Information entropy 2 1 0.5

Average gradient value 3 2 1

ICV 100 200 300

RMSE 0.1 0.5 1

GSD/m 100 200 400
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OLS, VIIRS/DNB, and LJ1-01 single-day data can be
spatiotemporally matched by tracking the same type of North
Pacific squid fishing vessels with the vessel position data. The
difference between the imaging time of VIIRS/DNB and LJ1-01
images is about 4 h, but the lit fishing vessels operate very slowly.
Their positions do not change much, so they can be compared in the
same time and space. In summary, the same type of North Pacific
squid fishing vessels was selected for this paper to ensure that the
vessel sizes were similar and displayed with the same spatial extent
overlay (Figure 2). The vessel position data of the calibrated DMSP/

OLS images were obtained from the fishing logs collected by the
Squid Fishing Technology Group of Shanghai Ocean University,
China Oceanic Fisheries Branch, and the VIIRS/DNB and LJ1-01
images were obtained from the Earth Observation Group (EOG)
published on the NOAA website (https://eogdata.mines.edu/vbd/).
The VBD data are shown in Table 4.

Lit fishing vessels attract phototropic fish using intense electric
lights that can be adjusted. Therefore, the light sources captured by
the satellite-based low light data often represent the boundary of the
fishing vessel, and the lights are composed of the refraction and

TABLE 4 Three kinds of nighttime light data and fishing vessel information.

Image Ship position data
source

Number of extracted
objects

Area of one extracted
object (km2)

Ship
length (m)

Imaging time

DMSP/
OLS

Fishing log 10 6 19:30, 1 September
2011

VIIRS/
DNB

AIS 15 3.12 43.5 01:34, 19 September
2018

LJ1-01 AIS 18 0.47 22:14, 18 September
2018

FIGURE 2
Three kinds of nighttime light data and ship positions superimposed on a map [(A, B, C) are DMSP/OLS, VIIRS/DNB, and LJ1-01 images
superimposed with 5′ × 8′ span, respectively. The red circle in the map is for a single lit fishing vessel, and the blue circle is for multiple lit fishing
vessels; (D, E, F) are DMSP/OLS, VIIRS/DNB, and LJ1-01, respectively, superimposed with a 1′40″ × 1′40″ span superimposed display, in which ship (P)
is the fishing vessel position extracted by the Otsu method and ship (R) is the real vessel position.).
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reflection of the seawater. As shown in Figures 2A, D and Table 4,
each extracted object occupies six pixels on average. The area
occupied by the lights of the fishing vessels is the largest at the
same resolution, and the shape tends to be rectangular. The
difference in the pixel values is not obvious. The fishing vessel is
located in the upper left of the extracted object, mainly because of the
low spatial resolution of the DMSP/OLS image (1 km), and the
vessel is affected by the position of light suspension and the time
length of the imaging, which led to the light halo effect. It is also
affected by the noise generated by processes such as atmospheric
transmission (Deng, 2009), making it suffer from uneven values of
background radiance. Therefore, DMSP/OLS images have
limitations in identifying the number of lit fishing vessels and the
type of fishing vessels.

As shown in Figures 2B, F and Table 4, the average number of
image elements for each extracted object is 13, which is
significantly smaller than that for the DMSP/OLS image. The
pixel values are basically the same and differ considerably from
the surrounding non-lighted images. The position of the fishing
vessel is located at the top left of the light image, similar to the
DMSP/OLS image. This is mainly due to the comprehensive
improvements made to the sensor VIIRS for OLS, not only to
improve the spatial resolution but also to improve the radiation
resolution of the sensor. However, influenced by the imaging
time and the fishing vessel’s movement, the fishing vessel still has
an obvious light vignetting phenomenon. Compared with DMSP/
OLS, it can identify single fishing vessels with larger spacing and
distinguish whether there is a gathering of fishing vessels (as
shown in the blue circles in Figures 2A, B). Fishing operations are
often concentrated near the same fishing ground, and the
aggregation of fishing vessels can lead to the superimposed
brightness of light sources scattered or diffused from the edges
by the lights. It then becomes impossible to distinguish whether
the light is caused by a single fishing vessel with stronger lights
itself or the aggregation of multiple ships, which causes

difficulties with the identification of the number of fishing
vessels. The root cause is the insufficient spatial resolution of
VIIRS/DNB images.

As shown in Figures 2C, F, the LJ1-01 and VIIRS/DNB images
in the same space-time show the same batch of lit fishing vessels at
night, a total of 18 vessels. However, the VIIRS/DNB image only
shows 15 consecutive lighted objects, which is more accurate than
the first two images in extracting the number of fishing vessels. The
lit fishing vessels of LJ1-01 show a circle with the light source as the
center to diffuse around, and the area occupied by the light
elements is the smallest and closest to the actual vessel size
(Table 4). The difference in the DN value in the center of the
light object is not obvious, and the DN value at the edge gradually
decreases. The deviation of the vessel position from the center of
the light object is lower compared with the previous two. This is
mainly because the spatial resolution of LJ1-01 has been
significantly improved, which enables LJ1-01 to accurately
estimate the number of lit fishing vessels and extract the
distribution of fishing vessels, avoiding the overlapping of lights
of closely spaced fishing vessels. It provides a theoretical basis for
estimating the size of fishing vessels based on the number of pixels,
while the shorter imaging time also reduces the phenomenon of
light haloing to provide a more accurate factual location of fishing
vessels without relying too much on auxiliary data such as those
from the AIS.

4 Discussion

DMSP/OLS, VIIRS/DNB, and LJ1-01 images were used as
research objects to evaluate the image quality values and lit
fishing vessel identification effects. Based on the fuzzy
evaluation method, the image quality values were
comprehensively compared in regards to their radiation
quality (information richness, clarity, and noise) and

TABLE 5 Nighttime light data applications.

Image Time scope Coverage Width/
km

Products Application

DMSP/
OLS

1992– Global 3,000 Daily and monthly average lighting data sets
(subscription required); annual synthetic stable
lighting data.

Changes in the distribution of global lit fishing
vessels by 2013

2013 Annual average stable radiation calibrated
products (some years)

Preliminary estimation of the number of lit fishing
vessels

Rough estimate of fishing effort by lit fishing vessels

VIIRS/
DNB

January
2012–Present

Global 3,000 Day-by-day raw data. Accurate identification of global lit fishing vessels
after 2013 lit fishing vessels trajectory accurate
tracking, forecast

Monthly synthetic lighting data. Potential fishing grounds

Annual synthetic lighting data Combat illegal lit fishing vessel fishing

LJ1-01 June
2018–March
2019

Asia, Europe and
North America

260 Raw data Identification and Classification of Aggregating
Fishing Vessels

Estimated density of various types of lit fishing
vessels
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geometric quality (geometric positioning accuracy and geometric
sampling distance), and the comparison of quantified theoretical
values. The number and size of the identified lit fishing vessels
reflect the differences in the practical applications of different
nighttime light data. The theoretical basis and practical basis
were adopted for the image selection of spatial distribution
extraction of lit fishing vessels and dynamic monitoring of
fishing vessels.

The three images had significant differences in their theoretical
values and application practices, and each type of image had its own
characteristics. Therefore, based on the characteristics of the three
types of data, we summarized and organized them together with the
product information to build an application pointing table that
shows the actual scenario of lit fishing vessels, allowing for the
selection of data to assess the fishery resources and management of
the fishery, and finely locates the fishing vessels. Table 5 can serve as
a reference for researchers.

DMSP/OLS was the earliest source of nighttime lighting data.
Despite the lower sensor spatial and radiometric resolution, it has
the longest archival time and offers rich data products. Its technical
system laid the foundation for subsequent improvements in the
quality of nighttime light images (Elvidge et al., 1999) and provided
an important data source for all oceans and for global fishing vessel
extraction and fisheries resource assessment (Huang et al., 2014). It
allows for the estimation of the number of lit fishing vessels and the
understanding of the global dynamic distribution of lit fishing
vessels. The changes in fishery resources can be understood from
the dynamic distribution of lit fishing vessels.

For regional-scale fisheries management applications, VIIRS/
DNB can perform more detailed lit fishing vessel location
identification while predicting potential fishing grounds and
combating illegal lit fishing vessels. This is due to the improved
radiation quality and geometric quality of VIIRS/DNB compared to
DMSP/OLS, improved light saturation phenomenon, and higher
sensitivity to weak light sources. This is reflected in the fact that
VIIRS/DNB has the best ground sampling accuracy and root-mean-
square error among the three. It can accurately identify the
distribution of fishing vessels while addressing the weakness of
DMSP/OLS, which cannot identify aggregated fishing vessels.

To carry outmore refinedfishing vessel positioning and information
extraction, nighttime light images of LJ1-01 quality need to be selected.
Although LJ1-01 has a short emission time, insufficient existing data, and
limited coverage (the data include Asia, Europe, and North America), its
rich information, high clarity, and high spatial resolution can identify
andmanage lit fishing vessels in key areas and achieve a finer positioning
of the vessels. The radiation quality advantage of LJ1-01 enables it to
detect targets with weaker lights, specifically in the comparison of the lit
fishing vessel identification effect. LJ1-01 not only identifies the location
of fishing vessels more accurately but also distinguishes the lit fishing
vessels that cannot be identified by VIIRS/DNB images. LJ1-01 further
realizes the monitoring and management of the number of lit fishing
boats with the advantage of high spatial resolution.

5 Conclusion

Remote sensing images of nighttime lights provide a unique
perspective for observing human activities at night. A

comprehensive comparative analysis of the images from DMSP/
OLS, VIIRS/DNB, and LJ1-01, in terms of both image quality values
and lit fishing vessel recognition effects, can help managers select
and use the appropriate data. LJ1-01 imagery scored the highest in
the theoretical numerical evaluation, followed by VIIRS/DNB and
DMSP/OLS images. LJ1-01 images have a significant advantage in
both detail and texture features. Combined with the application
pointing table, DMSP/OLS can provide a long time series of global
fishery resource changes. VIIRS/DNB can provide fishery
information, such as the trajectory of fishing vessels and the
distribution of fishing grounds. LJ1-01 can realize the monitoring
and management of the number of lit fishing boats to lay the
foundation for the fine positioning of fishing vessels.

The application direction table can match the best data sources
and find new knowledge datasets for monitoring fishing vessels at
different scales and research objects. In the future, the remote
sensing monitoring of long-time series can be used to build a
complete observation network for fishery monitoring and
management, while the night light images, combined with high-
resolution remote sensing data, can be used to carry out quantitative
research.
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