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China’s economy has grown rapidly in response to the adoption of a high-energy,
high-emissions development model, which has led to varying degrees of air
pollution; moreover, the corresponding health damage has become a major
concern for the public. Studies of the interrelationships between the economy,
air pollution, and health often use empirical methods such as regression analysis,
to explore the impacts of economic growth and air pollution, human health or air
pollution on human health in isolation, and they rarely explore the interactions
between the economy, air pollution, and health in terms of efficiency (i.e., the
maximum output per unit of input resources that can be produced). Thus, this
study constructed a Dynamic Network SBM efficiency model that unifies the
production of economic development, air pollution, and health into a single
framework. The article reports the findings of a comprehensive study of
economic development, air pollution, and health management data for
30 Chinese provinces from 2015 to 2020. The results show that: 1) the overall
efficiency (0.693) of China’s two stages from economic production input to
healthy output from 2015 to 2020 is low, and there is much room for
improvement; 2) the efficiency of economic development (0.729) is higher
than the efficiency of health production (0.657), indicating that the health
production stage needs to be strengthened; 3) during the study period, China’s
PM2.5, SO2, and NOx control efficiency was low, at 0.786, 0.710, and 0.718,
respectively, indicating that more effective measures are needed to improve
environmental efficiency; and 4) there are significant differences in economic,
environmental, and health efficiency across regions. China’s developed eastern
provinces are more efficient in terms of economic development, health
production, and air pollution control. In contrast, the central and western
provinces, which are relatively backward in their economic development, are
less efficient. This means that each province should implement sound policies
based on its own assessment to promote sustainable economic development
while enhancing air pollution mitigation and health promotion.
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1 Introduction

After China’s reform and opening up in 1978, its economy grew
rapidly and became the world’s second-largest economy in 2010.
Although China has experienced rapid economic development, this
progress has mainly been at the expense of excessive energy
consumption, which has caused many environmental pollution
issues (Xiong and Xu, 2021). Especially, air pollution has become
one of the most serious environmental problems in China, which has
created inevitable health losses and huge economic costs (Liu and
Dong, 2021a). As a result, this work aims to investigate how to
ensure minimal air pollution while maximising economic and health
benefits.

Studies of the relationship between air pollution and health have
focused on environmental health epidemiology and environmental
toxicology (Brunekreef and Holgate, 2002; Lee et al., 2014; Kelly and
Fussell, 2015; Ghorani-Azam et al., 2016; Dhital and Rupakheti,
2019; Dominski et al., 2021). However, these studies did not
construct empirical health economics models to explore the
socioeconomic factors involved in environmental health
problems. In addition, other scholars have begun to examine the
intersections among economic development, air pollution, and
public health (Wang, 2010; Drabo, 2011; Sueyoshi and Yuan,
2015; Li et al., 2016; Chen et al., 2019; Feng et al., 2019; Gong
et al., 2019; Kubatko and Kubatko, 2019; Fu et al., 2020; Mujtaba and
Shahzad, 2021; Hussain et al., 2022; Zhang et al., 2023). Still,
research on the economy–environment connection is usually
conducted separately from health studies, and few approaches
have combined economy, the environment, and health and
analyzed their relationship in depth. The few studies on
economic-environmental health usually use empirical methods
such as regression analysis, but these methods do not adequately
consider the efficiency issues between resource inputs and output.
Therefore, it is necessary to adopt efficiency analysis methods to
better reveal the efficiency relationships between the economy,
environment, and health, consequently providing a more reliable
basis for achieving sustainable development.

Based on the above considerations, this paper constructs a
Dynamic Network SBM (DNSBM) efficiency model that unifies
economic development, air pollution, and health into a single
framework. It comprehensively evaluates the efficiency of
economic development, air pollution control, and health
production in 30 Chinese provinces from 2015 to 2020, which
provides a policy rationale for balancing the relationship between
economic growth, air pollution, and health promotion.

2 Literature review

Consulting the relevant literature, we found that most scholarly
studies of economic development, air pollution, and human health
are conducted from one of four angles.

2.1 Economic development and air pollution

Economic activity closely correlates with air pollution,
particularly in developing nations. In 1955, Kuznets put forth the

Environmental Kuznets Curve (EKC) theory, which states that it is
possible that there exists an inverted U-shaped relationship between
air pollution and economic growth. At the start of economic
development, environmental quality declines continuously as per
capita income rises, but once income reaches a tipping point,
increased revenues promote environmental improvement
(Kuznets, 1955). Based on this, most scholars in China and
abroad have experimentally tested the EKC hypothesis to
investigate the link between economic growth and environmental
deterioration. Omri et al. (2015) indicated a bidirectional causal
relationship between carbon emissions and economic development
and identified the existence of an EKC for carbon emissions. Hanif
(2018) confirmed the EKC theory for low- and middle-income sub-
Saharan African countries. Halliru et al. (2020) reviewed the EKC
hypothesis for ECOWAS. In China, researchers have primarily
studied the inverted U-shaped curve and the link between
economic growth and certain pollutants (SO2, NOx, wastewater
emissions) and greenhouse gases (CO2; Liu et al., 2015; Kang et al.,
2016; Wang et al., 2016; Wang et al., 2017; Diao et al., 2018).

Meanwhile, environmental quality has an influence on
economic development, in addition to economic development
having an impact on environmental quality. For example,
Khoshnevis, Yazdi, and Khanalizadeh (2017) demonstrated that
air pollution adversely affects labor productivity and reduces
industrial production and output, thus affecting economic
growth. In addition, studies have fully confirmed that
technological innovation in the process of economic development
is a force that cannot be ignored in mitigating environmental
pollution. Antweiler et al. (2001) point out that economic growth
brought about by capital accumulation increases environmental
pollution, while economic growth achieved by technological
progress reduces environmental pollution. Erdoğan (2019) offers
a similar idea: that economic growth without technological
innovation may lead to an increase in national carbon emissions.
Fernández Fernández et al. (2018) further emphasized technological
innovation as a driver of sustainable economic development that
allows economic growth to be reconciled with reduced
environmental degradation. Similarly, Zhao et al. (2021) argue
that technological innovation indirectly curbs CO2 emissions by
regulating the relationship between financial risk and CO2

emissions. It is worth noting that innovation can also be
influenced by economic factors. Zakaria and Bibi (2019)
emphasized that financial growth can help increase the level of
technological innovation and improve the efficiency of energy use,
thereby improving environmental quality. Finally, Zhou and Du
(2021) confirmed that the development of green finance under strict
environmental regulatory policies acts as an incentive for
technological innovation.

2.2 Economic development and human
health

Many studies have proven a clear correlation between economic
growth and improved human health. Preston (1985) determined
that the correlation between per capita income and longevity is
cross-sectional; he showed that increases in national income led to
significant increases in life expectancy in developing countries.
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Asiedu et al. (2015) noted that increases in per capita income
improved health outcomes, and the effect was stronger at higher
income levels. Well (2007) confirmed that economic growth could
improve health outcomes by boosting a society’s standard of living,
modifying the public health environment, or promoting medical
technology improvements. Using data from 1991 to 2015, Bul and
Moracha (2020) demonstrated that economic growth can
significantly improve health in sub-Saharan Africa. Akintunde
et al. (2019) analyzed the socioeconomic determinants of health
in Nigeria, the largest economy in West Africa, and found that
shocks to per capita income had a positive effect on life expectancy.
Cole (2019) explored the influence of economic growth on health
using data from 134 developing nations between 1970 and 2015, and
found that economic growth effectively improves health outcomes.
Better health, in turn, enhances the accumulation of human capital,
labor productivity, and, as a result, economic outcomes (Mayer,
2001; Alderman and Behrman, 2006; Akram et al., 2008; Mary,
2018).

2.3 Air pollution and human health

Air pollution has long been studied and shown to threaten
human health severely. Dominici et al. (2002) showed that air
pollution significantly increased mortality among the population.
In particular, Anderson (2020) explored the relationship between
the duration of pollution exposure and mortality in different age
groups. He found that when the time of pollution exposure doubled
among people over the age of 75 years, their mortality increased by
3.6%–6.8%. Brook et al. (2010) further demonstrated that the risk of
non-accidental mortality rises with chronic PM2.5 exposure. At the
same time, maternity and infants are more vulnerable to air
pollution compared to other age groups (Hackley et al., 2007;
Thornburg et al., 2022; Wang et al., 2023). Owili et al. (2017)
made a similar observation regarding the significant influence of
PM2.5 on maternal mortality. Emetere and Oladimeji (2022) further
demonstrated that in Nigeria that maternal deaths are mainly caused
by air pollution. Burnett et al. (2018) confirmed that the degree of
harm to infant survival from air pollution may vary at different
levels. Other studies have concluded that air pollution may be linked
to other diseases and symptoms; for example, Cao et al. (2011) found
that air pollution levels were significantly correlated with
cardiopulmonary disease and lung cancer mortality. Chen et al.
(2012) discovered that there was a 0.75% and 0.83% increase in
overall cardiovascular and respiratory mortality for every 10 g/m3

rise in the 2-day moving average of SO2. Vlaanderen et al. (2017)
discovered that prehypertension was linked to brief airborne
pollution exposure. Finally, considering the severe impact of air
pollution on public health, growing public attitudes toward the
environment have prompted governments to consider whether they
are willing to pay for air quality improvements (Yu et al., 2015).

2.4 Economic development, air pollution,
and human health

In recent years, some researchers have begun investigating the
intersections among economic development, air pollution, and

human health. For instance, based on the correlations among
personal income, air pollution, and life expectancy, Pope et al.
(2015) proposed that clean air should be considered an
“economic benefit” to national health. Siddique and Kiani (2020)
discovered that air pollution reduces life expectancy and increases
infant mortality in middle-income countries using panel data from
1990 to 2016. This shows that low- andmiddle-income countries are
more vulnerable to the hazards of air pollution than are middle- and
high-income countries. Wang et al. (2022) used panel data for
2012 to 2016 and multivariate ordered logit models to show that
increasing economic levels make public health more vulnerable to
air pollution, and that economic growth is becoming less effective at
minimizing the adverse effects of air pollution on public health.
Katrakilidis et al. (2016) explored panel data from 1960 to
2012 using Kuznets-type models and verified that economic
development, environmental quality, and public health are
mutually influential and interrelated. Urhie et al. (2020)
employed data from Nigeria between 1980 and 2017 and a
moderated mediation model to demonstrate that economic
growth affects public health through air pollution.

Although there is a growing corpus of literature on economic
development, air pollution, and human health, most of these studies
have concentrated on the link between two variables, rather than all
three. Moreover, the dynamic research on these three variables from
an efficiency standpoint needs to be enhanced. The few studies
examining the links among the economy, air pollution, and health
have used empirical methods, such as regression analysis, and the
analytic results do not adequately account for the decision unit’s
internal structure and the dynamic impacts between periods. To
address the gap in this research, this paper constructs a DNSBM to
comprehensively assess the efficiency of economic development,
health production, and air pollution control within the same
framework, and proposes improvement strategies.

3 Materials and methods

3.1 DNSBM model introduction

Two major methodological difficulties emerge for the
simultaneous assessment of economic, environmental and health
efficiency. The first is the need for a method that can integrate the
interrelationship between economic development, environmental
protection and health promotion into a unified framework. The
second difficulty is that the method must be able to analyse and
manage any undesirable outputs that occur in different phases.
Several previous studies have attempted to address these difficulties.

First of all, to solve the problem of efficiency assessment,
Charnes et al. (1978) developed the first DEA model (CCR),
which has been widely used. It is a nonparametric method that
constructs optimal production bounds for a decision unit by solving
a linear programming problem for all decision units. In so doing, the
production efficiency of each decision unit is obtained by comparing
the distance from each decision unit to the optimal production
boundary.

Second, one major drawback of the DEA model is that it cannot
handle the presence of undesirable outputs. Consequently,
researchers have developed expanded DEA models to convert
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inputs into desirable and undesirable outputs for superior efficiency
assessment (Zhou et al., 2006; Zhou et al., 2007). In these models,
economic achievements can be measured by reducing inputs or
increasing desirable outputs, and reductions in environmental
pollution can be reflected by reducing undesirable outputs.
Previous studies using these DEA models have successfully
integrated economic growth and environmental protection into a
unified framework but were unable to include analyses of the
internal structure of the production system and generally
neglected health promotion.

Third, Network Data Envelopment Analysis (NDEA), which
was proposed by Färe et al. (2010), has achieved better results in
capturing the internal structure of production systems. Specifically,
NDEA model state that the production process is made up of many
sub-production technologies, referred to as sub-decision units (Sub-
DMU). These production techniques are used to discuss the effects
of inputs and outputs on the production process, and the “black box”
is eventually opened by traditional DEA or SBM models to find the
optimal solution. Following in the footsteps of Färe et al. (2010),
Tone and Tsutsui (2009) further proposed a weighted slack-based
measures NDEA model. In other words, the NDEA model is
analyzed using the connection between the various departments
of the decision-making unit. To find the best solution using the SBM
model, each department is treated as a Sub-DMU. The NDEAmodel
corrects the traditional DEA’s failure to analyze the efficiency of each
phase, but does not take intertemporal continuation into account.
The activity’s effect is insufficient for determining long-term
efficiency. Thus, to simultaneously assess the efficiency of various
phases and periods, Färe et al. (2007) used the carryover to put
connected variables into a dynamic model.

Finally, Based on previous results, Tone and Tsutsui (2014)
proposed a weighted slack-based measures (Dynamic Network
SBM) DEA model that considers each department of a decision
unit as a sub-decision unit and each carryover activity as a link, as
the basis for dynamic DEA model analysis; they then used the SBM
model to find the optimal solution. Therefore, the Dynamic Network
SBM (DNSBM) model is an appropriate approach for economic,
environmental and health efficiency assessments owing to the
model’s ability to integrate the three interrelated phases of
economic development, environmental protection and health
promotion into a unified framework.

3.2 DNSBM model setting

First, the DNSBM model that we use is a method for evaluating
relative efficiency. Then, we deal with N DMUs(j � 1, . . . , n)
consisting of k divisions (k � 1, . . . , K) over T time periods
(t � 1, . . . , T). Next, we assume that mk and rk are division k’s
respective input and output numbers. The link from division k to
division h is indicated by (k, h) and the set of links by L. Finally, the
observed data are as follows.

3.2.1 Inputs and outputs
The division k input i resource for DMUj in period t is:

xt
ijk ∈ R+(i � 1, K,mk; j � 1, K, n;K � 1, . . .K,K; t � 1, K, T). The

division K output i resource for DMUj in period t is:
yt
rjk ∈ R+(r � 1, K, rk; j � 1, K, n;K � 1, . . .K,K; t � 1, K, T). If

some of the outputs are undesirable, we treat them as division k
inputs.

3.2.2 Links
The link between DMUj intermediate products from division k

to division h in period t is Zt
j(kh)t ∈ R+(j � 1, K, n;

l � 1; k; Lhk; t � 1;K;T), where Lhk is the number of items in
connections from k to h; Linkin

k
is the number of “as input” links

from division k; and Linoutk is the number of “as output” links from
division k.

3.2.3 Carry-overs
The carryover ofDMUj from period t to period t+1 at division k

is Zt,t+1
jkl ∈ R+(j � 1, K, n; l � 1, K, Lk; k � 1, K,K; t � 1, K, T − 1),

where Lk is the total number of items in the division k carryover,
and ngoodk and nbadk, respectively, are the number of desirables
(good) and undesirables (bad) for each division k.

3.2.4 Objective function
The overall efficiency is evaluated using the following program:

θ*o �min
∑T

t�1W
t ∑K

k�1W
k 1− 1

mk+linkink+nbadk ∑mk
i�1

St−
iok
xt
iok
+∑nbadk

kl�1
S t,t+1( )
okl bad

Z t,t+1( )
okl bad

+∑Linkink
k,h( )l�1

Sto k,h( )l in
Zt
o k,h( )l in

( )[ ][ ]
∑T

t�1W
t ∑K

k�1W
k 1+ 1

rk+linkoutk+ngoodk ∑rk
i�1

St+iok
yt
iok
+∑ngoodk

kl�1
S t,t+1( )
okl good

Z t,t+1( )
okl good

+∑Linkoutk
k,h( )l�1

St
o k,h( )l out

Zt
o k,h( )l out

( )[ ][ ]
(1)

In Formula (1), θ*o represents the overall efficiency value. When
θ*o � 1, it means that the decision making unit is relatively effiective.
When θ*o < 1, it means that the decision making unit is invalid;
With ∑T

t�1Wt � 1,∑K
k�1Wk � 1,Wt ≥ 0(∀t),Wk ≥ 0(∀k), where

Wt(t � 1, K, T) is the weight to period t, and Wk(k � 1, K, K) is
the weight to division k.

The constraints are as follows:

xt
ok � Xt

kλ
t
k + St−ko k � 1, K, K; t � 1, K, T( )

yt
ok � Yt

kλ
t
k − St+ko k � 1, K, K; t � 1, K, T( )

eλtk � 1 k � 1, K, K; t � 1, K, T( )
λtk ≫ 0, St+ko ≫ 0, St−ko ≫ 0 ∀k,∀t( )

Zt
kh( )freeλ

t
h � Zt

kh( )freeλ
t
k ∀ k, h( )free,∀t( )

where Zt
kh( )free � Zt

kh( )free, K, Zt
n kh( )free( ) ∈ RL kh( )free×n

Z t,t+1( )
o kl( )free � ∑n

j�1Z
t,t+1( )

jklfree
λtjk + S t,t+1( )

oklfree
; kl � 1, k, nfreek;(

k � 1, K, K; t � 1, K, T) (2)
where Xt

k � (Xt
1k,K,X

t
nk) ∈ Rmk×n×T an Yt

k � (yt
1k,K,y

t
nk) ∈ Rrk×n×T

are input and output matrices, and St−ko and St+ko are input/output slacks,
respectively.

3.2.5 Term (period) and divisional efficiencies
The term (period) efficiency is defined by:

τt′o �min
∑K

k�1W
k 1 − 1

mk+linkink+nbadk ∑mk
i�1

St−iok
xt
iok
+∑linkink

k,h( )�1
Sto k,h( )l in
Zt
o k,h( )l in

+∑nbadk
kl�1

S t, t+1( )( )
okl bad

Z t, t+1( )( )
okl bad

( )[ ]
∑K

k�1W
k 1 + 1

rk+linkoutk+ngoodk ∑rk
i�1

St+
iok
yt
iok
+∑linuotk

k,h( )l�1
St
o k,h( )l out

Zt
o k,h( )l out

+∑ngoodk
kl�1

S t, t+1( )( )
okl good

Z t, t+1( )( )
okl good

( )[ ]
t � 1,K ,T( )

(3)
In Formula (3), τt*o represents the term (period) efficiency value.
When τt*o � 1, it means that the decision making unit is relatively
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effiective. When τt*o < 1, it means that the decision making unit is
invalid.

Divisional efficiency is defined by:

δok
* �

∑T
t�1W

k 1 − 1
mk+linkink+nbadk ∑mk

i�1
St−iok
xt
iok
+∑linkink

k,h( )�1
Sto k,h( )l in
Zt
o k,h( )l in

+∑nbadk
kl�1

S t, t+1( )( )
okl bad

Z t, t+1( )( )
okl bad

( )[ ]
∑T

t�1W
t 1 + 1

rk+linkoutk+ngoodk ∑rk
i�1

St+iok
yt
iok
+ ∑linuotk

k,h( )l�1
Sto k,h( )l out
Zt
o k,h( )l out

+∑ngoodk
kl�1

S t, t+1( )( )
okl good

Z t, t+1( )( )
okl good

( )[ ]
k � 1,K ,K( )

(4)
In Formula (4), δok* represents the divisional efficiency value. When
δok* � 1, it means that the decision making unit is relatively effiective.
When δok* < 1, it means that the decision making unit is invalid.

Term (period)-divisional efficiency is defined by:

ρt*ok �
1 − 1

mk+linkink+nbadk ∑mk
i�1

St−iok
xt
iok
+∑linkink

k,h( )�1
Sto k,h( )l in
Zt
o k,h( )l in

+ ∑nbadk
kl�1

S t, t+1( )( )
oklbad

Z t, t+1( )( )
okl bad

( )
1 + 1

rk+linkoutk+ngoodk ∑rk
i�1

St+iok
yt
iok
+∑linuotk

k,h( )l�1
St
o k,h( )l out

Zt
o k,h( )l out

+ ∑ngoodk
kl�1

S t, t+1( )( )
okl good

Z t, t+1( )( )
okl good

( )
k � 1,K ,K ; t � 1,K ,T( )

(5)
In Formula (5), ρt*ok represents the term (period)-divisional value.
When ρt*ok � 1, it means that the decision making unit is relatively
effiective. When ρt*ok < 1, it means that the decision making unit is
invalid.

Furthermore, we used Hu’s (Hu and Wang, 2006) approach to
assess the undesirable output efficiency:

PM2.5 ef f iciency:
TargetUndesirable PM2.5 input i, t( )
ActualUndesirable PM2.5 input i, t( ) (6)

SO2 ef f iciency:
TargetUndesirable SO2 input i, t( )
ActualUndesirable SO2 input i, t( ) (7)

NOx ef f iciency:
TargetUndesirableNOx input i, t( )
ActualUndesirableNOx input i, t( ) (8)

Improvement ratio of variable � 1 − ef f iciency of variable (9)
In the above equations, i represents area and t represents time.

When the target air pollutant input is equal to the actual input level,
air pollutant control efficiency is equal to 1, indicating overall high
efficiency; on the other hand, when the target air pollutant input is
lower than the actual input level, air pollutant control efficiency is
lower than 1, indicating overall inefficiency.

3.3 Data and variables

3.3.1 Data source
This study evaluates 30 provinces in China (including autonomous

regions and municipalities directly under the central government),
excluding Hong Kong, Macao, Tibet, and Taiwan. These are omitted
because themajority of the data ismissing.We divide the provinces into
regions based on geographical differences: eastern, central, and western
(Figure 1). The eastern region includes Beijing, Tianjin, Hebei,
Shanghai, Hainan, and other provinces; the central area is composed
of Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, and other
provinces; and the western area is made up of Inner Mongolia,
Chongqing, Guangxi, and other provinces. In addition, the “China
Population and Employment Statistical Yearbook,” the “China Health

and Health Yearbook,” and the “China Statistical Yearbook” provide
data on Chinese economic and social development from 2015 to 2020.
The “China Environmental Protection Bureau Annual Report” and the
“China Environmental Statistics Yearbook” provide data on Chinese air
pollutants.

3.3.2 Variables selection
Economic development stage variables:
Regarding input indicators, with reference to previous studies

(Li et al., 2019a; Li et al., 2019b; He et al., 2020; Li et al., 2020), we
chose to use labor and energy consumption as input indicators.
However, this paper cannot include fixed assets as input indicators
due to limitations in data availability. Regarding output indicators,
we selected the Gross Domestic Product (GDP) as the output
indicator (Sueyoshi et al., 2021).

Link economic development stage and healthy production stage
variables:

The links PM2.5, SO2, and NOx are from (Zhang et al., 2018a;
Lin et al., 2021). The carry-over variable for multiple periods is
government health expenditures, referring to (Zhang et al., 2022).

Health production stage variables:
Regarding input indicators, this paper restricts health inputs to

those that act directly on health (i.e., inputs in healthcare). In line
with the relevant literature (Kawaguchi et al., 2014; Flokou et al.,
2017; Top et al., 2020), we selected the number of health technicians
per 1,000 population and the number of beds per 1,000 population
as input indicators. Regarding output indicators, it is clear from the
literature (Evans et al., 2000; Afonso and Aubyn, 2005; Spinks and
Hollingsworth, 2009; Rajaratnam et al., 2010; Rutherford et al.,
2010) that the main output indicators of population health status
are: average life expectancy, disability-adjusted life expectancy,
maternal mortality, and infant mortality, among others. Due to
the lag in the release of Chinese health statistics, there are many gaps
in current data on average life expectancy and disability-adjusted life
expectancy, which do not reflect the sustained level of healthy
production. Thus, this paper selects the maternal mortality rate
and perinatal mortality rate as output indicators. However, since the
levels of maternal mortality and perinatal mortality do not represent
whether the trend of health output efficiency is positive or not, this
indicator of health output is in inverse form (i.e., a higher value of
the indicator represents a lower level of health output; Hadad et al.,
2013). Consequently, we borrowed from (Sayem et al., 2019) to take
the inverse of the indicator and transform it into maternal survival
rate and perinatal survival rate.

Based on the above analysis, Figure 2 depicts the framework of
the DNSBM model’s intertemporal efficiency measures and
variables.

4 Empirical analysis

4.1 Statistical analysis of relevant variables

Figure 3 shows the statistical analysis of the related variables.
Regarding indicators of economic development, labor force input
grew significantly from 2015 to 2020; therefore, the 6-year trend is
somewhat increasing. Further, average energy consumption did not
rise dramatically, and the highest and lowest levels of energy
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FIGURE 1
Distribution map of western, central, and eastern regions in China.

FIGURE 2
Dynamic and network SBM (DNSBM) model.
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consumption did not vary significantly. The highest GDP has
steadily increased since 2015: the highest value climbed by
379.48 billion yuan from 2015 to 2020, while the lowest value
increased modestly, from 230.332 billion yuan in 2015 to
262.48 billion yuan in 2020. However, the overall trend is still
increasing slowly, from 241.7 billion yuan in 2015 to
300.6 billion yuan in 2020. This demonstrates that China’s
production capacity is improving, and the provinces’ economic
strength is gradually increasing.

Regarding indicators for health production, the average, highest,
and lowest values of health technicians per 1,000 population and
beds per 1,000 population exhibit consistent upward trends and
significant overall increases. There is a fluctuating upward trend in
the average perinatal survival rate, but the maximum value in
2018 was only 0.42, much lower than the other years, and it
returned to 0.55 in 2020. The mean maternal survival rate (per
100,000 pregnancies) increased slightly, from 0.211 in 2015 to
0.254 in 2020; the maximum value decreased from 0.465 in
2015 to 0.495 in 2017, and then to 0.05 in 2020. This suggests
that, while China’s investment in health resources has increased year
after year, it has yet to maximize health outcomes.

Regarding indicators for air pollutants, the average value of
PM2.5 concentration decreased from 41.81 ug/m3 in 2015 to
28.53 ug/m3 in 2020. The average value of SO2 emissions
decreased from 619,527 tons in 2015 to 105,884 tons in 2020. NOx

emissions decreased from 615,250 tons in 2015 to 33,888 tons in 2020.
The maximum values of PM2.5 concentration, SO2 emissions, and
NOx emissions also show a decreasing trend. It is noteworthy that the
difference between the maximum and minimum values of SO2

emissions is the most significant of the pollutants. The above
analysis shows that, in recent years, the Chinese government has
been emphasizing the importance of air pollution control and
investing a tremendous amount of funds in energy conservation
and emission reduction, thus effectively mitigating the public
health hazards of air quality deterioration.

4.2 Empirical results analysis

4.2.1 Analysis of economic development efficiency
We estimated the economic development efficiency of

30 provinces from 2015 to 2020 using the DNSBM model,
including labor and energy consumption as input indicators
and GDP as an output indicator. The results (Table 1;
Figure 4A) show that Beijing, Shanghai, and Jiangsu had the
highest average efficiency of economic development; provinces
such as Tianjin, Zhejiang, and Fujian had an average efficiency
of economic development of around 0.9, which was significantly
higher than that of other provinces. Provinces such as
Ningxia, Qinghai, Anhui, and Hubei had an economic
development efficiency of 0.4–0.8. Xinjiang had the lowest
average economic development efficiency of 0.34, followed by
Gansu at 0.391, showing that the region requires further
improvement.

There are also important regional differences. In the east
(Figure 4B), the efficiency of economic development in Beijing,
Shanghai, Jiangsu, and Guangdong was always equal to 1,
suggesting that economic resources in these provinces are
adequately employed. Hainan’s efficiency was equal to 1 in
all previous periods, but declined significantly to around
0.5 in 2020, showing that the high efficiency of economic
resource usage in the first 5 years did not continue. Hebei’s
trend of changing economic development efficiency is similar to
Liaoning’s, where efficiency has declined for 6 years, with
Liaoning reaching a low of 0.286 in 2020. Tianjin’s and
Shandong’s economic development efficiency values were
equal to 1 in 2015–2018 but dropped to around 0.7 in
2019–2020. In the central region (Figure 4C), Jiangxi had the
highest economic development efficiency, with a stable
efficiency value of 1 in 2015–2019, but it dropped sharply to
about 0.4 in 2020. Hunan had the greatest swing, with an
economic development efficiency of 1 in 2016–2018 that fell

FIGURE 3
Statistical description of variables from 2015 to 2020. (A) Labor, (B) Energy consumption, (C) GDP, (D) Health technicians per 1,000 population, (E)
PM2.5, (F) Hospital Beds per 1,000 population, (G) Maternal Survival Rate (1 per 100,000), (H) Perinatal Survival Rate (1 per 100,000), (I) NOx, (J) SO2.

Frontiers in Environmental Science frontiersin.org07

Ye and Tao 10.3389/fenvs.2023.1205712

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1205712


to 0.495 in 2020. Jilin’s and Heilongjiang’s economic
development efficiency values steadily declined over the last
6 years and are projected to decrease to around 0.25 by 2020. In
the western region (Figure 4D), during the study period, the
economic development efficiency of Yunnan reached 1. Except
for Guangxi, Chongqing, Sichuan, and Shaanxi, most remaining
provinces were below 0.6 in 2015–2020. For example, Xinjiang
was below 0.4 in four out of 6 years studied. Gansu’s efficiency

was below 0.4 in three of the last 6 years, and it fell to a
minimum of 0.217 in 2020.

4.2.2 Analysis of healthy production efficiency
We estimated the health production efficiency of 30 provinces from

2015 to 2020 by applying the DNSBM model, using health technicians
per 1,000 population and beds per 1,000 population as input indicators
andmaternal survival rate and perinatal survival rate as output indicators.

TABLE 1 Economic development efficiency, by province and region, 2015–2020.

Region DMU 2015 2016 2017 2018 2019 2020 2015–2020

Eastern

Beijing 1 1 1 1 1 1 1

Guangdong 1 1 1 1 1 1 1

Shanghai 1 1 1 1 1 1 1

Jiangsu 1 1 1 1 1 1 1

Hainan 1 1 1 1 1 0.530 0.922

Tianjin 1 1 1 1 0.754 0.760 0.919

Shandong 1 1 1 1 0.645 0.765 0.902

Zhejiang 0.931 0.959 0.940 0.912 0.841 1.000 0.931

Fujian 0.966 0.940 0.931 0.956 0.978 0.833 0.934

Liaoning 0.859 0.604 0.624 0.618 0.368 0.286 0.560

Hebei 0.768 0.706 0.670 0.689 0.361 0.359 0.592

Central

Jiangxi 1 1 1 1 1 0.465 0.911

Hunan 0.932 1 1 1 0.682 0.495 0.852

Hubei 0.885 0.920 0.914 0.909 0.790 0.562 0.830

Jilin 0.880 0.842 0.812 0.767 0.387 0.285 0.662

Shaanxi 0.789 0.707 0.720 0.803 0.515 0.455 0.665

Anhui 0.816 0.790 0.772 0.815 0.668 0.521 0.730

Henan 0.843 0.822 0.826 0.840 0.688 0.681 0.783

Heilongjiang 0.768 0.665 0.620 0.630 0.333 0.257 0.546

Western

Yunnan 1 1 1 1 1 1 1

Guangxi 0.863 0.768 0.757 0.785 0.465 0.305 0.657

Shaanxi 0.789 0.707 0.720 0.803 0.515 0.455 0.665

Chongqing 0.781 0.751 0.734 0.720 0.623 0.504 0.686

Sichuan 0.745 0.756 0.904 0.812 0.574 0.570 0.727

Inner Mongolia 0.689 0.613 0.443 0.477 0.351 0.310 0.481

Qinghai 0.635 0.654 0.636 0.527 0.430 0.352 0.539

Gansu 0.501 0.447 0.398 0.460 0.321 0.217 0.391

Guizhou 0.499 0.524 0.544 0.609 0.354 0.223 0.459

Ningxia 0.463 0.456 0.402 0.471 0.419 0.465 0.446

Xinjiang 0.316 0.419 0.353 0.411 0.295 0.248 0.340

Geometric mean 0.813 0.793 0.781 0.790 0.638 0.559 0.729

Std. Dev. 0.198 0.203 0.221 0.205 0.266 0.276 0.199
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The study results (Table 2; Figure 5A) show that only Beijing, Shanghai,
Guangdong, and Jiangxi had an average efficiency of 1 in health
production. This demonstrates that the healthcare services provided
in these places are of outstanding quality and that the health production
scale effect may be fulfilled. In contrast, health production efficiency in
other provinces is generally poor; in different years, some provinces were
severely inefficient, falling below 0.3. This indicates the region’s failure to
integrate economic development with healthy production and the need
for significant improvements.

There are also important regional differences. In the eastern region
(Figure 5B), health production efficiencywas generally higher in the east
than in the midwest. The fact that some provinces’ health production
efficiency was comparable to or even lower than that of the midwest
should be emphasized. For example, Liaoning’s health production
efficiency has been consistent, at roughly 0.4 during the last 6 years.
The health production inHainan andTianjin remained equal to 1 in the
early period, but exhibited a slight fall in 2019–2020. Zhejiang is the
most volatile province, with healthy production efficiency remaining
around 0.6 in 2015–2016 but rising to 1 in 2020. In the central region

(Figure 5C), Jiangxi has the most efficient health production. Shanxi,
Heilongjiang, and Jilin have low health production efficiency, which
remained between 0.4 and 0.5 for the past 6 years. In Henan, health
production efficiency decreased over the first 5 years but peaked at
0.741 in 2020. In the western region (Figure 5D), Yunnan had the
highest health production efficiency, reaching over 0.6; Xinjiang had the
lowest value of 0.235. The efficiency of the remaining provinces, such as
Inner Mongolia, Gansu, and Qinghai, was below 0.4. Ningxia was the
most volatile, with healthy production efficiency falling below 0.4 in
2015–2018, but reaching a peak of around 0.7 in 2019–2020.

4.2.3 Analysis of overall efficiency
We additionally estimated the overall efficiency of the

30 provinces for the period 2015–2020 using the DNSBM model.
Table 3 and Figure 6 display the calculated outcomes.

The findings reveal significant variation in the overall efficiency of the
provinces. For example, the last 6 years have seen overall efficiency equal
to 1 in Beijing, Shanghai, and Guangdong; these provinces have the
highest resource utilization efficiency in the study. Zhejiang’s overall

FIGURE 4
Economic development efficiency by province and region from 2015 to 2020. (A) Average economic development efficiency (geometric mean) in
30 provinces of China from 2015 to 2020. (B) Economic development efficiency in 11 provinces of the eastern region from 2015 to 2020. (C) Economic
development efficiency in 8 provinces of the central region from 2015 to 2020. (D) Economic development efficiency in 11 provinces of the western
region from 2015 to 2020.
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efficiencywas less than 1 in 2015–2019 but rose to 1 in 2020; Jiangxi’s and
Hainan’s overall efficiency values were 1 in 2015–2019 but fell to around
0.74 in 2020. Tianjin, Jiangsu, Yunnan, and Shandong performed well in
terms of overall efficiency among the inefficient provinces; with the
highest efficiency of less than 0.32 during the past 6 years, Xinjiang has the
lowest performance. The efficiency of Liaoning, Jilin, and Guangxi was
between 0.5 and 0.7, while that of Shanxi, Heilongjiang, Inner Mongolia,
Guizhou, Qinghai, and Ningxia was around 0.4. As a result, these
provinces must focus on overall efficiency improvement.

Over time, different trends in overall efficiency emerged among
the provinces. For example, the overall efficiency of four
provinces—Zhejiang, Fujian, Yunnan, and Ningxia—consistently
climbed. Among them, Zhejiang experienced the largest increase,
from 0.794 in 2015 to 1 in 2020, followed by Ningxia, from 0.388 in
2015 to 0.595 in 2020. Yet, the overall efficiency of the remaining
26 provinces decreased. Among them, Jiangxi and Liaoning had
the largest decline, from 1 to 0.668, respectively, in 2015 to
0.732 and 0.4 in 2020. According to these results, we discovered

TABLE 2 Healthy production efficiency, by province and region, 2015–2020.

Region DMU 2015 2016 2017 2018 2019 2020 2015–2020

Eastern

Beijing 1 1 1 1 1 1 1

Shanghai 1 1 1 1 1 1 1

Guangdong 1 1 1 1 1 1 1

Hainan 1 1 1 1 1 0.973 0.996

Tianjin 1 1 1 1 0.890 0.834 0.954

Shandong 1 1 0.932 0.950 0.628 0.735 0.874

Jiangsu 1 1 0.881 0.955 0.986 1.000 0.970

Hebei 0.810 0.781 0.857 0.800 0.742 0.792 0.797

Zhejiang 0.657 0.659 0.620 0.688 0.857 1.000 0.747

Fujian 0.604 0.623 0.641 0.709 0.666 0.816 0.677

Liaoning 0.477 0.473 0.383 0.431 0.421 0.514 0.450

Central

Jiangxi 1 1 1 1 1 1 1

Anhui 0.727 0.734 0.759 0.781 0.812 0.791 0.767

Henan 0.731 0.715 0.684 0.640 0.618 0.741 0.688

Hubei 0.549 0.534 0.552 0.598 0.602 0.658 0.582

Hunan 0.543 0.672 0.768 0.586 0.465 0.586 0.603

Shanxi 0.451 0.381 0.414 0.408 0.427 0.496 0.430

Heilongjiang 0.394 0.415 0.431 0.414 0.394 0.407 0.409

Jilin 0.377 0.384 0.406 0.371 0.375 0.489 0.400

Western

Yunnan 0.641 1 0.738 0.818 0.917 0.823 0.823

Sichuan 0.608 0.615 0.660 0.644 0.616 0.627 0.628

Chongqing 0.579 0.576 0.536 0.590 0.512 0.625 0.570

Guizhou 0.574 0.455 0.449 0.373 0.385 0.409 0.441

Shaanxi 0.522 0.530 0.549 0.530 0.556 0.665 0.559

Guangxi 0.426 0.484 0.423 0.437 0.396 0.651 0.470

Inner Mongolia 0.467 0.420 0.420 0.420 0.437 0.406 0.428

Gansu 0.384 0.357 0.336 0.320 0.311 0.438 0.358

Ningxia 0.313 0.261 0.306 0.417 0.697 0.725 0.453

Qinghai 0.344 0.326 0.315 0.458 0.453 0.495 0.399

Xinjiang 0.262 0.203 0.170 0.225 0.244 0.303 0.235

Geometric mean 0.648 0.653 0.641 0.652 0.647 0.700 0.657

Std. Dev. 0.249 0.266 0.257 0.250 0.245 0.276 0.230
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that there are more provinces with falling efficiency values than
with growing efficiency values. This demonstrates that most
provinces must perform better in terms of economic
development and health production.

4.2.4 Comparative analysis of overall efficiency and
two-stage efficiency

As shown in Figure 7A, economic development efficiency is
the most crucial component of China’s total efficiency
performance, followed by health production efficiency.
Figure 7B displays some trends in the data. Over the period
2015–2020, the decline in the efficiency of economic
development led to a drop in overall efficiency, while the rise
in the efficiency of health production was the main contributor to
mitigating the decline in overall efficiency. Specifically, economic
development efficiency exhibited negative growth in all years
except 2017–2018. In contrast, health productivity efficiency
showed positive growth in all years except 2016–2017 and
2018–2019, which showed negative growth.

The Kruskal–Wallis test was used to analyze the efficiency
differences across the eastern, central, and western regions, and
the p-values were compared with the confidence level, α, which
was set at 0.01, 0.05, and 0.10. Table 4 provides detailed test
results. Most of the p-values in the various phases from 2015 to
2020 are less than 0.05, and the validation findings are very
significant, showing substantial variation in efficiency across the
east, central, and west. Specifically, regarding overall efficiency
(Figure 8A), the eastern region began from a relatively high base,
and it extended its advantage over the central and western
regions during the study period. This indicates that the east
outperformed the west and central regions regarding economic
development and health production. It is well known that
unbalanced regional development has become a growing
concern in China. However, the Chinese government has tried
to promote the development of the central and western regions
by introducing preferential policies and investing significant
resources to solve this problem. Still, our calculations indicate
that the midwest has continued to lag in terms of efficiency

FIGURE 5
Healthy production efficiency by province and region from 2015 to 2020. (A) Average healthy production efficiency (geometric mean) in 30
provinces of China from 2015 to 2020. (B)Healthy production efficiency in 11 provinces of the eastern region from 2015 to 2020. (C)Healthy production
efficiency in 8 provinces of the central region from 2015 to 2020. (D) Healthy production efficiency in 11 provinces of the western region from 2015 to
2020.
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levels. These gaps have widened in recent years and may
continue to do so in the future. Furthermore, economic
development efficiency (Figure 8B) decreased in all three
regions. The east began with a relatively high standard among
the three regions, suggesting that it performed more efficiently,
using its economic output for economic development. According
to the findings, the eastern region had better economic

development efficiency in 2020, an advantage that appears to
be expanding in the years ahead. Despite the fluctuating
downward trend in health production efficiency in the three
significant regions around 2017 (Figure 8C), it still improved at
the end of the observation period compared to 2015. Finally, the
eastern region’s health production efficiency is higher than the
national average; as evidence of the “central collapse”

TABLE 3 Overall efficiency, by province and region, 2015–2020.

Region DMU 2015 2016 2017 2018 2019 2020 2015–2020

Eastern

Beijing 1 1 1 1 1 1 1

Guangdong 1 1 1 1 1 1 1

Shanghai 1 1 1 1 1 1 1

Hainan 1 1 1 1 1 0.751 0.959

Tianjin 1 1 1 1 0.822 0.797 0.937

Shandong 1 1 0.966 0.975 0.637 0.750 0.888

Jiangsu 1 1 0.941 0.977 0.993 1 0.985

Hebei 0.789 0.743 0.764 0.745 0.551 0.575 0.695

Zhejiang 0.794 0.809 0.780 0.800 0.849 1 0.839

Fujian 0.785 0.781 0.786 0.832 0.822 0.824 0.805

Liaoning 0.668 0.539 0.504 0.524 0.394 0.400 0.505

Central

Jiangxi 1 1 1 1 1 0.732 0.955

Henan 0.787 0.769 0.755 0.740 0.653 0.711 0.736

Anhui 0.771 0.762 0.766 0.798 0.740 0.656 0.749

Hunan 0.738 0.836 0.884 0.793 0.573 0.540 0.727

Hubei 0.717 0.727 0.733 0.753 0.696 0.610 0.706

Jilin 0.629 0.613 0.609 0.569 0.381 0.387 0.531

Heilongjiang 0.581 0.540 0.525 0.522 0.364 0.332 0.477

Shanxi 0.450 0.409 0.427 0.445 0.367 0.406 0.417

Western

Yunnan 0.820 1 0.869 0.909 0.958 0.911 0.911

Chongqing 0.680 0.664 0.635 0.655 0.567 0.565 0.628

Sichuan 0.677 0.685 0.782 0.728 0.595 0.599 0.678

Guangxi 0.645 0.626 0.590 0.611 0.431 0.478 0.564

Shaanxi 0.655 0.618 0.635 0.667 0.536 0.560 0.612

Inner Mongolia 0.578 0.516 0.431 0.449 0.394 0.358 0.454

Guizhou 0.536 0.489 0.496 0.491 0.369 0.316 0.450

Gansu 0.442 0.402 0.367 0.390 0.316 0.328 0.374

Qinghai 0.490 0.49 0.475 0.493 0.442 0.424 0.469

Ningxia 0.388 0.358 0.354 0.444 0.558 0.595 0.450

Xinjiang 0.289 0.311 0.262 0.318 0.270 0.276 0.288

Geometric mean 0.730 0.723 0.711 0.721 0.643 0.629 0.693

Std. Dev. 0.208 0.226 0.229 0.219 0.247 0.235 0.212
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FIGURE 6
Overall efficiency by province and region from 2015 to 2020. (A) Average overall efficiency (geometric mean) in 30 provinces of China from 2015 to
2020. (B)Overall efficiency in 11 provinces of the eastern region from 2015 to 2020. (C)Overall efficiency in 8 provinces of the central region from 2015 to
2020. (D) Overall efficiency in 11 provinces of the western region from 2015 to 2020.

FIGURE 7
The performance of efficiency in China during the period of 2015–2020. (A) The performance of Overall Efficiency (OE), Economic Development
Efficiency (EDE), and Healthy Production Efficiency (HPE) in China during the period of 2015–2020. (B) The performance fluctuation of Economic
Development Efficiency (EDE), and Healthy Production Efficiency (HPE) in China during the period of 2015–2010.
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phenomenon, the values for the central and western areas are
lower than the national average.

4.2.5 Analysis of air pollution control efficiency
This study also evaluated the air pollution control capacity of

30 Chinese provinces using the DNSBM model for 2015–2020. The
results reveal that China’s average PM2.5, SO2, and NOx control
efficiency are 0.786, 0.710, and 0.718, respectively; these are relatively
low and have considerable room for improvement. Specifically,
regarding PM2.5 (Figure 9A), 13 provinces have a governance
efficiency higher than 0.9, accounting for 43.3% of the total. The
provinces with the lowest efficiency are Shanxi, Xinjiang, Gansu,
and Ningxia, with governance efficiencies below 0.5. Regarding SO2

(Figure 9B), ten provinces have a governance efficiency higher than 0.9,
accounting for 33.3% of the total. The eight provinces with the lowest
efficiency are Shanxi, Inner Mongolia, Gansu, Liaoning, Chongqing,
Guizhou, Xinjiang, andNingxia, with governance efficiencies below 0.5.
Turning toNOx (Figure 9C), ten provinces have a governance efficiency
higher than 0.9, accounting for 33.3% of the total. The eight provinces
with the lowest efficiency are Hebei, Shanxi, Inner Mongolia,
Heilongjiang, Anhui, Liaoning, Xinjiang, and Ningxia, all with
governance efficiencies below 0.5.

Considering these dramatic regional differences, China’s
potential to reduce air pollution is enormous. If these
inefficient provinces are given the management capacity and
cutting-edge technology possessed by the more efficient
provinces, they should be able to achieve this goal. In
addition, as shown in Table 5, most of the p-values for air

pollutants from 2015 to 2020 are less than 0.05, and the
validation findings are very significant, showing substantial
variation in the air pollution control efficiency across the
eastern, central, and western provinces. Figure 9 makes it clear
that all of the high-efficiency provinces are in the developed
eastern region. Five of the eight provinces that are inefficient are
located in the west, while three are located in the center of the
country. It is evident that regional economic development is
positively connected with air pollution control. Thus, economic
growth could be essential in improving the effectiveness of
regional air pollution control in China.

Next, we applied the DNSBM model for each inefficient
province to capture their air pollution reduction targets.
However, when we examined the data we discovered that
these provinces are struggling to meet the DNSBM model-
calculated targets because of their significant differences from
the efficient provinces regarding economic development,
management capability, and technological level. As a result,
the DNSBM model’s air pollution reduction targets in this
study are considered long-term goals, as they are not
achievable in the short term for inefficient provinces. To
further demonstrate the point, Table 6 shows the actual
and target values for each province in China and the
improvement in PM2.5 concentrations, SO2 emissions, and
NOx emissions.

As seen in Table 6, Beijing, Shanghai, Jiangsu, Jiangxi,
Guangdong, and Yunnan have zero air pollution reduction
targets and are benchmarks for other inefficient Chinese

TABLE 4 Kruskal–Wallis test of all-stage efficiencies for the eastern, central, and western regions, 2015–2020.

Stages 2015 2016 2017 2018 2019 2020 2015–2020

Economic development 14.334*** 11.156** 10.788** 11.599** 8.347 9.521* 11.98**

Healthy production 13.946*** 12.206** 12.173** 12.931** 10.52** 12.931** 12.789**

Overall phase 15.985*** 12.706*** 12.908** 14.177*** 9.774* 12.521** 13.886***

Notes: *p < 0.1; **p < 0.05; ***p < .001.

FIGURE 8
Comparison of different stage efficiency in the three regions. (A) Comparison of overall efficiency in China and three regions from 2015 to 2020. (B)
Comparison of economic development efficiency in China and the three regions from 2015 to 2020. (C) Comparison of healthy production efficiency in
China and the three regions from 2015 to 2020.
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provinces. For low-efficiency provinces to achieve high efficiency
(e.g., Hubei, with PM2.5, SO2, and NOx control efficiencies of 0.694,
0.830, and 0.860, respectively), their PM2.5 concentrations should
be reduced from 39.16 ug/m3 to 27.18 ug/m3 (30.59%
improvement), SO2 emissions from 212,946.50 tons to
176,847.42 tons (16.95% improvement), and NOx emissions from
420,771.00 tons to 361,894.87 tons (13.99% improvement).
Meanwhile, Hunan, with PM2.5, SO2, and NOx control efficiency
values of 0.843, 0.695, and 0.894, respectively, should reduce
PM2.5 concentrations from 36.17 ug/m3 to 30.48 ug/m3 (15.74%
improvement), SO2 emissions from 283,944.33 tons to

197,406.04 tons (30.48% improvement), and NOx emissions from
414,936 tons to 371,080.54 tons (10.57% improvement). For these
two higher-ranked provinces, these air pollution reduction goals are
immediately realizable. Nevertheless, we also discovered that it is
difficult to meet the targets for some less efficient regions in a single
step or within a short period of time. For example, Xinjiang’s PM2.5,
SO2, and NOx control efficiencies are 0.394, 0.301, and 0.334,
respectively, and it must reduce these values by 60.55%, 69.87%,
and 66.61%, respectively. Thus, for these inefficient provinces, these
goals cannot be achieved overnight or even within a short time, and
should be considered long-term goals.

FIGURE 9
Regional disparities of air pollution efficiency in China. (A) Average control efficiency (geometric mean) of PM2.5 in China from 2015 to 2020. (B)
Average control efficiency (geometric mean) of SO2 in China from 2015 to 2020. (C) Average control efficiency (geometric mean) of NOx in China from
2015 to 2020.

TABLE 5 Kruskal–Wallis test of air pollutant control efficiency for the eastern, central, and western regions, 2015–2020.

Air pollutant 2015 2016 2017 2018 2019 2020 2015–2020

PM2.5 8.841 7.256* 6.429** 10.546** 4.809* 2.823 7.236**

SO2 10.175** 3.709 5.96* 8.544* 7.776** 6.288* 9.176**

NOx 8.881** 6.764** 6.158** 8.128** 5.065* 4.815* 7.228**

Notes: *p < 0.10; **p < 0.05; ***p < 0.01.
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TABLE 6 Long-term air pollution reduction targets for 30 Chinese provinces, 2015–2020.

Provinces PM2.5 concentration (ug/m3) SO2 emissions (tons) NOx emissions (tons)

Actual avg Target avg IS SE Actual avg Target avg IS SE Actual avg Target avg IS SE

Beijing 44.85 44.85 0 1 16,510 16,510 0 1 11,4693.5 114,693.5 0 1

Tianjin 58.72 53.86 8.28% 0.917 47,474 45,309.28 4.56% 0.954 14,1292.67 127,835.58 9.52% 0.905

Hebei 46.57 32.61 29.98% 0.700 480,858.83 286,794.57 40.36% 0.596 1,131,395.5 480,408.26 57.54% 0.425

Shanxi 40.18 19.49 51.50% 0.485 438,134.17 154,793.69 64.67% 0.353 681,323.17 228,315.09 66.49% 0.335

Inner Mongolia 24.31 19.81 18.50% 0.815 528,042.67 166,884.79 68.40% 0.316 666,539.67 240,882.69 63.86% 0.361

Liaoning 37.10 25.53 31.18% 0.688 419,938.83 170,490.93 59.40% 0.406 719,311.17 289,212.26 59.79% 0.402

Jilin 32.64 17.55 46.23% 0.538 147,655.17 87,991.02 40.41% 0.596 290,308.00 152,834.53 47.35% 0.526

Heilongjiang 25.53 17.96 29.63% 0.704 213,818.83 130,556.23 38.94% 0.611 432,120.00 198,933.40 53.96% 0.460

Shanghai 37.84 37.84 0 1 45,618.33 45,618.33 0 1 184,842.83 184,842.83 0 1

Jiangsu 46.52 46.52 0 1 418,370.67 418,370.67 0 1 889,290.5 889,290.5 0 1

Zhejiang 30.65 30.60 0.17% 0.998 166,522.00 165,521.63 0.60% 0.994 438,793.83 436,427.92 0.54% 0.995

Anhui 43.02 27.00 37.25% 0.628 228,295.33 166,583.41 27.03% 0.730 605,136.00 298,045.78 50.75% 0.493

Fujian 23.91 23.28 2.64% 0.974 168,626.00 144,301.35 14.43% 0.856 307,619.33 307,077.62 0.02% 0.998

Jiangxi 31.41 31.41 0 1 313,731.67 313,731.67 0 1 412,366.83 412,366.83 0 1

Shandong 54.58 50.64 7.21% 0.928 581,298.67 536,500.86 7.71% 0.923 1,149,989.67 101,2525.75 11.95% 0.880

Henan 52.73 32.78 37.83% 0.622 327,389.67 244,922.58 25.19% 0.748 764,396.00 473,183.18 38.10% 0.619

Hubei 39.16 27.18 30.59% 0.694 212,946.5 176,847.42 16.95% 0.830 420,771 361,894.87 13.99% 0.860

Hunan 36.17 30.48 15.74% 0.843 283,944.33 197,406.04 30.48% 0.695 414,936.00 371,080.54 10.57% 0.894

Guangdong 28.01 28.01 0 1 251,574.67 251,574.67 0 1 763,848.33 763,848.33 0 1

Guangxi 30.84 18.73 39.28% 0.607 157,986.00 129,708.91 17.90% 0.821 358,761.5 217,189.54 39.46% 0.605

Hainan 17.89 17.89 0 1 12,696.33 12,664.02 0.25% 0.997 56,540.00 56,433.83 0.19% 0.998

Chongqing 34.47 23.48 31.88% 0.681 163,623.00 49,381.43 69.82% 0.302 210,400.83 142,172.38 32.43% 0.676

Sichuan 20.93 20.91 0.12% 0.999 298,613.33 223,657.89 25.10% 0.749 498,086.17 419,071.11 15.86% 0.841

Guizhou 28.46 18.91 33.56% 0.664 383,694.00 162,170.72 57.73% 0.423 303,766.33 196,671.46 35.26% 0.647

Yunnan 23.55 23.55 0 1 325,885.5 325,885.50 0 1 369,709.33 369,709.33 0 1

Shaanxi 32.94 25.87 21.47% 0.785 259,205.33 175,230.56 32.40% 0.676 385,182.33 264,863.02 31.24% 0.688

(Continued on following page)
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5 Discussion

In recent years, researchers from a variety of disciplines have
started investigating the intersections among economic
development, air pollution, and human health (Cao and Ramirez,
2020; Zhou and Li, 2021), but few studies have examined the
combined effects of these factors from an efficiency standpoint.
Thus, this study uses a DNSBM model to assess the efficiency of
economic development, health production, and air pollution control
in 30 Chinese provinces from 2015 to 2020. This approach avoids
the shortcomings of static analysis, includes carryover effects over
time, and accounts for regional differences. The study’s findings
provide government-targeted recommendations for promoting
sustainable economic development while strengthening health
promotion and mitigating air pollution. The principal findings
are as follows.

First, at the national level, the overall efficiency value of the two
stages, from economic production input to health output, in China
from 2015 to 2020 is 0.693, suggesting much room for improvement.
This result is mainly caused by the failure of coordinated and
balanced economic development and healthy production, similar
to the conclusions of other studies (Shi et al., 2021). Specifically, the
average annual efficiency of economic development (0.729) is
significantly higher than the average annual efficiency of health
production (0.657). Thus, greater efforts are required to increase the
effectiveness of healthcare resource utilization. Going further, the
overall efficiency values exhibit a downward trend, which is
primarily brought on by the decline in economic development
efficiency. In contrast, the rise in the efficiency of health
production is the main contributor to mitigating the overall
efficiency decline. This indicates that improving the efficiency of
health production, rather than the efficiency of economic
development, should be the main priority when working to
improve overall efficiency, which is similar to the findings of
other studies (Wang and Feng, 2015). At the provincial level, the
efficiency of economic development in Beijing, Guangdong, and
Shanghai is equivalent to the efficiency of healthy production, each
with a value of 1. In the other provinces, the efficiency of the
economic development phase outweighs the efficiency of the health
production phase. One possible reason is that, as China’s economic
reforms gained momentum and local governments competed for
economic growth while being given more autonomy, the
government prioritized economic development over public
services such as healthcare (Audibert et al., 2013). Therefore,
restricted public funding and rapidly rising healthcare costs have
hampered the healthy development of healthcare services (Dong,
2009). On the other hand, due to insufficient medical and healthcare
resource management in China, scarce health resources are not
being allocated and utilized rationally. In other words, these health
resources have yet to be invested to maximize health outcomes,
resulting in a decline in health productivity and an increase in the
population’s health burden (Zhang et al., 2017). At the same time,
people’s bad health can contribute to their already precarious
economic circumstances, limiting productivity, pushing them into
poverty (Liu and Griffiths, 2011), and eventually hampering the
country’s long-term development.

Second, research shows that the regional differentiation of
China’s economic development and health production efficiencyTA
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is apparent, which is the same as the results of Zhang et al.
(2018b). Specifically, the eastern regions of China, such as Beijing
and Guangdong, have economic development and health
production efficiency values higher than 0.9. China’s eastern
region is the most developed; greater input and output
efficiency in the east is strongly supported by the region’s
higher level of economic development and superior
endowment of health resources (Yan et al., 2021). Even
though these areas still have some air pollution issues that
affect residents’ health, the beneficial impacts of higher
economic levels and more healthcare resources on population
health exceed the negative effects (Lu et al., 2020). As a result,
these areas are almost certain to sustain a high degree of
economic development and healthy output. The central and
western areas’ (e.g., Shanxi, Xinjiang, Gansu, and Ningxia
provinces) economic development and health production
efficiency are low, with values less than 0.4. On the one hand,
the relatively weak industrial base and imperfect industrial
structure in these areas means that they lack appropriate
conditions for making full use of input variables, such as
energy and labor, resulting in lower economic development
efficiency in these regions. On the other hand, some of the
industrial businesses eliminated from the eastern provinces
have shifted to the central and western regions, resulting in
increased energy consumption and pollutant emissions that
pose major health risks to local populations (Xu and Wang,
2021). Furthermore, there is an unequal distribution of medical
resources in China such that high-quality medical resources are
increasingly clustered in the east (Zhang et al., 2021). Inadequate
investment in high-quality medical equipment and health
professionals has occurred in the central and western regions
due to a lack of financial resources for health (Jiang et al., 2021),
thus limiting the efficiency of health production in this area.

Finally, the study shows that, from 2015 to 2020, China’s average
PM2.5, SO2, and NOx control efficiency values are 0.786, 0.710, and
0.718, respectively; these are relatively low and have considerable room
for improvement, similar to the conclusions of other studies (Wang
et al., 2020). At the same time, the efficiency of air pollution control
varies greatly among Chinese regions due to the disparities in economic
development levels, which is consistent with the findings of Wang et al.
(2019). The provinces with high efficiency (equal to 1) in PM2.5, SO2,
and NOx control, such as Beijing, Guangdong, and Jiangsu, are in the
economically developed eastern region, and they all achieved a zero air
pollution reduction target, which is a benchmark for inefficient Chinese
provinces. The provinces with the lowest efficiency (values less than 0.4)
include Xinjiang, Gansu, Shanxi, and Ningxia; all are located in the
central and western regions with more backward economic
development, and all have air pollution reduction targets greater
than 50%. This makes it necessary to focus on air pollution in these
regions to achieve ideal air quality and a green ecological environment.
Furthermore, the data on China’s air pollution control show noticeable
regional differences, with the eastern provinces typically having higher
air pollution control efficiency than the central and western provinces,
which is similar to the findings of Liu andDong (2021b). It is significant
to note that the enormous gap between these less efficient provinces and
the more efficient ones in terms of economic development,
management capacity, and technical level of air pollution treatment
makes it difficult to achieve the air pollution reduction goals calculated

with the DNSBM model in the short term. Therefore, the air pollution
reduction targets calculated using the DNSBMmodel for the inefficient
provinces mentioned above should instead be viewed as long-term
targets.

6 Conclusion

With China’s rapid economic development, the threats to
public health from environmental pollution, ecological balance
disruption, and air quality degradation have gradually become
crucial elements limiting socioeconomic sustainability. However,
most previous studies have concentrated on the link between
environmental quality and economic growth, or the impact of air
pollution on public health; few have engaged in comprehensive
research on the links among these three variables. Thus, this
study evaluates the dynamic association between economic
development, air pollution, and health production from an
efficiency perspective using the DNSBM model, and the
following conclusions are offered.

First, at the national level, the average overall efficiency value is
0.693, which is low and has much room for improvement. Economic
development efficiency (0.729) is higher than health productivity
efficiency (0.657), which indicates that China worked effectively on
economic development but not as well on health during 2015–2020.
In terms of trends in efficiency, growth in health production
efficiency has been the main contributor to overall efficiency
gains over the study period, while the decline in economic
development efficiency has been the main obstacle.

Second, at the provincial level, efficiency varies widely among
the 30 provinces, and this difference is statistically significant.
Regarding individual differences in economic development and
health production efficiency, Beijing, Jiangxi, Shanghai, and
Jiangsu have the highest efficiency values, over 0.9. In contrast,
Xinjiang, Inner Mongolia, Gansu, and Qinghai have the lowest
efficiency, with values less than 0.4. Regarding individual
differences in overall efficiency, Beijing, Shanghai, and
Guangdong have the highest efficiency, equal to 1, while Xinjiang
has the lowest efficiency of less than 0.35. Moreover, the efficiency of
the three regions demonstrated distinct spatial differences. The
eastern region has the highest efficiency, followed by the central
region, and the western region has the lowest.

Finally, in controlling air pollutants, from 2015 to 2020, China’s
average PM2.5, SO2, and NOx control efficiency values are 0.786, 0.710,
and 0.718, respectively; these results are poor and could be greatly
improved.Moreover, the different levels of economic development have
led to large differences in the efficiency of air pollution control among
regions in China. The air pollution control capacity of the developed
eastern provinces (e.g., Beijing, Shanghai, and Guangdong) is generally
higher than that of the more economically underdeveloped central and
western regions (e.g., Xinjiang, Gansu, Shanxi, and Ningxia). In
addition, the air pollution reduction targets achieved by applying the
DNSBMmodel for inefficient provinces should be viewed as long-term
rather than short-term targets due to a significant gap between the
inefficient and highly efficient provinces regarding economic
development, management capability, and pollution technology level.

The following recommendations for policy are based on the
findings of this study.
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First and foremost, the central government must adhere to the
requirements of sustainable development, abandon previous
dualistic development thinking, and enhance economic
development efficiency while ensuring the excellent effect of
healthy output. Second, the state should improve the economic
and institutional environments, which influence healthcare system
efficiency. Regarding the economic development environment, the
scope of public health expenditures should be extended, as should
the percentage of government spending and GDP, so that the growth
rate keeps pace with, or even exceeds, economic growth. Regarding
institutional environment development, the emphasis is on
restraining investment preferences in production and boosting
the weight of public services, particularly health system quality,
in government evaluation. Finally, local governments should focus
on improving the management and allocation of health resources,
rationally distributing limited medical and health resources, and
improving resource utilization rates, thereby improving residents’
health and promoting the coordinated development of the economy
and health production.

To address the significant efficiency differences among provinces
and regions regarding economic development, the central government
should strike a balance between different areas and speed up the
execution of three major regional development initiatives. It should
narrow the efficiency gap in their economic development by rationally
allocating regional resource factors, industrial contacts, and
complementary advantages. Regarding health production, the central
government should continue to promote the “Rise of Central China”
and “Western Development” initiatives and boost policy support and
financial investment in the west and central healthcare systems. On the
other hand, local governments should build an evaluation mechanism,
with efficiency as an indicator, and establish mechanisms to support
health resources in backward areas, such as health resource sharing and
medical association construction. This would facilitate the distribution
of health resources across regions and improve China’s uneven health
production development.

Based on the structure of energy consumption, meteorological
characteristics, and the level of industrialization in each province,
the central government ought to establish targeted policies and
measures to mitigate air pollution. Second, local governments should
capitalize on their comparative advantages and strengthen regional
cooperation. For provinces with a high overall level of air pollutant
treatment efficiency, such as Beijing and Shanghai, a “two-point
synergistic approach” to treatment should be adopted. On the one
hand, it should provide advanced air purification technology and
business management experience and generously help reduce air
pollution in the central and western provinces. On the other hand,
it should coordinate scientific and technological resources, accelerate
the development of energy and environmental technology, and play a
significant role in improving the current coal-based energy structure.
Most regions with low air pollutant management efficiency, such as
Xinjiang and Gansu, should optimize and adjust their industrial
structure as a core, gradually changing the energy consumption
structure of coal, steel, and other high-energy-consumption and
high-pollution resources. They should also establish green corridors
and clean technology industrial parks in conjunction with China’s “One
Belt, One Road” initiative, cultivate and develop new energy and new
materials, and eventually realize a circular economy and healthy
development model. Finally, considering the wide disparities in

efficiency levels between regions, particularly the central and western
provinces, selecting the best benchmark province for learning based on
each province’s unique characteristics, setting more realistic air
pollution reduction goals, and setting short-term and long-term
goals separately will be instructive for advancing China’s ongoing
work on air pollution mitigation.

In conclusion, there are some limitations to our research. First,
the indicators reported in this paper were chosen based on the
literature and data availability, which may have introduced bias into
the study results. Second, we only considered efficiency evaluations
and did not conduct a specific analysis of the influencing factors, nor
did we offer a discussion of other influences, such as population
mobility and urban development. Thus, the selection of indicators
and influencing factors will be studied in depth in the future.
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