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Environmental nanotechnology has developed rapidly over the past few decades due to the fast advancement of nanotechnology and nanomaterials (NMs). Due to their nanoscale size, NMs are receiving immense attention in research and development worldwide. Their nano size has led to better catalysis, high reactivity, and high adsorption capacity. In wastewater treatment, nanotechnology has significant potential to improve the performance and efficiency of water decontamination; more effectively, it provides a sustainable way to keep water supplies safe. Numerous studies have found that removing harmful components from wastewater by employing nanoparticles in conjunction with various treatment methods is effective. The purpose of the current investigation is to conduct a review of the envisioned applications of various NMs in the treatment of wastewater. These NMs include carbonaceous NMs, metal-containing nanoparticles, and nanocomposites, all of which will be reviewed and highlighted in depth.
Keywords: carbon nanotubes, graphene, nanocomposites, nanomaterials, wastewater
1 INTRODUCTION
Nowadays, the scarcity of water has become a large-scale problem for everybody. Clean water is a basic necessity for various purposes, including domestic, agricultural, industrial, and energy needs, particularly in developing countries where the population is rising (He et al., 2021; Yadav et al., 2023a). Every year a huge amount of fresh water is contaminated by various water pollutants, ultimately making the water unfit for drinking (Amari et al., 2023). The major pollutants of water are dyes, heavy metals, pesticides, microorganisms, hydrocarbons, and other toxic substances which challenge a potential threat to aquatic and living organisms (Nazari et al., 2021; Afolalu et al., 2022; Zhou et al., 2022a). Among heavy metals, the most common ones are mercury, arsenic, copper, nickel, zinc, etc., In addition, it has been suggested that heavy metals like zinc and mercury can alter protein structure and result in cancer (Saeed and Shaker, 2008; Witkowska et al., 2021). Dyes discharged from the textile industries, etc., lead to water pollution and disturb aquatic life as dyes prevent the penetration of sunlight to the deeper parts of the water bodies (Islam et al., 2023). Dyes polluted water may cause skin disorders and, in the long term, may cause cancer in living beings. Another major pollutant of water is pesticides (organophosphate, carbamate, organochlorine, pyrethroids, etc.) which come mainly from irrigation and agriculture (Ajiboye et al., 2022; Mishra et al., 2023). The agricultural fields introduced with pesticides leached with the rainwater and other water activities, ultimately reaching the freshwater bodies (Malla et al., 2021). These pesticides may accumulate in aquatic animals, which on consumption by humans, may lead to biomagnification (Ali et al., 2020; Gupta and Gupta, 2020). The consumption of pesticide-contaminated water in the long term may lead to numerous health-related disorders (Rajput et al., 2021; Tang et al., 2021). Pathogenic microorganisms are another major source of water pollution which mainly causes food and waterborne diseases (Kumar et al., 2021).
These effluents cause problems, including metal poisoning, irritations, and pathogenic infections in humans and animals (Briffa et al., 2020; Gaur et al., 2021). Good quality water is essential to sustain human wellbeing, livelihoods, and a healthy environment for sustainable development. As per the March 2020 WHO report, only 74% of the world’s population (5.8 billion people) has access to safe water, while around two billion people use water contaminated with feces. In furtherance of this discussion, it appears that approximately 50% of the world’s population will encounter water scarcity by 2025. In the past, the management of wastewater posed significant challenges. However, contemporary practices have evolved to include recycling, resulting in both wastewater treatment and a renewable energy source.
Currently, the majority of the investigations emphasize a particular method for the remediation of heavy metal ions, including electrocoagulation (EC), photocatalysis utilizing synthetic and natural adsorbents, the use of magnetic fields, advanced oxidation process (AOP), adsorption, membrane techniques, etc. (Singh et al., 2023a). Moreover, various nanomaterials (NMs) are utilized as nano-adsorbents, nano-catalysts, and nano-membranes for the treatment of wastewater effluents. Also, activated carbon nanotubes (CNTs), including both multi-walled and single-walled surfaces functionalized with decorated with zero-valent Ni NPs, are employed for the adsorption of heavy metals like (As, Cd, and Pb) from wastewater. Sagadevan et al. (2022) reported the titanium dioxide (TiO2) based photocatalytic remediation of dyes and heavy metals from wastewater, while Aragaw and co-workers developed biomass-based adsorbents for the remediation of dyes from wastewater. Interestingly, Burk et al. (2020) reported Chitosan-coated gasifier biochar for the remediation of Cd (II) and Cu (II) from aqueous solutions (Aragaw and Bogale, 2021; Sagadevan et al., 2022).
Different treatment techniques are applied to remove toxic contaminants from wastewater, including chemical, biological, and ion exchange techniques, adsorption, and photocatalysis (Titchou et al., 2021; Ahmed et al., 2022; Yadav et al., 2023b). These treatment methods employed aim to enhance water quality; however, certain limitations are associated with some of these techniques. For instance, chemical methods often demand the use of a substantial quantity of chemicals, necessitate pH monitoring, result in sludge formation, and generate secondary pollutants due to excessive chemical usage (Bijekar et al., 2022). Also, adsorption techniques produce optional toxins. However, photocatalysis is a method that produces reactive chemical species that convert toxic pollutants into non-toxic byproducts and is sustainable, environmentally friendly, and clean (Huang et al., 2022). Photocatalysis is a rapidly developing technology attracting the attention of investigators due to its low cost and high efficiency in water decontamination compared to other methods (Khan, 2021).
Other promising techniques include membrane filtration and AOPs (Titchou et al., 2021). Membrane technology enables the effective separation of dyestuffs and dyeing auxiliaries, which concurrently mitigate the hydrolyzed color and biochemical oxygen demand/chemical oxygen demand of wastewater. These processes are typically used to treat effluent-reactive dye baths, which have the potential to reduce waste volume and recover salt at the same time. The utilization of the membrane filtration technique offers numerous advantages, including its expeditious nature and minimal spatial requirements (Asif and Zhang, 2021; Bhol et al., 2021).
AOPs are a newer, more powerful, and promising set of techniques developed and used to treat dye-contaminated effluents. The AOP technique has garnered considerable attention from the scientific community due to its user-friendly nature and its ability to generate substantially reduced residuals compared to conventional methodologies. AOPs exhibit superior performance compared to all currently available methodologies, albeit at a significantly higher cost (Ma et al., 2021a; Priyadarshini et al., 2022).
Chemical precipitation involves many disadvantages, like the production of a high amount of sludge, toxic by-products, time-consuming processes, and slow aggregation and settling of metal ions precipitate (Saleh et al., 2022). The cost of the regeneration process in the adsorption technique is high and may lead to adsorbent loss and its’ effective performance. The frequent regeneration of ion-exchange resin in ion-exchange techniques leads to secondary pollution in the form of chemical reagents. Photocatalysis is mostly applicable for sludges and effluents, and the photo Fenton oxidation technique produces a large amount of iron-containing sludge (Al-Asheh and Aidan, 2020). Also, biological treatments are highly selective, toxic, sensitive to microorganisms, and require a large space for the bioreactors. Membrane processes (reverse osmosis, ultrafiltration, and nanofiltration) suffer from higher investment costs, maintenance, and operations. Membrane fouling high-pressure requirements for reverse osmosis are major disadvantages of this technique. AOPs outperform all existing ones but are much more expensive (Barakat, 2011; Qasem et al., 2021; Saleh et al., 2022).
Building upon the methodologies above, the field of nanoscale science is employed for the purposes of imaging, measuring, and modeling at its specific length scale. This utilization proves to be advantageous in the context of pollutant removal due to its recyclability, cost-effectiveness, and high efficiency. Recent research has indicated that there has been a notable increase in the industrial influence of nanotechnology applications (Puri et al., 2021).
Nanotechnology encompasses manipulating and studying matter at the atomic and molecular levels, focusing on dimensions approximately one billionth of a meter in scale (1 × 10−9 m = 1 nm) (Puri et al., 2021). A nanoparticle can generally be any size between 1 and 100 nm (Aniculaesei et al., 2019). Metallic nanoparticles (NPs) differ from bulk metals in their physical and chemical characteristics (e.g., lower melting points, higher specific surface areas, specific optical properties, specific mechanical strengths, and specific magnetizations), and these characteristics may be useful in a variety of industrial applications. Metals, metal oxides, polymers, and dendrimers are just a few of the many components that can be used to create these particles. Due to their distinctive features resulting from their small size and high surface area-to-volume ratio (SVR), synthetic NPs are engaged in numerous applications, including electronics, energy, medicine, and catalysis (Singh et al., 2022b). Several methods, such as chemical approaches (sol-gel, co-precipitation, etc.), physical vapor deposition (PVD), and material synthesis with template assistance, can be used to create synthetic NPs. Materials can suddenly display radically different properties when scaled down to the nanoscale from what they do at the macroscale (Saleh et al., 2022). For instance, opaque compounds can become transparent (like copper), inert substances can act as catalysts (like platinum), stable substances can catch fire (like aluminum), solids can convert into liquids at normal temperature (like gold), and insulators can act as conductors (like silicon) (Horikoshi and Serpone, 2013; Puri et al., 2021).
Due to their nanoscale size (˜100 nm), NMs mechanically and electrically show a different behavior, and some of their optical and magnetic properties also differ from conventional materials (Alshammari et al., 2020; Modi et al., 2022). In the last past decades, many researchers are devoted to NMs preparation and also optimize them for information processing, machine learning (Jia et al., 2021), remote sensing (Altug et al., 2022; Bharadwaj et al., 2022), biomedical (Singh et al., 2020; Materón et al., 2021; Bagur et al., 2022), defense area, textile (Kabir et al., 2020), agriculture (Khan et al., 2023) and food industries (Modi et al., 2023b), environmental cleaning, etc (Baig et al., 2021). Nanotechnology is extensively being explored as a potential alternative in wastewater treatments like detoxication of water, desalination, etc.
The authors searched keywords, nanoparticles, nanomaterials, and wastewater treatment, on science direct.com by keeping the year limit “2018 to 2023” and found about 17,573 articles till 14 June 2023, out of which 3192 articles were published in 2023, 4775 in 2022, 3777 in 2021, 2601 in 2020, 1923 in 2019 and 1305 in 2018. Moreover, out of these 17,573 articles, 10,167 were research articles, 3,870 were review articles, 2,51 were book chapters, 269 were short communication, 98 were encyclopedias, 50 were conference abstracts, 30 were editorials, 10 were minireviews, 12 were case reports, 8 were discussion, data articles, and news were 5, correspondence was 2, practical guidelines and video articles were one each and rest 504 were others. The above investigation suggests that nanomaterials-based wastewater treatment is one of the latest topics among the scientific community around the whole globe, which is evidenced by the continuous and drastic increase in the articles every year from 2018 to 2023. Furthermore, the prevalence of research articles in this field suggests that further investigations are required to address the issue of water pollutants. So, the authors here tried to bridge the gap by providing the state-of-the-art in the field of nanomaterial-based wastewater treatment.
In this review, the authors have introduced the diverse categories of NMs and underscored their distinct properties that can be harnessed for addressing various pollutants in wastewater. The authors highlighted the significance of various NMs in the process of remediating dyes, heavy metals, pathogenic microorganisms, pesticides, and other substances. In this study, the authors have examined different categories of nanomaterials and their respective characteristics, which are employed in the process of sewer water reclamation.
2 DIFFERENT CLASSES OF NANOMATERIALS
Nanomaterials can be artificially synthesized in laboratory settings by manipulating different parameters to meet specific requirements. Additionally, NMs can also occur naturally as a result of various natural processes and activities. So, based on their origin, a nanomaterial could be classified into two categories: natural NMs, and laboratory-synthesized NMs (Das et al., 2020; Baig et al., 2021). Moreover, NMs could also be categorized based on their shapes, briefly discussed below. Figure 1 shows the major types of NMs based on their origin source, materials, and dimensions.
[image: Figure 1]FIGURE 1 | Classification of nanomaterials based on their origin source, materials, and dimensions.
2.1 Natural nanomaterial
Natural NMs can be defined as substances that are formed through biogeochemical processes in a natural manner, without any contribution from human activities. These are intrinsic and present in natural bodies, e.g., viruses (capsid) and bone substances (Amin et al., 2014). Moreover, there are also formed by various natural activities, like clay, etc.
2.2 Laboratory-manufactured NMs
Laboratory-manufactured NMs refer to NMs that are artificially synthesized through the application of various methods. The entities above are further categorized into four distinct classes:
2.2.1 Carbon-based NMs
Carbon is present in these NMs, which are mainly of three types, i.e., which are hollow, ellipsoids (fullerenes), or tubes (CNTs). A team led by Sheron reported many applications of these NPs (single, double, and multi-walled nanotubes), like enhanced movies and coatings, many lighter materials, gadgets, and wastewater treatment. The utilization of graphene and carbon nanotubes (CNTs) in industries is attributed to their exceptional characteristics, including their high mechanical strength and lightweight nature (Fritea et al., 2021; Sheoran et al., 2022).
2.2.2 Metal-based NMs
This class comprises metal oxides (Al2O3, TiO2) (Bousiakou et al., 2022), nano-sized gold, nano-sized silver (Bagur et al., 2022; Nadaf et al., 2022; Van Thuan et al., 2022), etc. Semiconductor quantum dots are crystals at the nanometer scale that possess distinctive photophysical characteristics, including optical properties that vary with size, high fluorescence quantum yields, and remarkable resistance to photobleaching (Villalva et al., 2021). The length of quantum dabs varies with their optical properties (Shah et al., 2015; Chopra et al., 2022).
2.2.3 Dendrimers
Dendrimer has a variety of chain closes on their surface, which is used to perform particular blended capacities. This property is necessary for catalysis. Similarly, 3-D dendrimers include inside depressions into which different atoms could be located, and they might be valuable for drug transportation, e.g., nano-sized polymers (Kaurav et al., 2023). A typical diagram of a dendrimer is shown in Figure 2.
[image: Figure 2]FIGURE 2 | Representation of dendrimer.
2.2.4 Composites
These materials are used for combining NPs, which takes place with other NPs as well as large-sized materials. Mixing NMs with any metal, mass materials, and polymer can give rise to these composites (Gadore and Ahmaruzzaman, 2021; Levofloxacin et al., 2022; Zsirka et al., 2022).
2.3 Categorization of nanomaterial based on the dimension
The physical properties of some systems changed due to the spatial reduction of the nanoparticle structure. Based on dimensions, NMs (Figure 3) are classified as follows:
[image: Figure 3]FIGURE 3 | Various types of nanomaterials based on their dimension.
Zero dimension structures (0-D): System limited to three dimensions. All the dimensions are estimated within the nanoscale (less than 100 nm). It includes Ag/Au NPs, nanograins, nanoporous silicons, nanorings, and fullerene (Alam et al., 2021).
One dimension structures (1-D): System confined in two dimensions with mm long. It contains nanorods, nanotubes, and nanowires of metal oxides.
Two-dimension structures (2-D): System limited to one dimension. It includes graphene, plate-like shapes, nanofilms, and nanolayers.
Three-dimension structures (3-D): The system is not confined in any dimension. It includes dispersions of NPs, nanowires, nanotubes multi-nanolayers, and bulk powders (Jagadeesh et al., 2017; Ba-Abbad et al., 2022; Yadav et al., 2023b).
3 PROPERTIES OF NANOPARTICLES
At nanoscale bulk, the properties of materials change drastically in comparison to their bulk counterparts. In addition to high SVR at the nanoscale (Jin and Higaki, 2021). Nanoparticles exhibit various additional characteristics, including alterations in magnetic, optical, electrical and electronic, thermal, and surface properties (Sajid and Płotka-Wasylka, 2020). All these properties are exploited in medicine, drug delivery, and environmental cleanup, which are discussed below in detail. Figure 4 shows the various types of properties that change at the nanoscale.
[image: Figure 4]FIGURE 4 | Various properties of nanoparticles.
3.1 Magnetic properties
The higher surface area of NPs makes them unique and attractive. Magnetic NPs are utilized for cooling purposes, visualization, bioprocessing, higher cache memory materials, magnetic storage device, magnetic printing, etc. Giant magnetoresistance is a nanoscale multilayer containing ferromagnet (iron, cobalt, nickel) and non-attractive support materials (chromium, copper) which are used in data storage in memory (Shirsath and Shirivastava, 2015; Jefremovas et al., 2021).
3.2 Optical properties
The energies of orbitals (HOMO and LUMO) are mostly impacted by the nano size of the electronic structure (Sajid and Płotka-Wasylka, 2020). Due to these electrons, optical production and adsorption happen. The optical properties of many metals and semiconductors are changed extensively. The colloidal tension of Au NPs has dark red shading, which becomes dark yellow with an increase in particle size (Table 1) (Gnanamoorthy et al., 2020; Murthy et al., 2020; Zhu et al., 2020; Khan, 2021).
TABLE 1 | Effect of size on the physical appearance and color of various nanoparticles.
[image: Table 1]3.3 Electrical and electronic properties
The influence of size on electrical properties is a significant factor governed by scattering, electronic effects, and alterations in microstructure. When the material’s dimension increases, it causes a reduction of defects, which results in a decrease in resistivity and an increase in conductivity. Decrease of dimension below a critical size, i.e., below De Broglie wavelength, results in a change of electronic structure, which takes place due to the widening of the bandgap and reduced electrical conductivity (Liu et al., 2021b).
3.4 Thermal properties
The exceptional properties of NPs include special heat, thermal conductivity (TC), and thermoelectricity (Almuallim et al., 2022; He et al., 2022). For instance, CNTs have a very strong TC, i.e., twice that of diamonds, and therefore act as great conductors of heat (Kumanek and Janas, 2019). Phonons are the primary means of determining thermal conductive properties and specific temperatures for nanotubes (Qian et al., 2021). Metal NPs have high TC compared to most liquids in solids, and the TC is greatly enhanced in nano liquids. For instance, at room temperature, the TC of Cu is approximately 700 folds that of H2O and 3000 times that of motor oil (Czaplicka et al., 2021; Zhou et al., 2022b). Aluminum oxide exhibits a higher TC when compared to water. Hence, it can be inferred that nanofluids exhibit a higher thermal conductivity than fluids that incorporate fine particles and conventional heat transfer fluids (Coccia et al., 2021). This phenomenon can be attributed to the positive correlation between surface area and heat transfer efficiency. Table-2 shows the TC of a few NMs.
TABLE 2 | Thermal conductivity of nanomaterials.
[image: Table 2]3.5 Surface properties
Surface properties like surface energy, particle-particle interaction, and surface modification primarily determine the agglomeration state of the particles and, therefore, their effective size, especially under physiological conditions (Coccia et al., 2021; Urian et al., 2021). Thus, the biological identity of a nanomaterial is clearly influenced by differentiating surface properties. This behavior is particularly relevant for biomedical applications. NPs possess quantum properties due to their very high ratio of atoms on the surface in comparison to the interior of the particle. Consequently, NPs are subject to distinct laws that differ from those governing larger matters. For example, gravitational forces do not exert influence on them; rather, they are governed by forces such as Van der Waals interactions (Bantz et al., 2014).
Activated carbons do not fulfill the criteria established in the different definitions of NMs provided by the existing regulations. Some of the Regulations and Scientific guides that have been evaluated are:
European Commission Recommendation for the definition of Nanomaterials, 2011/696/EU. It was intended to be applied as an overarching framework with regard to other EU regulations (Benko, 2017).
NB: Activated Carbons have been cited by ECHA as an example of a substance that might be interpreted as a nanomaterial based on the VSSA criteria. According to the literature, activated carbons possess a high surface area, although they do not fall under the category of NMs. Rather, they exhibit highly porous structures (Heidarinejad et al., 2020; Rao et al., 2021).
4 POSITIVE AND NEGATIVE ASPECTS OF NANOTECHNOLOGY AND NANOMATERIALS
4.1 Positive aspects of nanotechnology and nanomaterials
The majority of the technological goods we use now are made with nanotechnology. Nobody could have expected that a gadget with thousands of memory cells would be that small. The complex circuitry of the chip has achieved its objective by making it portable, enabling users to carry any electronic device from one location to another. We no longer need supercomputers to do easy mathematical computations. Instead, we can do even more complicated calculations on smartphones (Thiruvengadam et al., 2018; Nile et al., 2020).
Nanotechnology has substantially enhanced medical research, thereby providing a valuable contribution to the healthcare sector (Anjum et al., 2021). The illness can now be easily detected, and treatment options are widely available. The medical profession has invented several drugs and medical equipment, such as nanorobots, to treat incurable medical conditions such as cancer by completely utilizing nanotechnology (Haleem et al., 2023). As a result, nanotechnology is advantageous to the healthcare sector. Nanotechnology is often used to detect and treat hidden disorders. Any critically ill person can now be easily accessed and diagnosed using a range of technologies that were formerly huge and immovable (Curvino et al., 2021).
4.1.1 Benefits of production
Modern manufacturing requires nanoproducts such as nanotubes, NPs, nanobatteries, and so on that are more resilient, powerful, and lightweight than comparable products created without the use of nanotechnology. Hence, due to nanotechnology, the environment for manufacturing has changed and has become much better for them (Hansen et al., 2020).
4.1.2 Energy creation
Nanotechnology has considerably aided in the field of energy generation. Batteries, cells, and various other energy-efficient storage devices have become commonplace. All of these have been demonstrated to be energy-saving devices that have enhanced people’s lives (Pomerantseva et al., 2019; Manickam et al., 2021).
Due to the significant advancements facilitated by nanotechnology have greatly enhanced the potential to effectively address diseases. A wide array of tools and instruments have been employed in managing and mitigating diverse chronic diseases and ailments that currently lack a definitive cure. The diagnosis of the illness can be facilitated through the utilization of nanotechnology. After a diagnosis, treating the medical condition and helping the patient recover quickly is much easier.
4.2 Negative aspects of nanotechnology and nanomaterials
4.2.1 Negative environmental impact
The progression of nanotechnology has led to a rise in pollution, primarily related to the generation of NPs while manufacturing diverse pharmaceuticals, atomic weaponry, and other commodities. As a consequence, nanotechnology has a substantial environmental impact. In addition to human beings, the animals inhabiting these areas have been affected by various diseases (Del Prado-Audelo et al., 2021; Phillips, 2021).
4.2.2 A rise in unemployment is possible
The advancement of science and technology has significantly reduced the demand for human labour. As a consequence, a significant number of individuals have relinquished their employment positions due to technological advancements replacing their roles. Engineering nanotechnology has led to enhanced machine functionalities and the reduction of labour-intensive positions, particularly in the field of chemistry (Ma et al., 2021b; Pokrajac et al., 2021).
4.2.3 Accessible dangerous weapons
Numerous weapons generated through nanotechnology exhibit deleterious properties and are vulnerable to misuse by humans. In today’s world, countries employ a diverse array of armaments to enhance their military capabilities. In the contemporary era, a nation possesses the capacity to construct and utilize weaponry such as atomic bombs with relative ease, thereby enabling the destruction of its adversaries (Khan et al., 2019).
4.2.4 Expensiveness
Nanotechnology, while advantageous in the fields of medicine, engineering, and material sciences, incurs significant expenses due to elevated operating and raw material expenditures. Consequently, the acquisition of the technology generally proves to be prohibitively costly for individuals of average means (Ray and Bandyopadhyay, 2021).
4.2.5 Nanotoxicity associated with the nanoparticles
The entry of these NPs into the ecosystem can occur through various pathways such as air, water, and soil, potentially resulting in nano-toxicity. Furthermore, as a result of its small size, it has the potential to permeate the dermal pores of individuals and contribute to the occurrence of metal-associated diseases, such as those associated with the utilization of zinc oxide (ZnO), titanium dioxide (TiO2), and silver (Ag) in cosmetic and toothpaste products.
5 APPLICATIONS OF NANOMATERIALS FOR WASTEWATER TREATMENT
Numerous contaminants in water waste are detected and removed by applying nanotechnology. Non-biodegradable heavy metals are very toxic and adversely affect the lives of animals, plants, and living organisms, which become a scary situation for the environment (Yadav et al., 2023b). This problem can be solved by using NPs in the form of metal oxides (Ti, Zn), membranes (ceramic, polymer, nanowire, polymer), CNTs, nanopowder, etc. Water quality can be improved by different methods available like photocatalysis, electrochemical oxidation, nanofiltration, and adsorption methods which utilize the above-said materials (Yadav et al., 2022a).
NPs play a different role in the removal of toxic ions through adsorption, and chemical or photochemical oxidation processes, which is necessary for contaminants’ destruction (Isawi, 2020). Another important role of NMs is as functional materials such as carbonaceous NMs, nano adsorbents, nanofibers, nano clays (Biswas et al., 2020), zeolites (Murukutti and Jena, 2022), and dendrites. Various NMs are used for the treatment and purification of water (Figure 5) (Singh et al., 2022a).
[image: Figure 5]FIGURE 5 | Schematic diagram of various nanomaterials for wastewater Treatment.
5.1 Carbonaceous nanomaterials for wastewater treatment
In the current decade, dyes and heavy metals are removed by using various kinds of carbon-containing NMs due to their non-toxicity, structure, abundance, high surface area, porosity, and good sorption limits (Fritea et al., 2021; Gacem et al., 2022).
5.1.1 Activated carbon
Agricultural wastes coal, wood, and coconut shells are used as carbon-based precursors for the synthesis of activated carbon, which possesses high porosity and high surface area and is used as sorbents (Igwegbe et al., 2021; Yilmaz et al., 2022). Machado and their group used coconut tree sawdust and prepared activated carbon, which was then utilized for Cr (VI) remediation. Arcibar-Orozco et al. studied the phosphate effect in forced hydrolysis of ferric chloride on modified granular activated carbon (Saleem et al., 2019; Rajendran et al., 2021).
5.1.2 Graphene-based nanomaterials
Graphene forms a graphite structure in a two-dimensional honeycomb pattern that shows tremendous thermal and electrical conductivity. Graphene oxide (GO), which consists of hydroxyl, epoxy, and carbonyl groups, is obtained by monolayer graphene with oxidative form. Zhu et al. (2016) elucidated five potential interactions, namely, hydrogen bonding, π-π bonding, the hydrophobic effect, covalent bonding, and electrostatic interactions, that contribute to the process of adsorption (Zhu et al., 2016). Xu and Wang (2017) reported graphene-based material for wastewater treatment, which has a large surface area and oxygen in large quantities. Avouris and Dimitrakopoulos compared reduced graphene oxide (rGO) and graphene and found that functional group modification of rGO improved its’ imperfectness and conduction (Xu and Wang, 2017). The preparation of both of these oxides is shown in Figure 6.
[image: Figure 6]FIGURE 6 | Block diagram for the preparation of GO and rGO.
For the remediation of contaminants such as heavy metals of lead, zinc, copper, cadmium, mercury, and arsenic, graphene-based materials act as good adsorbents. The utilization of two effective methods, namely, surface modification, and hybridization, enhances the working efficiency and reusing capacity of these materials. These substances have proven to be highly effective in the process of water decontamination, efficiently eliminating a wide range of pollutants (Mehdizadeh et al., 2014; Yadav and Fulekar, 2018; Irannajad and Kamran Haghighi, 2021). Although, their high cost is one of the main limitations in their application for environmental protection. Contaminants (metals and dyes) are removed by these materials due to their adsorption capacity, and for organic pollutants, removal by graphene, GO, rGO, and modified graphene is utilized, as shown in Table 3.
TABLE 3 | Applications of graphene, GO, rGO, and modified graphene as adsorbents for contaminants removal from wastewater.
[image: Table 3]5.1.3 Carbon nanotubes (CNTs)
Carbon nanotubes possess new exceptional structural, mechanical, electrical, and magnetic properties, which make them unique in nanoelectronics. CNTs are mainly composed of carbon and exhibit stability, low reactivity and act as strong antioxidants. Their primary examples are CNTs, nanodiamonds, Fullerenes/Buckyballs (C60, C20, C70), and nanowires. These occur in different varieties like ellipsoids, nanowires, buckyballs, tubes (nanotubes), and nanodiamonds (Lin et al., 2018; Balarak et al., 2021). CNTs are used for wastewater management due to their easy conversion, large adsorption capacity, cylindrical hollow structure, high ratio aspect, and hydrophobic wall surfaces (Gacem et al., 2022). A team led by Rajabi et al. (2017) highlighted the utilization of multi-walled CNTs for the aqueous removal of methylene-based dyes like methylene red and MB. Table 4 displays the comparative results of CNTs and their adsorption capacity by which heavy metal ions get removed.
TABLE 4 | Application of CNTs for the removal of heavy metal ions from wastewater.
[image: Table 4]5.2 Metal-containing nanoparticles
Several nano-sized metals and metal oxides are used widely for the remediation of pollutants from water waste due to their higher efficiency and economical cost. These metal oxide NPs mainly include nano zero-valent iron (nZVI), Fe2O3, Al2O3, MnO, TiO2, MgO, CeO2, ZnO, and TiO2 (Naseem and Durrani, 2021; Aragaw and Ayalew, 2023; Singh et al., 2023b; Inamdar et al., 2023). Applications of all these NPs for the remediation of wastewater contaminants are shown in Table 5.
TABLE 5 | Remediation of heavy metals and other pollutants using nano-sized zero-valent iron from wastewater.
[image: Table 5]5.2.1 Nanosized iron
Nanosized iron is selected for its reactivity, cost-effectiveness, adsorbing capacity eco-friendliness for contaminant removal from water. These are reported to be very helpful in removing contamination because of their area, size, and dispersion (Justin et al., 2017; Gupta et al., 2022). Kanel et al. (2006) conducted a comprehensive investigation on the application of nZVI across a broad spectrum of pH levels for the purpose of remediating As(V) contamination (Kanel et al., 2006). Another report demonstrated that nZVI exhibits notable reactivity, substantial surface modification, biocompatibility, and favorable magnetic properties (Xu et al., 2012).
Generally, nZVI exhibits the outer layer (Fe oxides) and inner layer Fe [0] in its structure. The inner layer (Fe [0]) reacts with water and oxidizes to form iron oxides, and finally forms different corrosion products like goethite, aragonite, and lepidocrocite (i.e., α-, β- and γ-FeOOH) (Mu et al., 2017). Liu et al. (2013) studied that all these corrosion products show excellent adsorption ability towards various pollutants. Wen et al. (2014) used a co-precipitation process and reported the phosphate adsorption capacity of 245.65 mg/g onto nZVI. Figure 7 shows the oxidation and reduction of various metallic compounds on the surface of nZVI, while Figure 8 shows the various forms of nZVI for environmental applications.
[image: Figure 7]FIGURE 7 | Core-shell structure of nZVI depicting various mechanisms for the removal of metals and chlorinated compounds reproduced from O’Carroll et al. (2013).
[image: Figure 8]FIGURE 8 | Main nZVI groups used for environmental applications: (A) Bimetallic iron nanoparticles, (B) emulsified nZVI, and (C) stabilized nZVI adapted from Galdames et al. (2020).
5.2.2 Nano-sized metal oxide
In recent years, nano-sized magnetic adsorbents have emerged as a significant field in nanoscience (Chen et al., 2022). Researchers studied nano-sized metal oxides towards various metallic contaminants like arsenic, cadmium, uranium, chromium, and phosphate toxins, and organics. Heavy metals, dichlorophenol, and MB were removed from water using a variety of nano-sized metal oxides that were all effective in their own ways (Chavali and Nikolova, 2019; Zhou et al., 2019; Gakis et al., 2023). Table 6 shows the applications of metal oxide NPs for removing wastewater pollutants.
TABLE 6 | Application of metal oxides-based nanoparticles for the remediation of wastewater pollutants.
[image: Table 6]Fagan et al. (2016) studied that endocrine-disrupting compounds, cyanotoxins, and antibiotics get removed by nano-sized metal oxide TiO2. Nano titanium oxide and copper oxide are utilized for electrocatalytic oxidation of organic compounds and chemical oxygen demand (COD) removal studied by Chang et al. (2009). In water purification, their pollutant removal utility was studied by various researchers, for example, pesticides, dyes, polymers, phenolic compounds, aldrin, polychlorinated biphenyls, etc. (Arabatzis et al., 2002; Cozzoli et al., 2004; Ahmed et al., 2011; Tolcha et al., 2020).
5.2.3 Noble metal nanoparticles
Certain transition metals (Au, Ag, Pt, and Pd) act as noble metals. The significant change in ionization energy and oxidation potential at the nanoscale range make them useful in many novel reactions. Organic contaminants are easily identified by gold and silver nanoparticles (AgNPs) because of their unique optical properties (Alberti et al., 2021; Nadaf et al., 2022). Noble metal NPs were synthesized by the reduction method through controlled nanocrystal nucleation with a stabilizing agent. The utilization of polymers and surfactants for enhancing stability was also demonstrated (Geng et al., 2022).
In the presence of pesticides, the gold nanoparticle surface will change with indoxyl groups at the ppt level. Contaminants are efficiently eliminated through the implementation of sensing, monitoring, and photocatalysis techniques facilitated by bimetallic nanoparticle-based electrodes (Behera et al., 2020; Rajeev et al., 2021; Białas et al., 2022). The role of the anti-bacterial activity and their sterilization effect (to sterilize surgical masks and textile fibers) was also studied (Xiu et al., 2011). Various pollutants like pesticides (Chaudhari et al., 2023), dyes, and halogenated compounds could be photo-catalytically degraded by noble metals (Quan et al., 2015).
5.3 Nanocomposites in water treatment
In the field of NMs, various nanocomposites were used as hosts and infused NPs and showed their significance in several reactions. Besides it, nanocomposites also reduce the environmental discharge of NPs (Hnamte and Pulikkal, 2022). These compact materials are used in the nanoscopic and mesoscopic scales, and their different varieties are discussed below.
5.3.1 Nanocomposites of organic supports
The unique characteristics of polymers, including porous structures, exceptional mechanical strength, and the presence of functional groups, make them highly suitable for use as supports in polymer-based nanocomposites (PNCs) for wastewater treatment. To eliminate heavy metal ions, PNCs (grafted magnetic nanoparticles) were prepared by grafting polymerization techniques (Uwamungu et al., 2022). Several research has been done on the fabrication of PNCs in which polymers and precursors of NPs are directly joined with NPs in direct compounding. They are synthesized by in-situ precipitation and nucleation methods. The potential applications and removal of contaminants of various nanocomposites are summarized in Table 7.
TABLE 7 | Application of various nanoparticles for the removal of water contaminants.
[image: Table 7]5.3.2 Nanocomposites of inorganic supports
For nanocomposites CNTs, naturally occurring minerals (zeolite, clay) and activated carbon are used as inorganic supports (Veeman et al., 2021). These adsorbents are extensively used in wastewater treatment facilities (Table 8).
TABLE 8 | Application of different inorganic support used for the removal of pollutants from wastewater.
[image: Table 8]5.3.3 Nanocomposite membrane for wastewater treatment
The unique properties of membranes such as long life, low cost, and high mechanical, chemical, and thermal stability, were used for water decontamination. Their low cost and less energy consumption make them useful at the industrial level (Shehata et al., 2023). They occur as conventional nanocomposite membranes, thin-film nanocomposites, and surface-coated nanocomposite membranes. The conventional nanocomposite membrane was prepared by the phase inversion method. A team led by Liu et al. (2015) studied the use of thin-film nanocomposite, in the RO/NF membrane through the phase inversion as well as the interfacial polymerization method. In surface-coated nanocomposites, NMs are used on the membrane surface by self-assembly, chemical grafting, in-situ deposition, and adsorption methods (Zhang et al., 2011b; Chaturvedi et al., 2022). Table 9 shows the recent development of inorganic and organic nanomembranes.
TABLE 9 | Nanoparticles/nanomaterials and nanocomposite-based membranes for wastewater treatment.
[image: Table 9]6 CONCLUSION
Nanotechnology and nanoparticles have played an important role in environmental cleanup and wastewater treatment in the 21st century. Due to its remarkable features, it has gained huge attention for the remediation of various organic pollutants like dyes, pesticides, heavy metals, pathogenic microorganisms, etc. The increase in the popularity of nanoparticles for remediation is due to their, surface-based phenomenon, high efficiency, and easy surface functionalization. To, date carbon NMs, metal, metal oxide nanoparticles, and nanocomposites have been used widely for wastewater treatment. The magnetic nanoparticles and photocatalytic nanoparticles are of huge importance as magnetic nanoparticles could be easily recovered while the photocatalytic materials could completely mineralize the toxic pollutants. Recovery after the application prevents the loss of the nanoparticles making the process highly effective. Indeed nanoparticles have a huge potential for the remediation of both organic and inorganic pollutants from wastewater.
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Yadav et al. (2023b)

Yadav et al. (2023a)

Tavker et al. (2021)

Malachite green (MG)

As (1) upto 98.4%

Flouride removal

Acid blue dye

Kumar Yadav et al. (2022)

Guillem-Navajas et al. (2022)

Umehara et al. (2022)

Qutub et al. (2022)
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S. No. Adsorbents Target contam References
1 Goethite (a-FeOOH) Cu(ln) | Gross et al. 1994), Mohapatra et al. (2010)
2 Hematite (a- Fe,0;) Pb(IT), CA(IT), Cu(Il), Zn(ID) Shipley et al. (2013)
3 Maghemite (y-Fe; ) Cr(VI), Cu(I), Ni(I1) Jing et al. (2006)
4 Magnetite (Fe;0,) Se(1V) Wei et al. (2011)
5 Hydrous ferric oxide (HFO) Fluoride Nur et al. (2014)
6 ALO, Pb(ID), CA(), Cr(ID), Co(l), Ni(ID, Ma(I) | Afkhanmi et al. (2010)
7 ZnO MB dye Modi et al. (2023b)
8 Zn0 Ampicillin (antibiotic) and MB Soltani et al. (2023)
9 Zn0 Zn(1I), Cd(1I), Hg(11) Sheela et al. (2012)
10 Amorphous IONPs from incense sticks ash (ISA) Congo red (CR) Yadav et al. (2022a)
11 Mesoporous and floral shaped SO, from CFA Al, Pb, Cd, Cu, Cr, Ni, Co, Zn, Mn Yadav et al. (2023b)
12 CaCO; (vaterite and calcite) from ISA Methyl red dye Yadav et al. (2022b)
13 TiO, Antimicrobial activity and MB removal Aravind et al. (2021)
14 Bismuth oxide doped MgO Indigo Carmine (IR) Adam et al. (2022)
15 MgO-nanosheets Reactive orange and reactive yellow Dalvand et al. (2020)
16 Fe;0, NPs (leaf extract of Cola nitida) MB (530.406 mg/g) within 1 h | Alex Mbachu et al. (2023)
Methyl orange (527.835 mg/g) within 1 h
17 Zn0 MB: 64%-83% Modi et al. (2023a)
COD: 15%-53%
TOC:31%-74.12%
Zno-W MB: 20%-88.21%
COD: 25%-85.2%
TOC:46.5%-92.04%
ZnO-Sb MB:21%-91%
COD: 27%-88.5%
TOC: 48%-95.34%
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1 Graphene 356 Fluoride Xu and Wang (2017)
2 89.37 Phosphate Vasudevan and Lakshmi
(2012)
3 Graphene-polypyrrole - Perchlorate Zhang et al. (2011b)
4 Graphene-CNT 8197 Methylene blue (MB) Ai and Jiang (2012)
5 Graphene Oxide (GO) 108.342, 80.775, 71.378 Au(II1), PA(ID, Pt (IV), Zn(11) Liu et al. (2013), Abdullah
etal. (2019)
6 1222 (ugfg) cr(vn Mondal and Chakraborty
(2020)
7 - Organic pollutants Sun et al. (2012)
8 190 Humic acid Hartono et al. (2009)
9 313-398 Antibiotics Gao et al. (2012)
10 1683, 63.69 Methyl orange, Basic red 12 Robati et al. (2016)
1 5.496 (mmol/g) Methyl green Sharma and Das (2013)
12 1494 Endocrine-disrupting chemicals (17p- Zhao et al. (2021)
Estradiol)
13 Enrofloxacin (ENF): 45.035, Rhodamine B | ENF and RhB Yang et al. (2022)
(RhB): 107.230
1 (Ethylenediaminetetraacetic acid) 479 £ 46 Pb(ID) Madadrang et al. (2012)
EDTA-GO
15 GO- Fe,0, MB: 37.5-108 (at 25 °C and 9 pH) MB Shi et al. (2022)
16 GO Pesticides: carbaryl, catechol, and Wang et al. (2021)
fluridone
17 GO- MnFe,0, 673, 146, 207 P(ID), As(III), As(V) Kumar et al. (2014)
18 GO-ZtO(OH), 95.15, 84.89 As(II), As(V) Luo et al. (2013)
19 RGO-Hydrogels 7.85, 2944 MB, Rhodamine B Tiwari et al. (2013)
20 RGO/Poly (acrylamide) 1000 Ph(ID) Rajabi et al. (2020)
21 RGO-PVP 1689 Cu(ln) Yang et al. (2020)
2 RGO-polyurethane - Cu(in Zhu et al. (2016)
2 Polyethylenimine modified-GO Pb (I1)-602, Hg (I1)-374 and Cd (I1)-181 | Arshad et al. (2019)
hydrogel
u MnFe,0,/rGO magnetic NPs 105 (pH 7.5) MB dye Adel et al. (2020)
2 MnFe,0,/reduced GO (MrGO) Malachite green dye (MG): 156, and MG and MB Adel et al. (2021)
MB: 105
2 GOJFe;0,/chitosan MB Maximum monolayer capacity: Tran et al. (2017)
30.10 mg g-1
7 1GO/ZnCo,0, Antimicrobial, electrochemical and Gnanamoorthy et al. (2021)
photocatalytic effect
23 1GO/CuNiO, MB Gnanamoorthy et al. (2022)
2 1GO/MZVI Doxycycline Abdelfatah et al. (2022)
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Nanomaterials ~ Thermal conductivity References

[W/m-K]
Nano-Cu 401 Abdul Rahim et al.
(2017)
Nano-MgO ‘ 50.1 Tbrahim et al. (2022)
Nano-TiO, \ 300-770 | Torahim et al. 2022)
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Color shading
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1 Au 25 Yellow Hammami et al. (2021)
2 10-20 Red Contini et al. (2020)
3 >20 Purple Borse and Konwar (2020)
4 Ag 40 | Blue Vu et al. (2020), D'’Ambrosio et al. (2022)
5 100 Yellow Handayani et al. (2019)
6 Crystal moulded Red Dekker et al. (2021)
7 Cu 3476 nm light brownish Parveen et al. (2016), Raina et al. (2020)
8 25 nm Black brown Maliki et al. (2022), Vasiliev et al. (2023)
9 40-60 nm Saddle brown Ramani et al. (2016), Waris et al. (2021)
10 Ti 40-60 nm Black nanopowder Andronic and Enesca (2020), Andronic et al. (2022)
1 TiO, nanopowder | 10-30m ‘White nanopowder Raut et al. (2016)
12 Fe 40-60 nm Black nanopowder Batool et al. (2021)
13 Fe,0; nanopowder 20-40 nm Red-brown nanopowder Al-Musawi et al. (2023)
14 Zn 40-60 nm Black nanopowder Ringu et al. (2022)
15 Zn0 10-30 nm white ~ light yellow nanopowder Sadak and Bakry (2020)
16 Mo 40-60 nm Black nanopowder Gu et al. (2018)

MoO, NPs <100 nm | Light blue

17

Kaur et al. (2021), Sharma et al. (2022)
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Nanocomposite membrane

Performance (L/
m2 h bar)

Properties

References

Nano-TiO, 122 Fouling resistance (FR), anti-bacterial, Yang et al. (2012)
concurrent separation, and photocatalytic
oxidation, TiO, nanowire growth via
hydrothermal processing photocatalytic under
UV degradation of pharmaceuticals
Anatase/titanate nanosheet composite - Photo-catalysis self-cleaning- recovery of water = Liu et al. (2016)
flux through the membrane
Immobilized ZnO/AINPs 118-1698 Better hydrophilicity, water permeability, FR, | Hong and He (2014)
flux recovery, mechanical stability, thickness-
controllable coating, and pore size reducing
CNTs-embedded membrane - FR Chen et al. (2012)
Graphene 218 Ultra-thin sheets, High retention (>99%) for | Han et al. (2013), Mahmoud et al.
organic dyes and for ion salts retention rate is = (2015)
moderate (approximately 20%-60%)
GO 80-276 Lmh/MPa GO-based membrane 4-10 folds higher flux  Huand Mi (2013), Cao et al. (2014)
range than commercial NF Cross-linked GO
sheets made by a layer-by-layer process
SiC-SiC 006 Free and uniform membranes and approx. Konig et al. (2014)
defect-free SIC
Ag NPs 9.5 m*/m? day atm AgNPs deposition via layer-by-layer method | Kawada et al. (2014)

Ag/TIO, nanofiber

ALOS/SIC

Polyvinyl alcohol/polypropylene

Poly (vinylidene fluoride)/hydroxyethylmethacrylate

5-20at 1-4 bar

10-3000 at 10 bar

32,346 L/m? h, 0.24 bar

99.9% bacteria inactivation and 80% dye
degradation under solar irradiation within
30 min

Reduction of defect density on the surface

Combined solution and melt electrospinning
methods to achieve a smaller avg, poresize than
nonwoven membranes

Electrospun nanofibrous membrane coated
with a surface-charged chitosan polymer,
Enhanced hydrophilicity, and improved flux

Liu et al. (2012b)

Facciotti et al. (2014)

Li et al. (2015)

Nasreen et al. (2014), Ramakrishna
and Shirazi (2015)

Cellulose acetate nanofiber
Polyethylene terephthalate
Polysulfone/poly [2,2-(mphenylene)-5,5'-
dibenzimidazole]

Polyvinyl chloride and polyvinyl formal

Poly (vinylidene fluoride-hexafluoropropylene)-loaded

with yttrium carbonate and Fe;O,

Cu-Al LDH@ polyvinylidene fluoride (PVDF)
membrane (Cu-Al LDH/PVDE)

Boron nitride nanosheets/PVDF

Mesoporous TiO,/PVDE

Chitin nanowhisker/PVDF (1%:15%)

NZVI/PVDE

PVDE/HDTMA (hexadecyltrimethylammonium
bromide)-modified clinoptilolite

Fe;0,/PVDF

Fe;0,/molecularly imprinted resorcinol -HCHO
-melamine resin (Fe;O,/MIREMR)/PVDF

3540

0.1-021 mL/cm® s at
pH 4-8
355 L/m? h

52-323L/m* h at 0.1 MPa

Adsorption capacity:
1736 mg g

MB dye: 142.86 mg g’

726 mgg"

Water flux: 175.8 L m™h™
(high)

Water flux: 425 L/m* h

10xhigher flux than commercial membranes

Reversible pH-responsive permeation

Enhanced porosity, hydrophilicity, and thermal
stability

Enhanced FR

Removed arsenite (92.82) and arsenate (137.08)
mgg-1

Erythrosin B dye

100% removal of MB 2.2 times higher than the
PVDF alone

Photocatalytic membrane used for removal of
CR: 84%/71% and Reactive Yellow 145 (RY
145): 100%/87%

IR dye removed upto 88.9%

Removed RhB (~80%), 2,4-dichlorophenol (2-
CP) and 4-nitrophenol (4-NP) almost 100%
within half an hour

Reactive red 120 (RR120) was separated up
10 98.5%

MB removed up to 97.6%, good hydrophilicity,
and excellent R properties due to the Fenton
reaction

Removal of RhB up to 95.8%, Flux recovery
ration:88.9%, FR, better wettability

Soyekwo et al. (2014)

Pan et al. (2014b)

Eren et al. (2015)

Pezeshk et al. (2012), Fan et al.

(2014)

Salazar et al. (2022)

Abbasi et al. (2021)

Bangari et al. (2022)

Erusappan et al. (2021)

Gopi et al. (2017)

He et al. (2020)

Hosseinifard et al. (2020)

Huang et al. (2020)

Jahankhah et al. (2021)

ZIF-67@PVDF ultrafiltration membrane

Removed dyes: orange Il (97.3%), MB (98.2%),
and RhB (90.5%). excellent FR performance,
good reusability, and stability

Liu et al. (2021a)
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References

ZnO NPs onto granular activated carbon

Poly 1,8-diaminonaphthalene/
MWCNTsCOOH

Biochar/MgO nanocomposites
Clay-based polymeric nanocomposites

Halloysite decorated with ZnO

Ag supported-Montmorillonite (MMT)

Pb(I1)

Cd(11) and Pb(IT)

Phosphates and nitrates
Co(Il), Zn(Il), Se(IV) and atrazine

MB dye

MB dye

767

1012 and 175.2

835

90%-97%

81%-95%

Kikuchi et al. (2006)

Nabid et al. (2014)

Zhang et al. (2012)

Scocchi et al. (2007)

Choudbary et al.
(2023)

Choudhary et al.
(2021)

Kaolin/ZnO nanocomposites
Waterworks and sewage sludge coated with
siderite NPs

Magnetic biochar (pyrolysis of sewage sludge
and biomass)

Magnetite-Zeolite nanocomposite

Chloride, Cr(V1), Fe(11I), COD, biological
oxygen demand (BOD)

BOD

coD

“Total organic carbon (TOC)

Cr(VI): (100%), Fe(IID): (98%), COD: (95%),
BOD: (94%), Chloride: (78%)

CR with maximum adsorption value: 9,416 mg/g

Cu (1)

99.96%
99.88%

99.87%

Mustapha et al.
(2020)

Alshammari et al.
(2020)

Zhao et al. (2021)

Kovo et al. (2023)






