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Introduction: Seasonal—interannual variations in surface water storage revealed
by the Gravity Recovery and Climate Experiment (GRACE) satellites have received
less attention than storage trends in the literature. We focus on six large endorheic
basins and develop variability attribution diagnostics against independent
precipitation and evapotranspiration (hereafter P and E) datasets.

Methods: We generate a flux-inferred storage (FIS), representing the integral of
the component flux anomalies into and out of a region, enabling a comparison
between the P and E contributions to GRACEwater storage anomalies on seasonal
to interannual timescales. Additionally, a monthly budget closure approach is
applied, giving self-consistent coupled water and energy exchanges from 2002 to
2020.

Results: On seasonal timescales, P and E data show insufficient cancellation,
implying over-large seasonal variations in surface storage. In most basins, P
drives the seasonal storage cycle with E dampening storage amplitudes,
although in the Caspian Basin, seasonal storage is driven by E, with P
remaining seasonally constant when integrated over the whole drainage
basin. Budget closure mostly adjusts E, which has larger uncertainties, in
fitting the GRACE data. On year-to-year and multi-year timescales, there is a
strong correlation between P-driven storage and the observed GRACE
variability, which ranges between 0.55 and 0.88 across all basins, and this is
maintained after budget closure. However, storage changes driven by P alone
from GPCP are too large compared to GRACE, with E data from FLUXCOM
generally having only very weakly compensating interannual variations. After
budget closure, interannual E variability is substantially increased. Closed energy
budgets often show interannual amplitudes, partly driven by radiation and partly
by water budget variation through shared latent heat losses, although these have
not been independently verified.

Discussion: Although water flux trends cannot be detected with significance due
to the large interannual variability, the strong agreement between multi-annual
GRACE storage and precipitation variations, especially over the Caspian basin,
lends no support to the suggestion that E changes driven by climate change are
responsible for water storage trends seen by GRACE.
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1 Introduction

Endorheic basins, also known as closed or terminal basins, are
landforms characterized by their lack of an outflow to the ocean or a
major river. They are often found in semi-arid and arid regions, where
there is low precipitation and high potential evapotranspiration
(Yapiyev et al., 2017). These characteristics make them extremely
sensitive to both climate change and anthropogenic activities
(Huang et al., 2016).

Over recent decades, we have seen a decline in global endorheic
water storage (Pavelsky, 2018). This decline is most evident in
regions such as the Aral Sea, which has significantly reduced in
size since the 1960s due to water withdrawal for land irrigation
(Gaybullaev et al., 2012). The Caspian Sea level has also undergone a
recent decline, which Chen et al. (2017) attributed primarily to an
increase in the evaporation rate. Furthermore, under intermediate
greenhouse gas emission scenarios (SPP2-4.5), the Caspian Sea level
could be further reduced by up to 20 m by 2100 (Koriche et al.,
2021). Globally, endorheic basins continue to be vulnerable to
storage depletion. Studying the hydrology of these basins is
essential to better understand how climate change may affect
their water resources and help us develop strategies to adapt to
these changes and manage resources sustainably.

The Gravity Recovery and Climate Experiment (GRACE) is a
satellite mission launched in March 2002; it can provide accurate
estimates of water storage anomalies based on measurements of
changes in the Earth’s gravity field (Tapley et al., 2004). GRACE
has played a critical role in advancing our understanding of water
resources and has been used frequently in previous literature to
quantify terrestrial water storage trends (Rodell et al., 2018).
Vishwakarma et al. (2021) highlighted that the GRACE data have
a relatively short time series which is likely to be dominated by natural
variability. To account for this, the study used a trend-to-variability
ratio to identify trends that emerge above any natural variability. Zhao
and Li (2016) used GRACE to estimate terrestrial water storage
variations in the Tarim River Basin, the largest endorheic basin in
China, and found a slightly decreasing trend over the study period
2002–2015. They found that GRACE storage anomalies were
consistent with regional precipitation anomalies, showing
synchronous occurrence of peak and trough events. However,
there was no overall trend in precipitation, and they showed that
interannual variations of a detrended GRACE product agreed much
better with precipitation. Wang et al. (2018) used GRACE to
determine mass changes in terrestrial water storage in the global
endorheic basins and the potential impact on sea level rise. The study
reported that during 2002–2016, the global endorheic system
experienced a widespread water loss of about 106.3 Gt yr−1. Despite
these global trends, some regions have seen an increase in storage.
Zhang et al. (2017) examined the hydrology of the Tibetan Plateau,
which is home to several large endorheic basins, and found that
terrestrial water storage has been increasing in recent years, primarily
as a result of increased net precipitation. Attributing the drivers of
these past water storage trends is essential for predicting future
changes in water availability in these regions.

GRACE has also proven to be a valuable tool in the
characterization of extreme hydrological events, particularly
across arid regions. Mohamed et al. (2022b) used GRACE to
derive the terrestrial water storage deficit index in order to assess

the intensity and variability of drought events over Senegal from
2002 to 2021. The study had a particular focus on groundwater
storage and found there was an increasing trend over the study
period. Othman et al. (2022) employed GRACE data to address
water shortages across Iraq and highlighted a notable groundwater
loss from 2002 to 2020. They concluded that GRACE can be used to
provide a reliable calculation of the water budget in arid
environments. Mohamed et al. (2022a) also came to similar
conclusions in their study of Saudi Arabia, where water shortage
is of serious concern following the drought and heavy groundwater
extraction that began in 2007. GRACE played an important role in
providing a more precise assessment of water mass fluctuations.

For a closed endorheic basin, hydrological losses come only from
evapotranspiration, and so, the difference between incoming
precipitation P) and evapotranspiration E) is equivalent to the
water storage changes (dS) in the basin. Hence, the hydrological
budget for an endorheic basin can be expressed as

P − E � dS. (1)
Equation 1 has been used as a tool in previous literature studies

to evaluate hydrological changes in various inland basins. Liu
(2022a) simulated monthly actual evaporation (AET) in
16 different Eurasian inland basins using the hydrological budget
method. The study looked for causes of changes in AET and
terrestrial water storage (TWS) and concluded that in most
basins, there were significant decreasing trends in TWS mainly
caused by increasing trends in AET. However, in some basins, they
found that changes in precipitation were the driving factor of TWS
changes. Liu et al. (2022) also simulated AET based on precipitation
and water storage observations. They performed an attribution
analysis of TWS across the Chinese inland basins. The study
used a rank-based non-parametric Mann–Kendall test to detect
trends and magnitudes of each component in the hydrological
budget. Results showed increases in both P and AET, and they
noted a significant decrease in storage due to an increase in AET.
These studies, however, do not use an independent evaporation
product for their attribution analysis. Rodell et al. (2004) also
produced estimates of evapotranspiration by combining the water
balance approach with the GRACE data and other observations over
the exorheic Mississippi River Basin. When compared with several
modeling systems, they found their results are intermediate and hold
potential for evaluating modeled evapotranspiration.

Rather than estimating evaporation using the hydrological budget,
closed budgets can also be achieved using optimization techniques.
Such techniques can take observations from independent data sources
and adjust them according to their relative uncertainties in order to
achieve balanced estimates. This is beneficial as it allows for multiple
datasets to constrain one another, which can help improve the
accuracy of the estimates. Several different water budget closure
methods are seen across previous literature studies, such as
Kalman filters (Pan et al., 2012; Zhang et al., 2018), post-filtering
(Aires, 2014; Munier et al., 2014), and variational methods (Rodell
et al., 2015; Hobeichi et al., 2020). Additionally, budget closure in an
endorheic basin can be more effective than in an exorheic basin, as no
adjustments for runoff are required, and so the problem has fewer
degrees of freedom.

Liu (2022b) evaluated remotely sensed evapotranspiration data
across 19 major endorheic basins, making a comparison with E
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estimated using the water balance technique. They found most
products were able to capture the spatial distribution of E in
inland basins, although there was a tendency to underestimate E.
Although E observations tend to be more uncertain than the other
two components in Eq. 1, they may still contain useful information.
In this study, we are interested to see what we can learn from both P
and E observations before optimization to bring estimates into
consistency with GRACE.

The energy cycle is closely linked to the hydrological cycle
through evaporation (Trenberth and Fasullo, 2013), and therefore
it can be beneficial to study the two cycles simultaneously. The
surface energy budget describes the balance between the incoming
energy from downwelling shortwave and longwave radiation (DSR
and DLR, respectively), the outgoing energy from the longwave
flux (ULW), reflected shortwave flux (USW), and the turbulent
heat fluxes latent and sensible heat (LE and SH, respectively),
written as

DSR +DLR − USW − ULW − LE − SH � NET, (2)
where NET is the total energy absorbed by the surface. Over recent
decades, remote sensing technology has revolutionized our
understanding of Earth’s radiative balance (L’Ecuyer et al., 2015),
yet satellite-derived estimates typically show large global mean
biases in this NET flux (Mayer et al., 2022). Here, we look to
balance NET each year through optimization while coupling with
the water budget through latent heating. This allows for observations
from the two cycles to constrain one another, as first seen in the
NASA Energy andWater cycle Study (NEWS) (L’Ecuyer et al., 2015;
Rodell et al., 2015). Hobeichi et al. (2020) also built on these ideas
and developed the Conserving Land–Atmosphere Synthesis Suite
(CLASS), which solves monthly water and energy budgets at a 0.5°

grid scale from 2003 to 2009. Like the CLASS product, we also
produce monthly estimates, but we avoid any monthly constraint on
the energy budget and rather focus on longer timescales. Due to the
lack of availability of surface energy storage data, the primary focus
of this paper is on the water budget. A similar approach to handling
the energy budget was used by Petch et al. (2023), who introduced a
coupled water and energy optimization model which focused on
improving interannual and long-term water budgets over large
basins.

In this study, we aim to investigate storage variations observed
by GRACE and whether these variations can be explained by the
precipitation and evapotranspiration observations according to
budget considerations (Eq. 1). We address the following
questions 1) How balanced is P − E in long-term mean and
interannual storage variability? 2) How well does P − E
reproduce seasonal storage variability? 3) How well does P − E
reproduce interannual storage variability and can this be attributed
to P or E? It is often the case that P and E observations do not
reproduce the GRACE storage variations well, making it difficult to
attribute features to P or E. Subsequently, we also aim to produce
new optimized estimates based on the observations that are
consistent with GRACE on all timescales. Additionally, we aim to
look at the long-term energy storage implied from observations and
attempt to attribute prime drivers of the variability. We also aim to
balance the energy budget each year through our optimization,
producing coupled estimates for each of the water and energy budget
components on a monthly timescale.

2 Data

We chose the following datasets because they have been derived
from satellite data. This paper aimed to see what we can learn from
the specific datasets chosen for this study; hence, we use a single
product for each budget component rather than an ensemble of
different products, which could provide more accurate estimates.
We also test the ability of our budget closure method to bring these
independent products into consistency, which again does not
depend on the accuracy of the initial product. Each of the
datasets has a monthly resolution and has been interpolated at a
0.5° spatial resolution. Data for each selected basin were separated
using a mask and then spatially averaged.

2.1 GRACE

We use data from the Gravity Recovery and Climate Experiment
(GRACE) which provides estimates of total water storage anomaly
(TWSA). GRACE is a NASA satellite mission that was launched in
March 2002 to map the Earth’s gravity field with a spatial resolution
of 400 km to 40,000 km every 30 days (Tapley et al., 2004). The
mission involves two identical satellites orbiting the Earth in
tandem, separated by a distance of about 220 km. By precisely
measuring the distance between the two satellites, GRACE can
detect changes in the gravitational field caused by variations in
the distribution of mass on the planet, such as changes in the amount
of water stored in the oceans, ice caps, and groundwater. The
mission ended in November 2017, but its legacy continues
through the GRACE Follow-On mission, which was launched in
May 2018. Unlike many remote sensing datasets, the processing
does allow reliably calibrated continuity between missions (Chen
et al., 2022). The version of data used here is the MASCON JPL
RL06v2, which uses a coastline resolution improvement filter
applied to separate the land and ocean portions of mass within
each land/ocean mascon in a post-processing step. The JPL GRACE
data were downloaded for January 2002 to January 2020. Some
months with missing data were observed after 2012 and were filled
with monthly climatology plus temporal interpolation of monthly
storage anomalies. The full length of this dataset was used as the
prime period for our study. Other GRACE MASCON solutions are
available, such as from the Center for Space Research (CSR) (Save
et al., 2016) and the NASA Goddard Space Flight Center (GSFC)
(Rowlands et al., 2010) solutions. These different versions generally
show very good agreement (Scanlon et al., 2016), except where
different gap filling methods have been used. While the chosen
version in our study is widely used, the specific choice of the
MASCON product would not have a significant impact on the
key results.

2.2 GPCP

Precipitation data are taken from the Global Precipitation
Climatology Project version 2.3 (GPCP v2.3). This dataset
combines satellite- and gauge- based precipitation data, along
with atmospheric reanalysis and numerical modeling, to produce
monthly and daily precipitation estimates at a spatial resolution of
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2.5° global grids (Adler et al., 2003). GPCP v2.3 uses precipitation
estimates from polar-orbit passive microwave satellites (SSMI and
SSMIS), polar-orbit IR sounders (TOVS and AIRS), and
geostationary infrared satellites (GOES, Meteosat, GMS, and
MTSAT). Later versions of GPCP, e.g., v3.2, have started to use
GRACE data for snowfall and gauge corrections, but they have not
been used in this version. The precipitation data were downloaded
for the period January 2002 to December 2019 for this study.

2.3 FLUXCOM

Over land, latent and sensible heat data are taken from
FLUXCOM. FLUXCOM integrates data from multiple sources,
including remote sensing, meteorological modeling data, and
FLUXNET eddy covariance towers, to estimate global gridded net
radiation and latent and sensible heat fluxes using machine learning
methods. Here, we only take the latent and sensible heat flux
products using the RS-METEO setup which makes use of
meteorological conditions and mean seasonal cycles using only
satellite-derived input (Jung et al., 2019). The data are provided
on a 0.5° global grid and cover the period from 1982 to 2013. It has
been validated against ground-based measurements and other
independent datasets. Uncertainties arise from empirical
upscaling, the choice of the machine learning algorithm, and the
predictor variables.

However, because the current version of FLUXCOM ended in
2013 and the interannual variability in the turbulent flux data was
small in comparison to product uncertainties, we extended this
dataset to 2020 by using the mean seasonal cycle of latent and
sensible heating to fill the months between January 2014 and
December 2019. This allows longer comparisons of the
precipitation and GRACE datasets.

2.4 OAFlux

As FLUXCOM does not provide data over water bodies, we have
used the 3rd release of the Objectively Analyzed air–sea Fluxes
(OAFlux) product over the Caspian Sea (Yu et al., 2008). The
OAFlux dataset provides estimates of air–sea turbulent heat and
momentum fluxes, including latent heat (evaporation), sensible
heat, and momentum, at a global scale. It is based on a
combination of satellite remote sensing data and atmospheric
reanalysis products and is provided on 1° global grids. Data were
downloaded for all months from January 2002 to December 2019.

2.5 CERES

The radiative flux observations are taken from CERES-EBAF
v4.1 (the Clouds and Earth’s Radiant Energy Systems Energy
Balanced and Filled data product Edition 4.1) (Kato et al., 2018).
These data are generated using measurements made by the CERES
instruments on board multiple satellites, including Terra, Aqua, and
S-NPP. Each CERES instrument has three channels, namely, a
shortwave channel to measure reflected sunlight, a longwave
channel to measure Earth-emitted thermal radiation in the 8–12-

µmwindow region, and a total channel to measure all wavelengths of
radiation (Wielicki et al., 1996). The EBAF-surface data product is
produced using an algorithm that adjusts surface, cloud, and
atmospheric properties to ensure that the computed top-of-
atmosphere (TOA) irradiances match with the measured TOA
irradiances. The CERES-EBAF v4.1 product is an improvement
over previous versions, with updated calibration and retrieval
algorithms, longer time series, and improved accuracy in
shortwave flux measurements. Data are provided on 1° global
grids, and we make use of the monthly product.

2.6 Uncertainties

The size and shape of a basin can impact the accuracy of
GRACE measurements and can influence the uncertainty in the
estimated changes in mass. Additionally, for gridded TWS
GRACE data, knowledge of covariances is required. Here,
GRACE errors have been taken from Boergens et al. (2022),
who applied a spatial covariance model for TWS data to produce
uncertainty estimates for mean TWS time series for arbitrary
regions such as river basins. We have also performed our analysis
with ±10% of these uncertainty estimates and found this had little
or no impact on our results.

To quantify flux uncertainties, we have taken the continental
scale uncertainty estimates from the NEWS papers (Rodell et al.,
2015; L’Ecuyer et al., 2015) and downscaled them to achieve
uncertainties for our selected regions. We assume that errors are
uncorrelated between river basin scales and continental scales. This
leads to the following relationship between basin-scale and
continental-scale flux uncertainties (Petch et al., 2023):

σf �
�����������
f/F( ). A/a( )√

.ΣF, (3)

where σf is the basin-scale uncertainty on flux f over the basin area a,
and ΣF is the continental-scale uncertainty on flux F over the
continental area A. For the 2014–2020 period, the extended
FLUXCOM data uncertainties were increased by a factor of 2,
which aimed to assign more weight to the P and dS observations
where data were available.

2.7 Study areas

Our analysis focuses on six different endorheic basins shown in
Figure 1. Some regions are made up of several smaller basins, but we
have analyzed these larger contiguous areas which are more
accurately resolved by GRACE data. Four of the regions are
located in Eurasia, which holds the highest concentration of
endorheic basins. We also include a large endorheic basin in
South America and Central Australia.

The Caspian Basin covers an area of around 3.4 million km2 and
is located in Eurasia, bordered by five countries: Russia, Iran,
Turkmenistan, Kazakhstan, and Azerbaijan. The basin consists of
several sub-basins, including the Caspian Sea itself, which is the
largest inland water body in the world. The majority of inflow to the
Caspian Sea is derived from the Volga River, accounting for over
80% of the total, while the Kura and Ural rivers also contribute to its
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water supply (Dumont, 1998). There is a diverse range of climatic
conditions across the region, with high precipitation over drainages
to the north, but with minimal amounts toward the southeast.

Asia—west is situated below the Caspian Basin and covers
large parts of southwestern Afghanistan and southeastern Iran,
with a total area of 1,380,822 km2. It includes basins such as the
Sistan and the Iran inland rivers, which receive water from the
Helmand River and are characterized by very low rainfall. The
Sistan Basin serves as a crucial source of drinking water and plays
a vital role in supporting agricultural activities. However, the
basin faces significant challenges due to its low irrigation
efficiency, posing a high threat to its sustainability (Mir et al.,
2022).

The Aral Sea basin is located in Central Asia, primarily in
Kazakhstan and Uzbekistan, covering approximately 1.9 million
km2. It contains the Aral Sea, Amu Darya River, and Syr Darya
River, exhibits a climate that is predominantly continental and
features desert and grassland regions (Berdimbetov et al., 2020).
The basin contains several aquifers, including alluvial aquifers, in the
Amu Darya and Syr Darya basins.

Asia—east lies adjacent to the Aral Sea Basin and comprises sub-
basins such as the Tarim River Basin, the largest endorheic basin in
China, and also the Mongolia Plateau Basin, Hexi Corridor Basin,
Qiantang Plateau Basin, Qaidam Basin, Junggar Basin, Lake
Balkhash, and the Turpan Basin. The whole area covers
5,091,542 km2. The Tarim River Basin is known for its extensive
aquifer systems. The basin contains both shallow and deep aquifers
within its sedimentary rock formations. These aquifers play a vital
role in sustaining water supplies for agriculture, industry, and
human settlements in the region (Xia et al., 2019).

The Australian Basin, with a total area of 1,890,329 km2,
includes Lake Eyre which covers almost one-sixth of the country.
It exhibits distinct rainfall patterns, with the northern and
northeastern parts experiencing a summer-dominant rainfall
regime, while the southern regions have a winter-dominant
rainfall regime. The basin also experiences high potential
evaporation rates. It contains two distinct aquifer systems:
shallow alluvial aquifers connected to the surface water system
and deep artesian aquifers within the Great Artesian Basin
(Habeck-Fardy and Nanson, 2014).

The Altiplano Plateau Basin has an area of 537275 km2 and
lies in the Central Andes, covering parts of Bolivia, Chile, and
Peru. It includes the Altiplano Basin, which is the largest
endorheic basin in South America encompassing Lake
Titicaca, Lake Poopo, and Salar de Uyuni (Canedo et al.,
2016). The climate of the region is influenced by its high
altitude and mountainous terrain, resulting in cool
temperatures and variable precipitation patterns.

3 Methods

3.1 Flux-inferred storage

Petch et al. (2023) developed a method for comparing
precipitation and evapotranspiration fluxes with GRACE surface
water storage anomalies, defining a flux-inferred storage (FIS) that
integrates the fluxes into and out of a region.

This takes the LHS (left hand side) of Eq. 1 and integrates it as
follows, using precipitation and evapotranspiration observations,

FIS � S 0[ ] + ∫t

0
P − E( )dt. (4)

S [0] is the GRACE total water storage anomaly at the beginning
of our study period (January 2002) and is used to initialize the FIS
time series. If the observations were in balance, then this FIS would
be equivalent to the GRACE TWS time series, but instead, this
quantity can highlight imbalances over both short and long
timescales.

Figure 2 shows the GRACE storage along with the flux
implied storage FIS from the initial precipitation and
evapotranspiration based on Eq. 4. It can be seen that in all
basins, there is a considerable divergence from the GRACE
storage over the whole period. It can also be seen that the
seasonal cycle in FIS is also often larger than seen in GRACE,
e.g., in both Asia—east and Asia—west basins, indicating that
there is insufficient cancellation between seasonal P and E
variations. In this paper, we extended these FIS diagnostics to
help attribute the variability in water storage detected by GRACE,
over both seasonal and interannual timescales, as well as

FIGURE 1
Location of selected endorheic basins. (1) Caspian Sea Basin, (2) Asia—west, (3) Aral Sea Basin, (4) Asia—east, (5) Central Australia region, and (6)
Altiplano Plateau Basin.
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assessing contributions to storage trends over the 20 years of
available GRACE data.

3.2 Isolating storage contributions

In order to attribute the storage variations detected by
GRACE to variations in the individual components of the
hydrological budget, we produced two contributions to Eq. 4
based on integrating the precipitation and evapotranspiration
observations separately. To compare these with the GRACE
storage time series, we removed the time mean flux
contribution and replaced it with the mean storage change
from GRACE. Thus, for precipitation storage variations, we
use the following formula:

FISP � S 0[ ] + ∫t

0
P − �P + dS( )dt, (5)

where �P is the mean precipitation and dS is the mean monthly
storage change flux fromGRACE. A similar calculation is performed
using the evapotranspiration observations to produce FISE.

To quantify how much of the interannual variability can be
explained by each of the flux contributions, we calculated the
correlation between GRACE and the flux-inferred storages. To
avoid correlation from the trend-matching, we forced the
overall trend to be 0 for both GRACE and the FIS.
Additionally, to avoid correlation signals from the seasonal
cycle, we deseasonalized the storage by removing the
monthly mean seasonal cycle. We also compared these mean
seasonal cycles in a seperate analysis.

FIGURE 2
GRACE storage compared to the flux-inferred storage (FIS) from observations. (A) Caspian (B) Aral Sea (C) Asia-east (D) Asia-west (E) Altiplano
Plateau (F) Australia.
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To assess trends in the fluxes, we looked at the annual mean P
and dS based on the observations. Linear regression was used to
quantify trends, with statistical significance assessed using a p-value
of 0.05. Additionally, we calculated the total storage change over
18 years, resulting from these apparent trends, which were then
compared with the total storage changes observed by GRACE over
this period. Trends in E were not analyzed here due to the limited
variations in E observations from year to year.

3.3 Energy

Following Petch et al. (2023), in the absence of surface energy
storage data, we define the total energy storage anomaly constraint
based on the flux observations according to Eq. 2. We first annually
detrend NET so there is no gain or loss of energy over each year and
then integrate over our time period initializing at 0. This generates a
storage anomaly without anyNET bias from the observations each year,
which removes the interannual variability but still allows some
variability in the seasonal storage cycle. This is then used as a total
energy storage observation within Fobs in the budget closure calculation,
described below. As this is only imposed as a weak constraint, the final
closed budget solution can still retain some interannual energy storage
variability, for example, imposed from the radiation variability or
through variations from the coupled water cycle.

3.4 Closing budgets

To compare full consistency with the GRACE storage data, we can
take the observed fluxes and adjust them to satisfy Eq. 1, accounting for
the uncertainties of each component. The budget balancing was
performed in a way that ensures consistency with GRACE on both
short and long timescales (Petch et al., 2023). We also solved the energy
budget simultaneously and coupled the two cycles through a shared
latent heating term. To do this, we set up a cost function:

J k[ ] � 1
2

F − Fobs( )S−1obs F − Fobs( )T + λAF + μBF, (6)

where Fobs is a vector of the observed fluxes, both water and energy,
for month k and F is a vector of the budget-adjusted fluxes we seek.
Uncertainties are contained in the error covariance matrix Sobs,
which is a diagonal matrix representing the assumption that the
errors between fluxes are uncorrelated. The monthly water budget is
represented by vector A and imposed as a hard constraint using the
Lagrange multiplier λ. The monthly energy budget is similarly
represented by vector B, with the Lagrange multiplier μ. The cost
function is minimized sequentially each month, which enables the
fluxes to be consistent with GRACE water storage anomalies on all
timescales. Further details can be found in Petch et al. (2023).

4 Results

4.1 Seasonal cycle

The time mean seasonal cycle of fluxes is defined by first
removing the time mean and trend of the P and E fluxes and

then calculating the mean seasonal cycle. Comparable mean
monthly GRACE fluxes dS are calculated from the detrended
GRACE storage. These trends will be compared later.

Figures 3, 4 show, on the left, the seasonal cycles of P, E, P − E
and the monthly GRACE fluxes dS for all six endorheic basins we
examined. The original data are shown as dashed lines, while the
budget-adjusted seasonal cycles using Eq. 6 are shown as solid lines.
The right of these figures shows the seasonal storage FIS
contributions of P, − E and P − E, now compared directly with
GRACE storage seasonal anomalies. These show smoother
variations being integrals of the fluxes. It is of note here that the
sign of FISE is reversed so that the P and E contributions to storage
are additive. Again, the dashed lines represent the original data,
while the solid lines represent the closed budget analyses using Eq. 6.
Figure 3 shows basins with smaller seasonal cycles, and Figure 4
shows those basins with larger seasonal cycles using two different
scales.

In the southern hemisphere Australian (Figures 3E,F) and
Altiplano Plateau (Figures 4E,F) basins, the seasonal water
storage cycle is clearly driven by P. Precipitation rises more
rapidly than evaporation from October–January, Figures 3E, 4E,
with the seasonal storage peaking in March–April, Figures 3F, 4F,
before increasing evaporation reduces the storage. The P and E
cycles are strongly canceling, although with P being larger, leading to
a much smaller seasonal cycle in dS and S. The budget closure leads
mainly to small adjustments in the evaporation cycles (increasing/
decreasing amplitudes in Altiplano Plateau/Australia, respectively)
without changing key features of the seasonal budgets.

The Caspian (Figures 4A,B) and Aral Sea (Figures 4C,D) basins
exhibit very different seasonal storage variations primarily driven by
evapotranspiration. In the Caspian Basin, there is very little variation
in precipitation. Seasonal water storage peaks in April–May and
declines sharply in June–July when seasonal evaporation reaches a
maximum. The Aral Sea does have a seasonal precipitation cycle
peaking in April, but this remains smaller than the evaporation
cycle, and seasonal water storage shows similar variations to those of
the neighboring Caspian, peaking in April–May, Figures 4B, D. The
budget adjustments lead to significant weakening of the peak
evaporation in both basins, required by the smaller seasonal
water storage cycles seen in GRACE data, although the adjusted
evaporation variations remain stronger than those of precipitation
in controlling seasonal water storage.

The Asia—west basin (Figures 3C,D), covering mainly Iran
and Afghanistan to the south of the Caspian and Aral basins,
shows some common variability, although with substantially
weaker variations in P and E. Precipitation peaks in February,
with evaporation peaking later in April–May and water storage
reaching a maximum in April. The variations in precipitation-
driven storage are clearly larger now than those in the
evaporation driven-storage in Figure 3D, which along with the
timing of the peaks strongly suggest that the storage cycle is
dominantly precipitation-driven, with evaporation playing a
dampening role. The budget closure adjustments suggest
reduced seasonal P and E amplitudes, an earlier evaporation
peak in April with a much sharper decline into June, and no
variability from June–January. Overall, these adjustments halve
the seasonal water storage variability and bring the peak storage
earlier to April, consistent with GRACE.
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The Asia—east area to the east of the other Asian basins
covers the high plateau of Tibet. Seasonal variations are weak but
well-defined, with precipitation and evaporation both peaking in
July. In the observations, the evaporation variations are larger,

with a water storage peak in April, but after the budget closure
adjustments, there is a close cancellation in P and E, leading to
very little seasonal variation in water storage, as suggested by
GRACE.

FIGURE 3
Mean seasonal flux cycles (left) and mean seasonal storage cycles (right). Original flux data are shown by dashed lines, and closed budget
solutions are shown by solid lines. Includes basins with a smaller seasonal cycle, all using the same scale. (A) Asia-east flux cycle (B) Asia-east storage
cycle (C) Asia-west flux cycle (D) Asia-west storage cycle (E) Australia flux cycle (F) Australia storage cycle.

Frontiers in Environmental Science frontiersin.org08

Petch et al. 10.3389/fenvs.2023.1228998

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1228998


The effect of imposing seasonal budget closure against GRACE
datamainly leads to evaporation adjustments in all these basins, as the
observational uncertainties are larger than for P, and this usually leads
to a reduction in the seasonal evaporation amplitudes as the GRACE

water storage cycles show smaller variability than implied by the
observed P − E; Figure 3; Figures 4B, D, F. The dominant driver of
seasonal storage variability does change between basins, with the
Caspian and Aral sea basins appearing to be dominated by

FIGURE 4
Mean seasonal flux cycles (left) and mean seasonal storage cycles (right). Original flux data are shown by dashed lines, and closed budget solutions
are shown by solid lines. Includes basins with a larger seasonal cycle, all using the same scale. (A) Caspian flux cycle (B) Caspian storage cycle (C) Aral Sea
flux cycle (D) Aral Sea storage cycle (E) Altiplano Plateau flux cycle (F) Altiplano Plateau storage cycle.
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evaporation variability on a seasonal timescale. We will compare this
conclusion with the drivers of interannual storage variability in the
next subsection.

4.2 Interannual variability

While P and E together determine the seasonal cycle in water
storage in all these basins (apart from the Caspian Basin), the causes
of interannual variability in water storage, which is clearly detectable
in GRACE, are harder to measure.

To study the interannual variability, we use the FISP and FISE
storage contributions, with the mean seasonal cycle and trends in

fluxes removed, and compare these directly with the GRACE
storage, also with the mean seasonal cycle and trends removed.
These storage measures are less noisy than the flux variability and
make attributing the drivers easier, as shown in Figure 5.

It is remarkable how much of the interannual storage variability
detected byGRACE can be clearly attributed to variations in precipitation
detected through the FISP metric in all these basins. In contrast, the
original evapotranspiration data FISE show very little in the way of
interannual variability, and wherever there are some FISE variations they
are generally in a sense to dampen the interannual storage variations. This
inability to capture interannual evapotranspiration can be attributed to
inadequate observations. However, following budget closure, FISE
displays greater variability, enhancing its storage dampening role.

FIGURE 5
GRACE storage (orange), FISP (blue), and FIS–E (red) after trends andmean seasonal cycle are removed. (A)Caspian (B) Aral Sea (C) Asia-east (D) Asia-
west (E) Altiplano Plateau (F) Australia.
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To bring out these relationships, from Figure 5, a quantitative
metric is obtained by correlating these storage time series, as
shown in Table 1. Where there is a strong positive correlation
between the observed FISP and GRACE storage, this supports
precipitation being the key driver of the variability in storage. This
correlation is as high as +0.88 in the Caspian Basin, and this is
preserved in each basin after budget closure. All basins, apart from
the Caspian, show negative FISP, FISE correlations, with the last
column indicating compensating flux impacts on storage. The
FISP−E correlations with GRACE become almost perfect after
budget closure when fluxes fully explain the amplitudes and
timings of interannual variability in storage observed by
GRACE. It should be noted that, prior to budget closure,
correlations with FISE only reflect the period 2002–2013 where
FLUXCOM data are available.

In the Asia—east region, during the period between 2004 and
2010, a significant reduction occurred in the FISP-driven storage,
implying a loss of ~8 cm (Figure 5C). However, the corresponding
decline recorded by GRACE is only ~4 cm. Although the original
FISE values show few obvious signs of compensation, the adjusted
FISE values show a decrease in evaporation during the same period,
leading to a smaller total storage decline. Individual years where
GRACE storage increases/declines are also seen to be driven by a
correspondingly larger increase/decrease in FISP, e.g., 2003–2004 or
2009. There is a +0.66 correlation of FISP, and a -0.60 correlation of
FISE, with GRACE prior to budget closure, clearly indicating the
driving role of precipitation and the dampening role of evaporation
in water storage changes.

In the Aral Sea Basin, the FISP reproduces the higher frequency,
annual timescale, and variations in the GRACE storage very well in
both amplitude and timing. A marker of this is how little annual
variability appears in the FISE after budget closure. The original FISP
correlation with GRACE is now +0.72. The impact of the budget
closure is primarily on longer, multi-year timescales. The FISP
reproduces the multi-year variability in GRACE storage but at a
considerably higher amplitude, e.g., the 13-cm FISP increase from
January 2002 to March 2005, compared with the 8.2 cm increase in
GRACE (Figure 5B). In addition, on longer timescales from March
2005 to December 2013, FISP declines by 30 cm, compared with a
10 cm decline in GRACE. This indicates the strong dampening of
storage variability from E variations. There is some evidence in the

observed FISE, which clearly anti-correlates (−0.54) with FISP, but
the amplitude changes of ~5 cm are much too small to explain the
FISP, GRACE discrepancy. After budget closure, FISE shows a much
stronger dampening of multi-year FISP-driven changes
(correlation −0.98), such that the GRACE storage variations are
also reproduced at the correct amplitude. The variability of FISP also
slightly reduces after budget closure. This is similar to what we
observe in Asia–east, which is not unexpected due to the close
proximity of these regions.

Similar to the Aral Basin, in the Caspian Sea Basin, FISP is able to
explain both the annual and multi-annual variations in the GRACE
storage particularly well, with FISP, and GRACE correlations up at
+0.88. This is a very clear indication that on annual-to-multi-annual
timescales, precipitation is the dominant driver of the storage
variability seen in GRACE. This is perhaps particularly surprising
for the Caspian and Aral basins because the seasonal variations in
water storage are very clearly dominated by E variability, Figure 4.
There is minimal dampening from FISE on both annual and multi-
annual timescales, shown by negligible correlations of FISE with
GRACE, indicating that both the phase and amplitudes of the
Caspian storage variations are mostly very well-explained by
precipitation variability, except in 2014–2016 when, after budget
closure, the strong decline in precipitation is accompanied by
reduced evaporation, partly mitigating the impact on water
storage (Figure 5A).

The Asia–west basin seems to display mixed driving of storage
changes. There are years with very strong precipitation-driven
storage peaks, e.g., 2005 and 2007, and periods when smaller
subannual storage peaks appear to be precipitation-driven, 2003,
2014–2017 (Figure 5D). However, there are some multi-year periods
when storage seemsmainly E-driven, e.g., 2008–2010, and the steady
decline from 2012 to 2018. It is notable that this basin also shows
more complex seasonal cycle behavior as observed in Figures 3C,D.
The FISP correlation with GRACE at +0.55 is the lowest of any basin,
and after budget closure, this declines, and the FISE correlation with
GRACE becomes slightly more positive, suggesting that evaporation
is indeed responsible for driving at least some of the storage
variability.

In Australia, we see a clear pattern in each of the storage
contributions as a result of the 2010–2012 La Niña event, which
was one of the strongest on record. There is a significant increase in

TABLE 1 Correlations between GRACE and flux-inferred water storages after trends and seasonal cycles are removed. Correlations are shown for storages inferred
from observations (obs) and from closed budget estimates (closed). The last column shows the correlation between P- and E-driven storage variations. Bold values
in Table “obs” and “closed” indicate the correlation with GRACE and the storage inferred from the—observed values (obs)—closed budget estimates (closed) i.e.,
after observations have been optimised to achieve water budget closure.

FISP FISE FISP−E FISP and FISE

Region obs closed obs closed obs closed obs closed

Caspian 0.88 0.89 0.09 −0.50 0.87 0.99 0.00 −0.84

Aral Sea 0.72 0.74 −0.54 −0.61 0.69 0.98 −0.54 −0.98

Asia—east 0.66 0.67 −0.60 −0.41 0.61 0.98 −0.55 −0.92

Asia—west 0.55 0.46 0.02 0.13 0.58 0.98 −0.36 −0.82

Altiplano Plateau 0.84 0.81 −0.53 −0.68 0.81 0.99 −0.68 −0.97

Australia 0.82 0.84 −0.73 −0.75 0.83 0.97 −0.92 −0.98
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FISP, equivalent to over 50 cm excess storage (Figure 5F). This huge
event is also captured by the observed FISE, with an additional
evaporation of approximately 16 cm. However, this insufficiently
reduces the FISP gain. The budget closure against GRACE enhances
the FISE dampening of P-driven storage changes, during this large La
Niña event as well as in other periods, e.g., dampening the larger
annual storage cycles in 2005 and 2008. The precipitation mostly
remains unchanged during budget closure, except for slightly
reduced maxima and minima storage values. The FISP and FISE
are +0.82 and −0.73 correlated with GRACE storage, respectively.

In the Altiplano Plateau Basin, we also observe some distinctive
patterns in FISP. There is a large multi-annual decline from 2003 to
2014, followed by a recovery period characterized by an increase

until 2020 (Figure 5E). This low-frequency variability is clearly
reflected in the GRACE storage, although with considerably
smaller changes. Much of the year-to-year variability in FISP is
also evident in GRACE, e.g., the maximum variability in 2003.
Although the observed FISE exhibits only small variability, there
are indications of reduced evaporation from 2003 to 2013, which
aligns with the period of reduced precipitation; however, these
changes are much too small to dampen the interannual P-driven
storage. Once budget closure constraints are applied, the
interannual E variability increases, dampening the impact of P
variability and giving close agreement with GRACE storage. The
FISP and FISE are +0.84 and −0.53 correlated with GRACE storage,
respectively.

FIGURE 6
Annual mean precipitation (P) and storage changes (dS) over the 18-year period of data (left and right axes, respectively). Trend lines are shown, and
the total 18-year storage changes implied by these trends are shown in the inset text. (A) Caspian (B) Aral Sea (C) Asia-east (D) Asia-west (E) Altiplano
Plateau (F) Australia.
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4.3 Trends

Only two of the basins studied show robust downward water
storage trends in the GRACE data: the Caspian Basin and the
adjacent Asia—west basin, as can be seen in Figure 2. We were
careful to remove trending information from the seasonal and
interannual variability comparisons described previously. It might
be natural to attribute trends to the same drivers as the
aforementioned interannual variability, the trend being a sample
of longer timescale variations. However, the original precipitation
and evaporation flux datasets are fundamentally out of balance,
preventing any causal inferences from being obtained from this time
mean imbalance. Instead, we can ask if anything has changed during
the study period, which might contribute to a storage trend. From

Eq. 1, trends in storage changes, dS, must reflect trends in
precipitation and/or evaporation. Trends in dS would then
indicate a strengthening or dampening of the GRACE S storage
trends. Figure 6 shows the annual mean precipitation and GRACE
dS values over the 18-year period. The Caspian, Aral, and
Asia—west basins show small downward trends in dS (Figures
6A,B,D), while the Altiplano Plateau Basin shows an upward
trend (Figure 6E). Only the Caspian and Altiplano Plateau basins
have precipitation trends of the same sign, in both cases more than
sufficient to explain the dS trends (neglecting evaporation trends
which are undetectable in FLUXCOM), although none of these
trends is significant given interannual variability. The strong
interannual correlations noted in Figure 5 are clearly seen again
in Figure 6.

FIGURE 7
Energy storage inferred from optimized estimates (green) and storage inferred from raw observations (blue dashed lines). (A)Caspian (B) Aral Sea (C)
Asia-east (D) Asia-west (E) Altiplano Plateau (F) Australia.
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The inset text Figure 6 give the 18-year storage changes resulting
from the assessed trends. For the Caspian, this explains 70% of the
18-year storage changes (−10.7 cm) seen in Figure 2. For Asia—west,
the precipitation trend is positive, although again no significance can
be attached. It is notable that, unlike the Caspian, the interannual
variability in Asia—west storage is only fairly weakly correlated with
precipitation, given in Table 1. It has been suggested that
groundwater extraction (which would become evaporation) is a
major contributor to storage decline here (Nazari et al., 2023), and
its intensification over the 2002–2020 period may explain the
increasingly negative dS over the period.

4.4 Energy storage

Figure 7 shows the total energy storage anomalies implied
from both the raw observations (blue) and the new estimates after
budget closure (green). It is clear that the observations initially
contain large imbalances, as the blue dashed line diverges very
quickly in most basins, caused by a positive bias in the NET flux.
The exceptions are the Aral Sea and Australia, where the energy
FIS exhibits more interannual variability. In the Aral Sea (Figure
7B), the observations suggest a significant decline in energy
storage from 2006–2016, which coincides (although slightly
delayed) with the decrease in FISP and increase in FISE seen in
Figure 5B. This would be consistent with dryer surface conditions
and a reduced surface heat capacity. In Australia, the
observations show an increase in energy storage from
2010–2012 and then a decline from 2012 to 2016, due to the
large La Niña event and its aftermath, following a similar pattern
to what is seen in water storage. These features are still present,
but considerably dampened after budget closure, as the yearly
energy budget balance weak constraint is being applied.

Table 2 shows the anomaly correlation between the NET flux
and its constituent parts after budget closure. These correlations
provide insight into the factors driving the interannual variability
in the energy storage anomaly. Radiation is always positively
correlated and is the primary driver, while the latent heat, with
negative correlations, is usually dampening NET variations. Much
of the interannual latent variability is developed through water
budget closure, which FISE also exhibits a strong negative
correlation with GRACE water storage. Further investigation of
the energy and water budget interactions should be a topic for
further work.

5 Discussion

The initial time mean imbalance in the water budget calculated
from precipitation and evaporation observational data is relatively
large in all basins, ranging between 21% and 45% of mean
precipitation. These imbalances mean we are unable to sensibly
attribute any of the long-term storage trends seen by GRACE.
Although P and E are fundamentally out of balance, they are still
able to provide some insight into the seasonal and interannual
variability of GRACE.

Overall, we find the observations suggest that precipitation is a
key control of the interannual storage variability. This is particularly
evident in the Caspian Sea Basin, which is consistent with findings
from Rodell et al. (2018). The study notes that interannual variations
in discharge from the Volga River (which is contained in the Caspian
Sea Basin) are driven by changes in precipitation and exhibit a
magnitude nearly three times larger than that of the interannual
variations in evaporation. Additionally, they find that the annual
discharge from the Volga River explains 60% of the variance in the
annual mean level of the Caspian Sea compared with only 18%
explained by evaporation.

In the Altiplano Plateau Basin, the FISP metric clearly highlights
a precipitation deficit from 2003 to 2013, which directly contributes
to the loss of storage over this period. Wang et al. (2018) discussed
the extensive impact of this precipitation deficit in the Dry Andes
and Patagonia, which, in conjunction with human activities, has
resulted in concurrent losses across multiple water stores. Wang
et al. (2018) also note that by the end of their 2002–2016 study
period, the storage decline showed signs of slowing down and has
partially reversed by 2012. The inclusion of more recent GRACE
data enables us to observe a full recovery in storage back to the levels
observed in 2002–2004 over the 2014–2020 period, which is largely
due to increased precipitation, indicated clearly by the FISP.

Over the Aral Sea Basin, Zmijewski and Becker (2014) found a
slight increase in precipitation from 2000 to 2010 using Tropical
Rainfall Measuring Mission and GPCC data, although they did not
claim this as significant. In contrast to this increase in precipitation,
they found that dS showed signs of decreasing, which they attributed
to increased evaporation resulting from anthropogenic
modification, particularly due to inefficient irrigation in the
upstream region. Hu et al. (2022) found similar trends over the
Aral Sea Basin in the period 2003–2016. They found increasing
trends in annual P and E, while the storage anomalies showed a
decreasing trend, with values ranging from −0.47 mm/month
to −0.29 mm/month.

In arid regions such as the Aral Sea Basin, Wei et al. (2013)
demonstrated that irrigation-induced water loss through
evapotranspiration is typically significantly greater than the
local increase in precipitation caused by irrigation. As a result,
the region experiences a net water deficit. Our results in Section 6
also show short-term trends in P and dS over our study period;
however, the FISP in Figure 5 clearly illustrates that P increases
until 2005, but then there is a strong decline through 2010.
Comparison with GRACE dS is consistent with both the initial
rise and subsequent decrease over this period. This indicates that
the precipitation observations are capable of effectively
explaining the observed storage variations during this period.
This is in agreement with Hu et al. (2022), who conclude that

TABLE 2 Flux anomaly correlations with NET surface energy flux after budget
closure. The mean seasonal cycles have been removed from each flux. Rn
represents the total radiative fluxes.

Region Rn LE SH

Caspian 0.54 −0.57 −0.1

Aral Sea 0.42 −0.49 0.32

Asia—east 0.50 −0.44 −0.01

Asia—west 0.34 −0.29 −0.04

Altiplano Plateau 0.42 −0.69 0.47

Australia 0.1 −0.59 0.20
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precipitation has a major impact on interannual variations of all
terrestrial water cycle components over the Aral Sea Basin,
including storage anomalies, groundwater, and soil moisture.
Additionally, they state that the effects of evapotranspiration on
these components are primarily influenced by the amount of
precipitation received. Our results also agree with those of Hu
et al. (2021), who found that precipitation has a larger influence
over storage variations than evapotranspiration over Central
Asia, which includes the Aral Sea Basin and a significant
portion of Asia—east.

Throughout the study period from 2002 to 2020, Australia
experienced a number of hydroclimatic extremes directly
influenced by the El Niño Southern Oscillation (ENSO) and the
Indian Ocean Dipole (IOD) (Cai et al., 2011). The endorheic basin
investigated here is primarily located within the zone where TWS is
mainly driven by ENSO (Xie et al., 2019). From 2002 to
2009 Australia faced severe drought (Yang et al., 2017a);
however, from 2010 to 2012, the water storage in most parts of
Australia was replenished. Xie et al. (2015) found that this was
primarily due to La Niña, with 2 years of significantly higher-than-
normal precipitation in 2010 and 2011 (Boening et al., 2012). Our
results strongly agree with the importance of precipitation in driving
the variability of water storage. In Figure 5F, the FISP clearly
demonstrates distinct drying and wetting phases, which are
correlated with GRACE storage variability but which are also
dampened by evaporation variations. Our findings also support
the notion from Xie et al. (2019) that across Australia, water
resources are characterized by rapid replenishment following wet
events, but much more gradual depletion.

The budget closure approach implemented here shares
similarities to those of other studies, such as Liu (2022a,b); Liu
et al. (2016), which simulate evaporation estimates based on the
water balance method, without using any independent evaporation
data. To do this, each of these studies uses an ensemble of estimates
for both P and dS. Although we only use a single data source as
input, the budget closure has the benefit of allowing P and dS
observations to adjust according to their relative uncertainties,
which take into account the spread of other products.

The effects of budget closure are primarily evident in the
adjustments made to E, given the larger uncertainties associated
with the observations. In most cases, we see that E closely responds
to variations in P, while usually maintaining the overall phase of the
seasonal cycle. In the Asia—west region, however, the peak in E
shifts from May to April. This phase shift agrees with the simulated
evaporation estimates from Liu (2022b), which also show a peak in
April for the Helmand River Basin.

The original evaporation data showed limited variability, so a
greater emphasis was placed on the GPCP and GRACE observations
for this study. Extending the FLUXCOM time series with the mean
seasonal cycle allowed us to explore and comprehensively analyze
the variations in precipitation and storage that occurred from
2014 to 2020. Given the low interannual variability seen in
turbulent energy flux data, we believe the extension of the
FLUXCOM time series does not significantly impact the results.
During this period, increased uncertainties meant that the E
estimates produced after budget closure were more strongly
adjusted. While this introduces some limitations to our study,
previous research has often simply estimated E as a residual of

other observations. A further limitation is the lack of availability of
groundwater data representative of our study regions. While it
would be useful to compare groundwater withdrawal trends with
GRACE observations, the lack of accessible data, along with its
unsuitability for large-scale analysis, restricts its inclusion in this
study.

Our water budget findings can stand independent of the coupled
energy budget, as only minimal energy constraints were imposed
which did not significantly impact the water budget components
during budget closure. However, we primarily included energy
budget analysis in our study because it provides a framework
that can be extended in the future with the inclusion of
additional data to provide monthly constraints.

6 Conclusion

This paper analyzed water storage variations in several
endorheic basins using GRACE data from 2002 to 2020. We
investigated seasonal storage variations, interannual variability,
and longer-term trends while evaluating the ability of
precipitation and evapotranspiration observations to explain these
features. The paper considered raw observational data as well as data
adjusted through inverse modeling to guarantee closed coupled
water and energy budgets on monthly timescales, using methods
from Petch et al. (2023), following Hobeichi et al. (2020) and
L’Ecuyer et al. (2015). The energy balance allows varying year-to-
year seasonal amplitude controlled by different energy flux
components, in particular latent heat variations coupled to the
water cycle. These could perhaps be verified against reanalysis or
land surface temperature data, but we have left a full energetic
analysis for future work. This paper focuses primarily on the
attribution of GRACE water storage changes to variations in
precipitation and evapotranspiration on different timescales.

Most basins show a seasonal cycle in surface water storage that is
driven by precipitation; however, the water storage amplitudes are
much smaller than those implied by precipitation alone. Generally,
evapotranspiration increases and decreases with precipitation to
dampen the storage changes, and in some basins, such as Asia—east,
this results in virtually no seasonal variations in water storage at the
surface. Generally, the seasonal evaporation taken from FLUXCOM
is too strong in several basins, and the budget closure then leads to
weaker variations in the seasonal evaporation to agree with GRACE.

The Caspian Basin is somewhat unusual in that the seasonal
cycle in water storage appears to be driven by evaporation alone,
with precipitation showing much smaller seasonal variability. This is
partly the result of the large basin size as the seasonal precipitation in
the northern and southern portions had some variation in anti-
phase.

Most basins show considerable interannual variability in water
storage over the 18 years of GRACE data. This study found that the
main cause of these variations was nearly always precipitation
variability. We attribute these storage changes after a process of
deseasonalizing and detrending the data, which was then compared
with the GRACE storage and the storage implied by integrating the
precipitation and evaporation data into separate interannual time
series. It is remarkable how well precipitation variability explains the
GRACE storage variability. As mentioned, the variability implied by
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precipitation alone is usually larger than that detected by GRACE.
The interannual variability in evaporation is now generally far too
weak to explain this discrepancy, although there are some small
indications of a dampening role in the FLUXCOM data. When
budget adjustment is used, the evaporation variations become very
clearly anti-correlated with precipitation to give a much better fit to
the GRACE-measured storage.

The Caspian Basin variability is especially noteworthy. In the
Caspian, the independent precipitation-driven storage variations
match the GRACE data extremely well (correlating at +0.88 before
budget closure), both on year-to-year and multi-year timescales. For
example, the decline in GRACE storage between 2007 and 2011 is
very well-captured, see Figure 5. This is despite the dominant role of
evaporation being responsible for the seasonal changes in the basin.
This very clear link between precipitation and multi-annual storage
changes in all these basins is the most remarkable result here and
perhaps challenges climate model inferences regarding the causes of
long-term changes in water availability as being due to evaporation
increases in a warmer climate, e.g., Chen et al. (2017). The
observations of evaporation do not independently support such
low-frequency changes.

We cannot attribute linear trends in GRACE storage, which depend
on constant differences between precipitation and evaporation that are
typically highly out of balance in the initial data, as seen in Figure 2.
However, we have looked for 18-year trends in precipitation,
evaporation, and monthly storage changes, which should also be in
balance. Over the Caspian, in particular, there is a downward trend in
precipitation, which is more than sufficient to explain a downward
trend in storage, and without any initial imbalance in P − E this trend is
still sufficient to explain 70% of the GRACE total storage loss over
18 years. Although these trends are not statistically significant, given the
amplitude of the interannual variability, they are consistent with the
conclusion, based on interannual variations, that precipitation is the
dominant driver in low-frequency storage changes in the Caspian Basin.

In future work, it would be valuable to better quantify the storage
footprint characteristics resulting from rainfall anomalies in
different basins, including the proportion of rainfall going into
storage and the storage duration timescales. These storage
responses differ across basins and may also vary with the
temporal duration of the rainfall anomalies. Understanding how
much water storage is retained and over what timescales will provide
valuable insights into the hydrological dynamics of these basins and
be beneficial for water resource management and decision-making,
as it can help in assessing the resilience and sustainability of water
systems under changing climatic conditions.
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