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Industrial sustainability is a process that has been gaining space in recent years.
The use of microalgae for wastewater treatment could solve some environmental
challenges, optimize resources, and generate value-added products in
agriculture, biofuel, food, and feed. The use of High Rate Algal Pond (HRAP)
presents economic benefits, by treating contaminated effluents and taking
advantage of the microalgae biomass generated. The microalgae growth in
wastewater can be limited by lighting energy or the easily assimilable carbon
source, due to the high load of nutrients and organic matter present in these
effluents. In the same way, other physical, chemical, and biological parameters
must be controlled to guarantee that the process reaches its maximum
performance. The technology applied with microalgae for the waste industrial
treatment seeks to generate sustainable, economical, and efficient processes that
guarantee the discharge of water under standard parameters that allow for
preserving the environment, the quality of life of citizens and generating inputs
such as biofertilizers that allow avoiding crucial problems such as NPK ratio
imbalance, soil hardening, salinization, nutrient depletion, groundwater
contamination and food for animal consumption that allows generating
nutritional alternatives. In this way, the treatment of wastewater with
microalgae is an opportunity to solve sanitary and environmental problems
under a sustainable approach to obtain inputs, although some challenges must
be solved for scale production. This document intends to show outstanding
aspects related to effluent treatment, water reuse, and sustainable production
of agricultural inputs through the use of microalgae.
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1 Introduction

The accelerated population growth, agricultural intensification, industrialization, and
greater production of agro-industrial and urban wastewater, have led to the exploitation of
resources, to produce a greater number of foods, use more energy, consume more water, and
emit pollutants into bodies of water, atmosphere and soil, proving to be one of the most
critical environmental problems foreseen by humanity. Waterways can be affected by the
discharge of pollutants and thus compromise the quality of the water, affecting the global
supply of the resource (Obaideen et al., 2022). The lack of adequate wastewater treatment,
coupled with poor water resource management, leads to a shortage of clean water supply.
This has generated progress in recent decades in various technological processes that seek to
recover resources from wastewater (Petrik et al., 2022).
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The application of biological processes has been gaining space in
recent years, focusing on the feasibility of coupling and taking
advantage of wastewater treatment processes in systems that can
evolve and promote processes adapted to the circular economy
(Kundu et al., 2022). Environmental protection is a necessity, so the
implementation of pollution control systems greatly influenced the
global economic impact. In this way, establishing methodologies
that balance the environment, economy and society vectors will be
essential in treatment plants in the medium term. Wastewater
contains several compounds, which will depend on the nature of
the industrial, agricultural, or domestic activity involved, such as a
high content of organic matter, inorganic impurities, macro and
micronutrients, heavy metals, emerging pollutants, among others
(Koul et al., 2022). Excessive discharge of nutrients such as nitrogen
and phosphorus in bodies of water will generate eutrophication,
altering the balance in the system that leads to a decrease in oxygen,
death of aquatic organisms, generation of by-products and solid
waste, emissions of compounds and odors into the atmosphere,
reduction of biodiversity, and algal blooms. This can lead to bad
taste and odor of the water, which threatens the safety of drinking
water and aquatic foods, which stimulate the release of greenhouse
gases, and degrade the social and cultural values of these water
bodies (El-Sheekh et al., 2021).

Wastewater treatment can be at three levels where physical,
chemical, or biological processes are implemented (Garrido-
Cardenas et al., 2020). Primary level, removing settleable solids
that can cause operational problems in subsequent steps. Secondary
level, where a physical and/or biological process interacts consuming

dissolved organic matter and oxidizing the main nutrients to nitrate
and orthophosphate. Tertiary, consists of an advanced treatment
that eliminates nitrates, phosphates, and trace organic compounds
(Zhang et al., 2021). Normally, nitrogen is removed without
recycling, converting it into N2 that will pass into the
atmosphere (Qin et al., 2023). Phosphorus is mainly precipitated
by adding cations such as calcium, aluminum, and iron, resulting in
an expensive process (Christensen et al., 2022). As an alternative for
the treatment, reduction, and/or elimination of nitrogen and
phosphorus, the use of microalgae arises which, being a natural
process, may seem simple and involve a series of complex metabolic
processes that vary based on the conditions of the crops and the
composition of the effluent to be treated (Dalvi et al., 2021).
Biological treatment systems based on microalgae allow the
reduction of nutrients such as potassium, nitrogen, phosphorus,
and CO2, having a potential application to be used as an alternative
in the treatment of effluents for the reduction of organic matter,
COD, BOD, and elimination of nitrogen and phosphorus, as well as
to reduce fecal pathogens and bacteria, removal of emerging
contaminants and heavy metals (Amaro et al., 2023a). Microalgae
have been widely applied in wastewater treatment, presenting good
tolerance to the compounds present, which has allowed, in recent
years, microalgae-based technology to attract attention for the
treatment of domestic, municipal, industrial, and agro-industrial
(Table 1) (Sepúlveda-Muñoz et al., 2023).

Considering the chemical nature of a large part of the effluents,
the use of wastewater to cultivate microalgae could solve some of the
main challenges facing modern society, such as the problems of

TABLE 1 Removal of contaminants in different types of wastewater and cultivation systems.

Microalga Wastewater type COD (%
remotion)

N (%
remotion)

P (%
remotion)

Cultivation
system

Ref.

Chlorella vulgaris Domestic (without any
pretreatment)

80,39 96,88 87,67 Open system Moondra et al.
(2020)

Chlorella variabilis Domestic 83 >95 >95 Open system (plastic
tanks)

Tran et al. (2021)

Chlorella pyrenoidosa Domestic 78 95 81 HRAP Dahmani et al.
(2016)

Muriellopsis sp. Centrate from the anaerobic
digestion of activated sludge
produced during wastewater
treatment

<100 >90 (47.5 mgN
L−1 day−1)

>90 (3.8 mg P
L−1 day−1)

Morales-Amaral
et al. (2015)

Mixed cultures
microalgae-
Desmodesmus dominated

Not defined -- 83,90 60 open batch reactors Komolafe et al.
(2014)

Desmodesmus Not defined -- 80 38,7 open batch reactors Komolafe et al.
(2014)

Chlorella sorokiniana Municipal wastewater 99 88 91 batch reactor Kotoula et al.
(2020)

Nannochloropsis gaditana Municipal 34,5 48 72 -- Lima et al. (2020)

Mixed of Chlorella sp and
Dunaliella tertiolecta

Municipal 50 92,9 65,7 -- Lima et al. (2020)

Chlorella vulgaris Different types (textile, sewage,
municipal, agricultural and
recalcitrant)

61–86 45–97 28–96 conducted in batches
by using 1,000 mL
flasks

Aslan and Kapdan
(2006)

Chlorella vulgaris Agro-industrial 51.31% 93.62% -- Bhuyar et al. (2021)
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demand for freshwater, the high cost of nutrients used for cultivation
media and the need to treat contaminants to reduce or remove them
significantly, providing a system that acts in the reuse and use of
water resources, generating the return of cleaner water to bodies of
water, productive systems and acting in reducing greenhouse gases.
This type of technology, in addition to presenting environmental
advantages, by reducing these polluting elements, provides the
possibility of generating a better use of phosphorus, which is a
non-renewable resource and which, when accumulated by
microalgae, can be used as bioproducts with added value in
agricultural processes, for example, the production of
biofertilizers, biostimulants, food for animal feed and human
consumption, chemical and pharmacological compounds,
among others (Figure 1) (Liu and Hong, 2021; Osorio-Reyes
et al., 2023).

The use of High Rate Algal Ponds (HRAP) presents economic
benefits, by treating contaminated effluents and taking advantage of
the microalgae biomass generated. The growth of microalgae in
crops made up of wastewater can be limited by lighting energy or the
easily assimilable carbon source, due to the high load of nutrients
and organic matter present in these effluents. Similarly, other
physical, chemical, and biological parameters must be controlled
to guarantee that the process reaches its maximum performance
(Saúco et al., 2021). The technology applied with microalgae for the
treatment of industrial waste seeks to generate sustainable,
economic, and efficient processes that guarantee the discharge of
water under standard parameters that allow for preserving the
environment, the quality of life of citizens and generating useable
bioproducts, and thus avoid crucial issues such as NPK ratio
imbalance, soil hardening, salinization, nutrient depletion, and
groundwater contamination. In light of these challenges, the
objective of this review is to show outstanding aspects, future
perspective, and the challenges of aspects related to effluent
treatment, and sustainable production of compounds with added

value, showing the impact from the point of view of environmental
remediation through technologies that involve the use of microalgae.

2 Microalgae strains and their
metabolism

Despite the great diversity of microalgae in the world, estimated
at three hundred thousand, only thirty thousand have been
identified and of these approximately fifty species are used in
biotechnological research, and ten for the commercial production
of food compounds and derivatives (Richmond and Qiang, 2013;
Cobos et al., 2020). Although biotechnological research applied to
microalgae has been increasing, new strains of microalgae destined
for the production of compounds of commercial interest have not
been defined (Balasubramaniam et al., 2021). The search and
collection of microalgae is relatively easy, although finding
microalgae of biotechnological interest is more complicated. The
strains of microalgae must present characteristics applicable to
biotechnological processes that are attractive to entrepreneurs.
Thus, strains that show high growth kinetics, with a high
biomass yield, that are grown in wastewater or natural light and
temperature conditions, that produce interesting and easily
separable metabolites, would be desirable characteristics for the
optimization of production processes (Zhuang et al., 2023).

Therefore, the selection of microalgae strains for the production
of a commercial biproduct is of paramount importance and deserves
to be considered. In the natural habitat, the species are well adapted
to the local environmental conditions and their usefulness
contributes to a more successful cultivation than non-native
species. This is partly because the adaptability to a certain
microenvironment makes the metabolism respond faster in
similar conditions, this gives advantages to make them candidates
in bioremediation processes (Deviram et al., 2020).

FIGURE 1
Technological scheme based on microalgae https://www.frontiersin.org/my-frontiers/overview.
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The effectiveness of microalgae use for bioremediation depends on
the specific contaminants, the characteristics of the native strains, and
the environmental conditions of the site. Additionally, regulatory and
safety considerations must be taken into account when implementing
bioremediation strategies. Overall, native microalgae strains can be
valuable tools in the effort to clean up polluted environments and
restore ecosystem health (Raklami et al., 2022). The use of native
microalgae strains reduces the risk of invasive algae species and other
microbial pathogens (Pereira et al., 2021). The cultivation of microalgae
in wastewater is profitable in the production of microalgae biomass and
helps in the elimination of nutrients (Huang et al., 2022).

The use of microalgae to purify pollutants in the agro-industrial and
municipal sectors has been studied successfully (Vadiveloo et al., 2021;
Koutra et al., 2021; Medeiros et al., 2020). For wastewater treatment, the
strain must have a significant capacity for nutrient removal as well as be
able to tolerate high levels of contaminants such as ammonia. Although
some species, to a greater or lesser degree, can absorb polluting nutrients,
it is essential to establish what the objective is since we can have strains
with high effectiveness for the treatment of wastewater, but that are not
interesting for obtaining products with value added. For this reason, it is
important to determine yields and productivity in advance to successfully
combine wastewater treatment and the production of a microalgae
bioproduct of commercial interest (Torres-Franco et al., 2021).

Microalgae have a mainly photoautotrophic metabolism,
obtaining energy for ATP synthesis from light and assimilating
dissolved inorganic carbon (CO2 and CO3

2−), releasing oxygen in the
process (Li et al., 2022). During this photosynthetic process, light
reactions occur where photon energy is converted into chemical
energy (ATP and NADP), and dark reactions where CO2 is reduced
to carbohydrates by accumulated chemical energy (Wu et al., 2023).
However, some microalgae can be forced to have heterotrophic or
mixotrophic metabolism (Patel et al., 2021).

In addition to CO2, nitrogen, and phosphorus are essential for
microalgal biosynthesis, with NH4

+ being a bioavailable molecule for
nitrogen and to a lesser extent NO3

−, and for phosphorus dissolved
orthophosphate (PO4

3−), N being essential for protein synthesis, and
P for phospholipid and nucleic acid synthesis. The composition of
the microalgae biomass is characterized by having a composition of
C106H181O45N16P. These elements play critical roles in various
biochemical processes within microalgae cells and act by forming
macromolecules that are for microalgae metabolism and growth
because they are involved in the synthesis of biomolecules, energy
transfer, enzyme activation, and maintaining cellular structures and
cell viability. The availability and balance of these macroelements in
the growth medium can significantly impact the growth rate,
biomass production, and overall health of microalgae cultures.
This suggests that the adequate rate of available assimilable
nitrogen, phosphorus, and carbon based on the C/N and N/P
ratio would be 30 and 16 respectively, although variations have
been reported (Bhatti et al., 2023).

3 Chemical alterations in the
environment

Microalgae are highly sensitive to changes in their environment,
including pH levels and nutrient competition. The pH changes and
nutrient competition can impact microalgae in a different form.

Extremely low pH levels can be detrimental to most microalgae
species. Acidic conditions can disrupt the cell membranes and alter
the proton balance within the cells, affecting photosynthesis and
cellular metabolism. Some acid-tolerant species may thrive in these
conditions, but overall, acidity can limit the growth and productivity
of microalgae (Abiusi et al., 2022). On the other hand, high pH levels
can also have negative effects onmicroalgae. Alkaline conditions can
inhibit the uptake of essential nutrients like phosphorus and iron,
leading to nutrient deficiencies (Yaakob et al., 2021). Additionally,
high pH can disrupt the balance of CO2 in the water, which can
hinder photosynthesis (Li et al., 2023). Different species of
microalgae have varying tolerances to pH, so the impact of
alkaline conditions may vary. Most microalgae species prefer a
neutral to slightly alkaline pH range (around 7–9), where
nutrient availability and photosynthesis are optimized.
Maintaining pH within this range is crucial for the healthy
growth of microalgae in controlled cultivation systems (Yu et al.,
2022).

Competition for nutrients plays a crucial role; nitrogen (in the
form of nitrates, nitrites, or ammonia) and phosphorus are two
essential nutrients for microalgae growth. These nutrients are often
found in limited supply in aquatic environments. When multiple
microalgae species are present, they compete for these nutrients.
Some species may outcompete others under specific conditions,
leading to shifts in the microalgal community composition
(Olofsson et al., 2019). Iron is another essential micronutrient for
microalgae, especially for the production of chlorophyll. In iron-
limited environments, microalgae may engage in intense
competition for the available iron, with certain species having
mechanisms to better scavenge and utilize this nutrient (Rana
and Prajapati, 2021). Light and CO2 availability also play a
significant role in nutrient competition among microalgae. Some
species are better adapted to low light conditions, while others are
more efficient at utilizing CO2 (Shekh et al., 2022).

Overall, the outcome of nutrient competition among microalgae
is influenced by the specific nutrient concentrations, pH, light
availability, and the relative competitive abilities of the different
species present in a given ecosystem. Understanding these dynamics
is essential for optimizing microalgae cultivation for various
applications, including biofuel production, wastewater treatment,
and aquaculture feed.

4 Role of microalgae in the biological
treatment of wastewater

The use of microalgae in wastewater treatment has gained space
in pilot and laboratory scale processes, being the most used for this
purpose species of chlorophyceae, dinoflagellates, and
cyanobacteria. Microalgae are used in wastewater treatment not
only for their ability to significantly remove nitrogen and
phosphorus but also for their efficiency in removing pathogenic
organisms, due to the development of extreme pH and substances
with antibacterial that can be excreted by them (Amaro et al.,
2023b).

Bioremediation, bioaugmentation, and improvements in the
process such as bioventilation and biostimulation, have shown to
be very efficient in the purification of wastewater, eliminating
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organic and inorganic pollutants, such as nitrogen, phosphorus, and
heavy metals, among others (Dubey et al., 2023). In addition,
microalgae can biodegrade xenobiotic compounds, toxic synthetic
products, not generated by natural biosynthetic processes, such as
halocarbons, nitroaromatics, polychlorinated biphenyls, dioxins,
alkylbenzyl sulfonates, petroleum hydrocarbons, and pesticides
(Verma et al., 2019; Touliabah et al., 2022).

Bioremediation with microalgae has shown efficient, promising,
and sustainable solutions in conventional effluent treatment
systems, in turn providing bioproducts of industrial interest, and
with added value, in addition to metabolizing potentially polluting
compounds. Providing benefits both in the purification and in the
collection and obtaining of microalgal biomass to produce bio-
inputs, nutraceuticals, pigments, supplements and food or feed rich
in lipids, proteins, polysaccharides, phenolic compounds,
carotenoids, among others, which can be used as a source of
ingredients for functional products in the food industry, which
combined with microencapsulation processes provides greater
stability (Kalra et al., 2021; Sadvakasova et al., 2023).

This type of procedure has generated a high purification of
nutrients allowing them to reach low levels of discharge, considering
that microalgae directly use N and P for their metabolic processes. In
addition, the use of microalgae/bacteria consortia is increasing since
during the absorption of CO2 oxygen is released which allows the
presence of heterotrophic bacteria that help in the degradation of
organic carbon (Flores-Salgado et al., 2021; Sátiro et al., 2022).

For the development and optimization in the treatment of
effluents with microalgae, some drawbacks must be corrected
such as the recovery of metabolites and biomass, design and
implementation of the appropriate photobioreactor, lighting
intensity, quality, and C/N—N/P ratio of the effluent,
temperature, pH, and adequate agitation supply, among others
(Deprá et al., 2019; Hu et al., 2020; Sánchez-Zurano et al., 2021;
Liu et al., 2022; Song, et al., 2022).

The wastewater can be very varied depending on the origin, for
this reason, the kinetics and yields in terms of nutrient consumption
vary and must be optimized for each type of specific strain. In
systems with microalgae/bacteria consortia, light plays a crucial role
in the assimilation of NH4+, organic matter, and PO4

3−, with greater
efficiency in reducing total nitrogen and COD at low irradiation
rates. When the light/dark cycle alternates, initial sludge/microalgae
sedimentation improves, and there is less oxygen consumption, and
nutrient and organic matter removal (Li et al., 2021).

The optimum temperature for the efficiency of the process is
approximately 22°C and discrete increases in temperature lead to
proliferation of nitrifying bacteria and nitrification above microalgae
assimilation (González-Camejo et al., 2020). On the other hand,
high pH values affect microalgae metabolism, decreasing it (Zhang
et al., 2019; Salvatore et al., 2023). The proportions and type of
nutrients present in the effluent must be evaluated for each specific
strain, being able to mix with other effluents or water to find a
balance and better conditions for the microalgae to assimilate the
components present (Umetani et al., 2023).

In addition, the use of microalgae in effluent sanitation is crucial
to reducing or eliminating pathogens through mechanisms such as
pH changes, nutrient competition, fixation, sedimentation, presence
of biocontrol agents (Dar et al., 2019). During photosynthesis, an
increase in pH and oxygen concentration occurs, which affects the

growth of pathogens such as total and fecal coliforms, Salmonella,
Clostridium, and Enterococcus (Delanka-Pedige et al., 2019; Cho
et al., 2022; Malcheva et al., 2022). Many produced microalgae
metabolites have an antimicrobial effect, being more marked in
gram-positive bacteria than in gram-negative bacteria, a difference
that is linked to the changes evidenced in the type of cell wall
structure (Ramírez-Mérida et al., 2015a; Polat et al., 2023).

Worldwide, there are some pilot-scale systems for the treatment
of effluents that incorporate microalgae in their process. The
wastewater treatment system, Life Algaecan, was installed in a
vegetable and fruit processing company in Spain. This system
proposes a sustainable treatment model for effluents generated
during processing that combines the profitable cultivation of
heterotrophic microalgae, capable of purifying wastewater, with
its subsequent collection. With this system, approximately 2 m3

per day has been treated, obtaining a high-quality final effluent,
which is reused and discharged into water courses, thus solving the
problem of pollution that these effluents generate, since the quality
The end of the effluent obtained allows it to be reused as irrigation
water or for cleaning equipment and facilities. In turn, a product of
commercial interest is obtained for the production of biofertilizers
due to the good NPK content present in the biomass (Martín-
Marroquín et al., 2023).

On the other hand, Ávila et al. (2022), when evaluating the
integration of a system based on microalgae for the treatment of
tertiary wastewater in an industrial WWTP, showed that the
microalgae efficiently removed the nutrients from the secondary
effluent. In turn, the co-digestion of residual activated sludge and the
collected microalgae was 70% above the monodigestion with
residual activated sludge and its application as a biofertilizer
turned out to be effective.

5 High Rate Algal Ponds (HRAP)

This technology began in small rural communities, due to its
simplicity in operation and its low cost, compared to activated
sludge technology. These ponds allow the development of
microalgae biomass as it takes advantage of all the nutrients
present in the residual water, as well as the elimination of other
contaminants. Biomass can be marketed to obtain various products
of industrial interest. This helps to pay maintenance and
construction expenses whose main benefit is an effective
treatment of wastewater, not only of domestic origin but also at
an industrial level (Bhatt et al., 2022). These systems take advantage
of the capacity of microalgae to fix carbon dioxide, remove nitrogen
and phosphorus, develop antibiotic substances to eliminate
pathogens, and retain heavy metals (Carvalho et al., 2021; Xiong
et al., 2021; Zhao et al., 2023).

The HRAPs present high productivity of microalgal biomass
and, compared to the reference lagoons, they have a high capacity for
wastewater treatment because their cell retention time is greater than
the hydraulic retention time. Most of these systems measure
approximately 1 m deep and 3 m long. Their shape is open and
circular, which makes them dependent on external conditions, such
as the weather. The mixing of the effluents is carried out
continuously and completely. In the case of the hydraulic
retention time it is 2–8 days, while the cell retention time is
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4–13 days (Jinda et al., 2020). The operation of the HRAP is based
mainly on the oxidation of organic matter through photosynthetic
oxygenation provided by the microalgae of the system, which take
advantage of solar energy and organic matter. The oxygen released
during photosynthesis is used by the rest of the microorganisms that
also collaborate in the mineralization of nutrients such as nitrogen
and phosphorus. This system demonstrates the ability of microalgae
to interact symbiotically with the microbial flora, jointly reducing
water pollutants (Liu et al., 2023).

HRAP technology is used to treat effluents that have already
undergone previous treatment, to eliminate polluting substances
that persist with conventional methods. This is a consequence of the
extraordinary capacity of microalgae to assimilate significant
amounts of dissolved organic and inorganic nutrients, and they
not only assimilate nutrients but also pollutants of different kinds
(Gutiérrez et al., 2016). The use of HRAP has been reported for the
treatment of effluents from pig farms, where a COD removal greater
than 90% was achieved (Aguirre et al., 2011). This system has also
been used for the treatment of urban wastewater in Rabat, Morocco,
evidencing a high efficiency in the removal of COD, nitrogen, and
phosphorus, of 80, 85, and 63% respectively. In addition, the
elimination of 1.23 logarithmic units of fecal coliforms and the
complete elimination of helminth eggs could be observed (El
Hamouri, 2009).

The HRAP system not only removes contaminants through the
nutrient assimilation mechanism but also through the volatilization
of ammonium generated by large increases in pH in the water, a
consequence of the intense photosynthetic activity during the day.
On the other hand, phosphorus precipitation is achieved by binding
with some polyvalent cations such as iron, calcium, and magnesium
(Sukačová and Červený, 2017). In various inorganic nutrient
removal processes with microalgae, phosphorus usually has the
lowest yield. However, Xu et al. (2014) added a Chlorella sp-
based membrane bioreactor to an HRAP system, achieving a
removal of up to 83.1% of the phosphorus present in the water.
Subsequently, the microalgae biomass can be removed and with it
the phosphorus from the residual water. This finding allows the
optimization of water treatment systems, increasing the level of
phosphorus removal, a fundamental element for the eutrophication
of water bodies, and consequently the loss of diversity.

Another use that the HRAP system has is its application as a
secondary system for the treatment of leachate from sanitary
landfills. Despite the reported success, a previous treatment is
suggested for high leachate concentrations, a consequence of the
fact that the medium can be toxic for the microalgal biomass. For the
development of this system, Chlorella vulgaris, Scenedesmus
quadricauda, Euglena gracilis, Ankistrodesmus convolutus, and
Chlorococcum oviforme were used. It was observed that the
microalgae achieved a good reduction of COD 91.0%,
ammoniacal nitrogen 99.9%, and phosphates 86.0%, also
achieving the accumulation of heavy metals such as zinc, arsenic,
cadmium, copper, chromium, and lead. However, the high
bioaccumulation of metals in the microalga prevents its biomass
from being used as food or in biofertilizers, despite this it is possible
to use it in the manufacture of biofuels, or simply limit its use to the
recovery of these metals by desorption (Mustafa et al., 2012). The
mechanism by which microalgae eliminate heavy metals consists of
the production of a peptide capable of binding metals, forming

organometallic compounds that accumulate in the vacuole to
control the concentration of heavy metal ions in the cytoplasm,
helping to prevent or neutralize the potentially toxic effects they
possess (Priya et al., 2014).

HRAP technology has been developed mainly in countries with
seasonal variations. When applying these systems it is essential to
take into account environmental variables such as temperature,
available sunlight, and rainfall, among others. This is because
they are open systems whose ecological dynamics are affected by
the environment. Some simple modifications in pond operation,
such as series-operated systems, generate higher microalgal biomass
yields and better wastewater quality without higher operating capital
costs (Sutherland et al., 2020). Similarly, it has been shown that the
microalgae commonly used for the development of these systems
correspond to Scenedesmus sp., Microactinium sp., Ankistrodesmus
sp., Euglena sp., Chlamydomonas sp., Desmodesmus sp., Chlorella
sp., Dictyosphaerium sp. and Pediastrum sp. (Cho et al., 2017).

In traditional domestic wastewater, the ratios of carbon,
nitrogen, and phosphorous (C:N:P) are 20:8:1, while the C:N:P
ratios for microalgae are 50:8:1. The additional carbon necessary
for microalgae photosynthesis is supplied from free carbon dioxide,
which is the main limiting factor in HRAPs. Although bacteria in
ponds generate a high concentration of CO2, a high photosynthetic
rate can create a CO2 deficit. It is estimated that 30% of the total
carbon required by microalgae can be supplied by incorporating
CO2 into these ponds (Craggs et al., 2013).

6 Microalgae products

The particular characteristics of growth, yield, and production of
metabolites of interest generated by microalgae make it an attractive
organism for use in various sectors of the food, pharmaceutical,
aquaculture, cosmetic, and environmental industries, etc. (Mobin
et al., 2019). However, the studies that seek to integrate productive
processes with sustainability, where the use of industrial effluents is a
niche of interest, are limited to demonstrating whether the final
product is suitable for use from a sanitary point of view. Starting
from this, the use of what, in principle, were contaminants, for the
production of biostimulants, biofertilizers and other by-products
such as pigments allows the establishment of the concept of
microalgal biorefinery using agroindustrial waste, which could
mean important opportunities for the sustainable use of resources.

6.1 Biofertilizers

The use of biofertilizers in crops becomes an important variable
that acts on the physiology of the plant in different ways: improving
the vigor, yield, and quality of the crops. Taking advantage of their
biological nature, the action of not emitting residues, and being safe
for application, they are increasingly used in a variety of crops.
Although there is a diversity of microorganisms with fertilizing
potential, not all provide optimal results. Microalgae are one of the
most promising sources for developing this type of stimulating
products, by solubilizing inorganic phosphorus and, in the case
of formulations composed of cyanobacteria, fixing atmospheric
nitrogen.
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They can be applied directly to the soil, to the seeds or to plant
surfaces (Dineshkumar et al., 2018). Microalgae-based biofertilizers,
due to their phytochemical composition, provide the availability of
macro and micronutrients such as Cu, Mn, Fe, Ca, Mg,
polysaccharides, compounds with antimicrobial action, amino
acids, phytohormones (auxins, gibberellins, and cytokines), which
when applied directly to the vegetable crop or as composting, they
have a biostimulating effect on crops (Gonçalves, 2021).

Biofertilizers made from microalgae help to improve the use of
nitrogen, phosphorus, potassium and other soil elements, increase
crop resistance to stress (Guo et al., 2020), sequester atmospheric
carbon dioxide (Mutum et al., 2022), improve soil porosity (Nayak
et al., 2019), increase water retention, and produce auxins,
gibberellins, vitamins and amino acids (Muniswami et al., 2021),
improve the quality and yield of agricultural products, significantly
inhibit the toxicity of plant pathogens in the soil (Guo et al., 2020).
Microalgae in soil develop a photosynthetic biofilm that together
with eukaryotic and prokaryotic organisms enhances the
degradation of organic compounds (Marks et al., 2017).

The use of biofertilizers worldwide is on the rise, bringing several
advantages such as environmental, marking, and cost, in turn it can
give a better use of phosphorus considering that it can be
accumulated in its cellular structure (Sampathkumar et al., 2019).

6.2 Biogas

The sludge generated during wastewater treatment can be
transformed into methane by performing anaerobic digestion
(Ávila et al. (2022)). Microalgae have great potential for the
production of biofuels since they produce a large amount of
carbohydrate-rich biomass that serves as raw material to generate
bioethanol, lipids that after transesterification provide biodiesel,
hydrogen by electrocoagulation, and methane by anaerobic
digestion. The costs of drying and extraction of carbohydrates
and lipids are relatively high, which makes large-scale production
unfeasible (Oliveira et al., 2021).

The anaerobic digestion of microalgae converts its lipids and
other organic compounds into biogas. Low and variable yields in
methane production have been reported among different types of
microalgae species. This is due to the variable cell biochemical
composition of lipids, carbohydrates, proteins, and wall structure
as it has a lower cellulose content, as well as high concentrations of
intracellular N that inhibit ammonia (Qian et al., 2022; Tawfik et al.,
2022).

Yields in methane production can be obtained by improving
lipid accumulation, varying the nitrogen content in the substrate,
or by changes in temperature (Llamas et al., 2020). Thus, it is
evident that under limited nitrogen concentrations (1.5 g L−1 to
0.375 g L−1 NaNO3) Chlorolobion sp. and Chlorella sp reached a
higher lipid yield of 227.84 and 151.14 mg L−1 d−1 respectively
(Arguelles and Martinez-Goss, 2021), and higher lipid content of
up to 62% under limited nitrogen conditions when compared to
the sufficient content in Chlorella (Feng et al., 2020).
Temperature affects key enzymatic activity to produce changes
in its intracellular content, thus increases in temperature from
25°C to 30°C decrease lipid content to less than half in
Nannochloropsis oculata strains (Converti et al., 2009).

However, care must be taken since excess lipids can cause
inhibition of anaerobic microorganisms due to the accumulation
of long-chain fatty acids (Qiu et al., 2020). A pretreatment of the
microalgal biomass will help to break the cell wall to make the lipids
more available for anaerobic digestion, temperature, ultrasound, and
enzymatic pretreatment can be used (de Oliveira et al., 2022).

7 Production of microalgae pigment
from agro-industrial waste

The main advantages of microalgae wastewater treatment are
that no additional pollution is generated since the biomass is
harvested and efficient recycling of nutrients is possible.
Agroindustrial residues have low chemical risks, are potentially
available on a large scale, and can generate biomass, rich in
natural pigments and other biomolecules (Durvasula et al., 2015).

Microalgae are a source of various bioactive molecules. These
organisms have metabolic pathways capable of generating primary
and secondary metabolites that can be used for use in areas of the
chemical, food, pharmaceutical, agricultural, and environmental
industries (Zhu, 2015). The production of pigments through
efficient and productive technologies has become a key point for
economically competitive commercialization.

Among the three groups of pigments found in microalgae, we
have carotenoids, phycobilins, and chlorophyll. Microalgae
carotenoids have been used for commercial purposes due to their
coloring properties and high antioxidant power associated with the
prevention of cancer, arteriosclerosis, aging, and degenerative
diseases (Raposo et al., 2013).

The use of β-carotene and lutein has been of great importance in
agro-industry since it has been used with great advantages for
poultry feeding and feeding in aquaculture (Ritu et al., 2023).
Among the advantages of producing carotenoids of microalgal
origin, is the fact that it is a natural product, unlike synthetic β-
carotene, in addition, production by microalgae allows the
formation of trans and cis isomers of carotenoids, which provides
a wide advantage for processes such as antioxidants (Wang et al.,
2022; Chini Zittelli et al., 2023).

Dunaliella salina was the first microalgae to be marketed as a
high-value chemical source (approximately USD
300,00–1.500,00 kg−1), showing certain advantages such as the
ability to grow in highly saline media, which avoids risks of
contamination by other microorganisms and high β-carotene
contents (Borowitzka, 2013).

Carotenoids are intracellular products, so their productivity
depends on the amount of biomass achieved, and factors related
to the culture medium, type of strain, and use of a suitable
photobioreactor (Ramírez-Mérida et al., 2015b; 2015c). Biomass
is the main bioproduct for the microalgae pigment biorefinery, in
this sense, many initiatives have been investigated to produce future
pigments from microalgae, especially in an experimental stage.
Table 2 shows some pigments generated in the culture of microalgae.

Production processes based on heterotrophic cultures have a
potentially low production cost, compared to the conventional
production of pigments by microalgae using phototrophic culture
(Morales-Sánchez et al., 2017), since the raw material used to feed
the culture is negligible. By comparing the production of
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phycobiliproteins and chlorophyll-a of Aphanothece microscopica
Nägeli cultivated in autotrophic and heterotrophic systems using
effluents from the dairy industry. The highest pigment
concentrations were observed in the logarithmic phase: highest
concentrations of chlorophyll-a in autotrophic cultures and
predominance of allophycocyanin and phycoerythrin in
heterotrophic cultures.

The results showed the effect of the variables under study for the
production of pigments, in the logarithmic growth phase, which
indicates the possibility of producing approximately 3,185 tons/year
of biomass in heterotrophic systems of Aphanothece microscopica
Nägeli, for 3,127 kg/year chlorophyll, 232,825 kg/year phycocyanin,
47,775 kg/year allophycocyanin and 7,008 kg/year phycoerythrin,
when effluent from the dairy industry is used as a culture medium
(Streit et al., 2017).

Therefore, the potential to produce pigments from microalgae
cultures using agro-industrial residues can be considered as an
emerging platform for obtaining these products. It is known that
Spirulina species can accumulate up to 0.8%–1.0% w/w of β-
carotene. Dunaliella salina and D. bardawil species are among
the main carriers of carotenoids, providing yields of 400 mg β-
carotene/m2 under ideal conditions (Flassig et al., 2015).

Similarly, research on strains little studied for this purpose has
shown promising results, thus Rodrigues et al. (2014) grew
Phormidium autumnale strains in heterotrophic culture using
slaughterhouse wastewater as the culture medium. A total of
(70,22 μg g−1) trans-β-carotene, (26,25 μg g−1) trans-zeaxanthin,
(21,92 μg g−1) trans-lutein, (19,87 μg g−1) trans-echinenone and
(15,70 μg g−1) cis-echinenone were separated from the microalgal
biomass, showing the possibility of obtaining 107.902,5 kg/year of
carotenoid on an industrial scale.

8 Final considerations and future
challenges

Wastewater treatment is a fundamental process to maintain an
ecological, sanitary balance appropriate to established regulations.
Sustainability, efficiency, and economy in wastewater treatment is
today an option that is pursued. The biological treatment of
wastewater with microalgae provides economic and
environmental advantages to the operating process. In recent
years, interest in the use of microalgae in wastewater treatment
has increased because it does not induce secondary contamination,
due to its ability to avoid the use of aeration in the process due to the
symbiosis between microalgae and bacteria, due to the generation of
bioproducts that provide added value during the bioprocess. The
implementation of high-rate algae systems in wastewater treatment
can provide efficient and low-cost tertiary treatment. In turn, it is
possible to use the biomass of microalgae for the biofixation of CO2

and thereby help to maintain the carbon footprint. All this generates
a self-sustaining process that provides advantages for the
environment and the industry, benefiting the quality of life on
the planet.

The application of wastewater treatment using microalgae
presents some challenges that must continue to be studied and
resolved until operational and reproducible systems are available.

Among these, we have:

(i) The appropriate design and type of photobioreactor, the
configuration plays an important role in the correct
homogenization of the necessary biomass so that the
highest content of the substrate can be reached and
absorbed, guaranteeing good yields and productivity,

TABLE 2 Chemical structure of microalgae pigments and applications.

Pigments Chemical structure Microalgal representatives Application Ref.

Bixin Dunaliella salina Coloring, food additive Cardozo et al. (2007)

β-Carotene Botryococcus braunii, Dunaliella
salina, Dunaliella bardawil

Antioxidant, food additive Cardozo et al. (2007)

Astaxanthin Haematococcus pluvialis Antioxidant, feed additive for salmon Wan et al. (2015)

Violaxanthin Dunaliella Food additive, antitumor Pasquet et al. (2011)

Tertiolecta, Botryococcus braunii,
Nannochloropsis sp.

Lutein Chlorella sorokiniana, Dunaliella
tertiolecta

Food additives, antitumors, and antioxidants
achieve changes in the pigmentation of animal

tissue.

Chagas et al. (2015),
Chen et al. (2016)

Canthaxanthin Nannochloropsis sp Food additive as coloring for salmon, and chickens Nobre et al. (2013)
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improving the ideal size conditions for better use of square
meters and develop economic and efficient systems.

(ii) Advance more rapidly in studies on an industrial scale, in this
way, it will be possible to expose and demonstrate the behavior
of microalgae and their yields under high-volume conditions.

(iii) Identify robust strains adapted to the specific contaminant
load that generates better yields and productivity in some type
of bioproduct of interest and continue advancing in
consortium studies with mixtures of microalgae, bacteria,
fungi, and yeasts.

(iv) Solve mechanical problems in culture systems and/or HRAP
that generate cell lysis, accumulation of sludge and debris.

(v) Couple dual-mass harvesting systems and reuse of culture
medium in photobioreactors to make them more effective.

(vi) Carry out a greater number of life cycle analyses and planetary
analyses based on microalgae or consortia and compare them
with traditional wastewater management and treatment
systems.

(vii) Advance in automation technology, remote and efficient
monitoring, and troubleshooting in production systems.

In this way, the application of the concept of effluent treatment
together with the microalgal biorefinery could mean important
opportunities for the sustainable use of resources. There will
always be the conversion of pollutants dissolved in wastewater,
contributing to improving the environment during the production
process once the compounds are stabilized for discharge into bodies
of water.

9 Conclusion

The biological treatment of wastewater withmicroalgae provides
economic and environmental advantages to the operation process.
Its implementation can provide efficient and low-cost tertiary
treatments where contaminating compounds such as nitrogen
and phosphorus can be reduced in high proportions. At the same
time, the ability of microalgae to biofix CO2 contributes to the
mitigation of greenhouse gases to maintain the carbon footprint.
The advantages it provides from an environmental and
agroindustrial point of view come from the diversity of its
chemical and metabolic composition. The use of microalgae at
the agricultural level has focused attention in recent years

considering that microalgae biomass has shown notable results at
the agri-food level, which also provides economic advantages by
providing products with added value from biomass that have various
areas of application, marking the way for sustainable development
processes.

Despite this, there are challenges in the microalgal process that
must be corrected, which are associated with the design of reactors
or culture systems, management of organic waste, physicochemical
control variables, scaling, and microalgae harvesting, among others,
therefore that it is still necessary to continue with research and
testing on a medium and large scale, in addition to continuing to
raise awareness of the benefits of the use of microalgae in areas of
social interest and the global economy.
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