
Satellite-based estimation of soil
organic carbon in Portuguese
grasslands

Tiago G. Morais1*, Marjan Jongen1, Camila Tufik2,
Nuno R. Rodrigues3, Ivo Gama3, João Serrano4,
Maria C. Gonçalves5, Raquel Mano6, Tiago Domingos1 and
Ricardo F. M. Teixeira1

1MARETEC—Marine, Environment and Technology Centre, LARSyS, Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal, 2Centro de Investigação em Agronomia, Alimentos, Ambiente e
Paisagem (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal,
3Terraprima—Serviços Ambientais, Sociedade Unipessoal, Samora Correia, Portugal, 4Mediterranean
Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Évora, Portugal,
5Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Laboratório de Solos, Oeiras, Portugal,
6Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Laboratório Químico Agrícola Rebelo da
Silva (LQARS), Lisbon, Portugal

Introduction: Soil organic carbon (SOC) sequestration is one of the main
ecosystem services provided by well-managed grasslands. In the
Mediterranean region, sown biodiverse pastures (SBP) rich in legumes are a
nature-based, innovative, and economically competitive livestock production
system. As a co-benefit of increased yield, they also contribute to carbon
sequestration through SOC accumulation. However, SOC monitoring in SBP
require time-consuming and costly field work.

Methods: In this study, we propose an expedited and cost-effective indirect
method to estimate SOC content. In this study, we developed models for
estimating SOC concentration by combining remote sensing (RS) and machine
learning (ML) approaches. We used field-measured data collected from nine
different farms during four production years (between 2017 and 2021). We
utilized RS data from both Sentinel-1 and Sentinel-2, including reflectance
bands and vegetation indices. We also used other covariates such as climatic,
soil, and terrain variables, for a total of 49 inputs. To reduce multicollinearity
problems between the different variables, we performed feature selection using
the sequential feature selection approach. We then estimated SOC content using
both the complete dataset and the selected features. Multiple ML methods were
tested and compared, including multiple linear regression (MLR), random forests
(RF), extreme gradient boosting (XGB), and artificial neural networks (ANN). We
used a random cross-validation approach (with 10 folds). To find the
hyperparameters that led to the best performance, we used a Bayesian
optimization approach.

Results: Results showed that the XGB method led to higher estimation accuracy
than the other methods, and the estimation performance was not significantly
influenced by the feature selection approach. For XGB, the average root mean
square error (RMSE), measured on the test set among all folds, was 2.78 g kg−1 (r2

equal to 0.68) without feature selection, and 2.77 g kg−1 (r2 equal to 0.68) with
feature selection (average SOC content is 13 g kg−1). The models were applied to
obtain SOC content maps for all farms.
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Discussion: This work demonstrated that combining RS and ML can help obtain
quick estimations of SOC content to assist with SBP management.
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1 Introduction

Soil systems are intricate networks of both organic and inorganic
matter with varying chemical and physical attributes that can differ
from site to site, or even within the same site. These systems also
serve as the primary carbon reservoirs on land, with a capacity to
store roughly 80% of all organic carbon, totalling an estimated
2,400 Pg of carbon (PgC)—more than three times the amount found
in the atmosphere (Jobbágy and Jackson, 2000; Chappell et al.,
2016). The level of soil organic carbon (SOC) present is heavily
influenced by soil management practices, soil properties, and
climatic conditions, with significant spatial differences that pose a
challenge when estimating terrestrial carbon stocks and fluxes
(Giardina et al., 2014; Doetterl et al., 2015; Koven et al., 2017).
In terms of preserving SOC and other essential ecosystem services,
grasslands rank among the most significant terrestrial ecosystems
(Egoh et al., 2016; Bardgett et al., 2021). However, SOC estimation in
grassland ecosystems is challenging due to factors such as the high
spatial and temporal variability of SOC, heterogeneous distribution
within soil profiles and the fact that methods for SOC estimation are
often destructive and time-consuming (Angelopoulou et al., 2019;
Xiao et al., 2019). Remote sensing (RS) and machine learning (ML)
models have the potential to improve the accuracy and certainty of
SOC estimation in grassland ecosystems.

RS data is often used in providing explanatory variables for
estimating SOC using ML methods (Angelopoulou et al., 2019),
especially as spectral sensors have improved significantly in recent
decades, with enhanced spatial and temporal resolutions.
Consequently, RS data from satellites (such as Landsat 7/8 and
Sentinel-2) and unmanned aerial vehicles (UAVs) have led to a rise
in applications for monitoring SOC in croplands and grasslands
(Zheng et al., 2004; Mariano et al., 2018; Sun et al., 2021). Vegetation
indices, have been widely used to estimate SOC (Xu et al., 2008;
Ullah et al., 2012; Davids et al., 2018), but there are limitations and
uncertainties associated with their use (Zhao et al., 2014; Ali et al.,
2016). More recently, individual spectral bands, sometimes in
combination with VIs, have been used to indirectly estimate SOC
(Wang et al., 2021; Zepp et al., 2021; Pan et al., 2022). RS data is often
combined with other covariates such as terrain and climatic
variables to improve the estimation (Mallik et al., 2020; Gardin
et al., 2021; Wang et al., 2022).

In recent years, there has been an increased interest in using ML
methods for estimating SOC or soil organic matter (SOM) (Pezzuolo
et al., 2017; Angelopoulou et al., 2019; Odebiri et al., 2021; Biney, 2022;
Chan et al., 2023). ML methods are automated techniques that look
for hypotheses to explain data and can be applied to any learning task.
Commonly used models to estimate SOC/SOM include random
forests (RF) and artificial neural networks (ANNs) (Lamichhane
et al., 2019). These models have demonstrated their capacity to
enhance SOC estimation by reducing the error between the
ground-measured SOC/SOM values and the estimates generated by

the models (e.g., Ladoni et al., 2010; Pouladi et al., 2019; Zepp et al.,
2021; Wang et al., 2022). Further, some ML methods such as RF have
also demonstrated higher performance in estimating SOC than
geospatial models (Veronesi and Schillaci, 2019). Estimations of
SOC/SOM content at high spatial resolutions (<50 m) have
significantly improved in the past decades (Angelopoulou et al.,
2019). While ML methods are predominantly associated with the
use of satellite data, there has been a limited number of studies
exploring other remote sensing sources with higher spatial resolution,
such as UAVs (Angelopoulou et al., 2019). Satellite data sources
remain the most commonly used as they offer advantages such as
short revisit times and medium spatial resolution (Xiao et al., 2019).
However, most applications developed to estimate SOC/SOM content
are still specific to the particular land cover systems in which they were
trained and validated. For highly specific land use systems that can be
a problem, as existing models were never trained with system-
specific data.

Sown biodiverse permanent pastures rich in legumes (SBP) are
one example of such unique grassland/pasture systems. SBP have
been implemented since the 1960 s in Portugal to boost pasture
yields and increase animal stocking rates (Teixeira et al., 2015;
Morais et al., 2022). This system involves sowing a combination
of up to 20 legume and grass species or cultivars that provide high-
quality animal feed. In addition to the direct benefits of this system,
such as increased forage production, a major co-benefit is soil
carbon sequestration, as noted by Moreno et al. (2021) and
Teixeira et al. (2011). To assist with compliance to the Kyoto
Protocol goals under the Agriculture, Forestry and Other Land
Uses activities, the Portuguese Carbon Fund provided support for
the installation and maintenance of SBP between 2009 and 2014.
Payments were made to over 1,000 farmers based on predetermined
sequestration factors that were established from data gathered
during previous studies, rather than on carbon content increases
that were measured on the farm (Teixeira et al., 2011; APA, 2018).
Thus, there is a lack of indirect methods that can be broadly applied
and are specifically tailored to SBP systems, hindering effective
carbon management of this unique pasture system.

In the present research, we employed a combination of RS data
and various ML techniques to estimate SOC content at a depth of
20 cm in SBP. We collected data from Sentinel-1 and Sentinel-2
satellites during two periods, August and the closest date to soil
sampling. Five VIs were extracted from the RS data, along with
various climatic, soil, terrain, and other auxiliary variables. Two
variable selection methods were used, one utilizing all variables
and the other using the sequential feature selection (SFS) approach
to measure multicollinearity among input variables and select the
most relevant ones for the SOC estimation. We evaluated the
performance of the models using a random cross-validation
approach with 10 folds. The resulting models were then used to
estimate SOC and generate SOC content maps for the sampled
farms’ entire sites.
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2 Material and methods

2.1 Study area and soil sampling design

Data from nine different farms were used in this work: eight
farms in Portugal (Farms 1, 2, 3, 5, 6, 7, 8, and 9) and one in Spain
(Farm 4). They are located across latitudes and longitudes ranging
respectively between 37°50′ and 40°30′N and 6°80′ and 8°30′W
(Figure 1). The size of surveyed farms ranges between 26 ha
(Farm 8) and 42 ha (Farm 6). All farms are in the hot-summer
Mediterranean climate region, according to the Köppen climate
classification system (Rubel and Kottek, 2010; IPMA, 2018).

According to the European Soil Database (ESDAC, 2003), the
nine sampled farms are characterized by five different soil types:
Dystric Cambisol (Farms 1 and 4), Orthic Podzol (Farms 2, 3, and
5), Eutric Cambisol (Farms 6 and 8), Rhodo-Chromic Luvisol (Farm
7) and Ferric Luvisol (Farm 9). Regarding dominant parent material,
there are six different types: granite (Farms 1 and 6), diorite (Farms
3 and 5), acid regional metamorphic rocks (Farms 7 and 9), river
terrace sand or gravel (Farm 2), (meta-) shale/argillite (Farm 4) and
sandstone (Farm 8).

In total, four production years were covered in this study
(between 2017-18 and 2020-21). The number of production years
covered and the number of samples per production year vary
between farms. For example, Farm 1 was sampled in all four
production years, but Farm 9 was only sampled in one
production year (2018-19). Additionally, considering only Farm
1, in the first year, 40 plots/locations were sampled, but in the
following years, more samples were collected, with 2018-19 having
the highest number of samples (75 samples). The total number of
collected samples and collection years are summarized in Table 1. In

each farm, the selection of sampling locations was carefully made to
minimize any potential influence of trees and rocks on the measured
SOC content. Due to the significantly different tree densities across
the sampling locations, achieving an equal number of sampling
locations per farm was not feasible.

Soil sampling took place in the period between September and
May. They were collected using two different methods: 1) manual
collection and 2) mechanical collection. This was expressed in the
analysis as an auxiliary binary variable. In both collection methods,
samples were collected in the 0–20 cm topsoil layer, which is the
reference depth in the LUCAS Soil project conducted by the
European Soil Data Centre (ESDAC)—Joint Research Centre
(JRC) (Orgiazzi et al., 2018). Manual collection used an auger
(2 cm diameter), while mechanical collection used a Wintex
2000 soil sampler installed on a utility terrain vehicle. Each soil
sample was composed of four sub-samples that were pooled and
mixed to achieve uniformity. All soil samples were air-dried and
passed through a 2 mm stainless steel sieve. SOC content was
calculated using the soil fractions after an elemental analysis
performed after a combustion at 1050°C. In all soil samples,
inorganic carbon removal was performed prior to the total SOC
quantification. All values of SOC presented here are expressed in
grams of SOC per kg of dry soil.

2.2 Data collection and preprocessing

In this study, we used RS data, climate, terrain, and soil data to
model SOC content. All data was obtained from Google Earth
Engine (GEE), which reduced data processing time and storage
space. GEE is a cloud-based platform that allows users to access and
process massive amounts of geospatial data. The platform includes a
catalogue of over 600 petabytes of satellite imagery, aerial imagery,
and other geospatial datasets. GEE enables users to analyse data to
track changes over time, map trends, and quantify differences on the
Earth’s surface. For example, the complete Sentinel-2 database is
available. Table 3 summarizes all the data used, including their
sources, variable names, and spatial resolution. In total, 49 input
variables were considered.

For all data used, we applied “min-max” normalization
(i.e., values were normalized between 0 and 1). Each input was
subjected to individual and independent data normalization,
without any dependence on the other inputs. This was done to
increase the learning rate and ensure faster convergence as models
with large weights tend to be unstable and suffer from poor
performance during learning and sensitivity to input values, the
latter resulting in higher generalization error (Bishop, 1995;
Goodfellow et al., 2016).

In order to understand the relationship between the data used
and the measured SOC content, we calculated a Spearman’s rank
correlation (Spearman, 1904). This is a non-parametric measure of
monotonic statistical dependence between two variables, and it does
not make any assumptions about the distribution of the variables.

2.2.1 Remotely sensed data collection
The RS data were obtained from the Sentinel-1 and Sentinel-2

missions. We used the Sentinel-1 C-band Level-1 Ground Range
Detected images provided by GEE, which were acquired on a

FIGURE 1
Location of the nine sampled farms used in this work. Farm 4 is
the only one in Spain, all other farms being in Portugal.
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TABLE 1 Description of the collected soil samples per farm and production year.

Farm Year Number of collection periods Number of samples Sample collection method

Farm 1 (28 ha) 2017-18 3 40 Manual—40

2018-19 5 75 Manual—28

Mechanical - 47

2019-20 3 58 Manual—24

Mechanical—34

2020-21 3 64 Manual—22

Mechanical—42

Farm 2 (27 ha) 2019-20 1 35 Mechanical—35

Farm 3 (29 ha) 2017-18 2 32 Manual—32

2018-19 4 71 Manual—24

Mechanical—47

2019-20 3 57 Manual—24

Mechanical—33

2020-21 2 43 Manual—12

Mechanical—31

Farm 4 (34 ha) 2018-19 2 24 Manual—24

Farm 5 (34 ha) 2018-19 4 74 Manual—24

Mechanical—50

2019-20 3 58 Manual—24

Mechanical—34

2020-21 3 52 Manual—24

Mechanical—28

Farm 6 (42 ha) 2017-18 3 39 Manual—39

2018-19 3 72 Manual—15

Mechanical—57

2019-20 3 57 Manual—24

Mechanical—33

2020-21 3 51 Manual—24

Mechanical—27

Farm 7 (35 ha) 2018-19 1 12 Manual—12

2019-20 1 33 Mechanical—33

2020-21 1 30 Mechanical—30

Farm 8 (26 ha) 2018-19 3 28 Manual—28

2019-20 3 51 Manual—22

Mechanical—29

2020-21 3 53 Manual—24

Mechanical—29

Farm 9 (30 ha) 2018-19 1 12 Manual—12

(Continued on following page)
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descending orbit in Interferometric Wide swath mode (IW). The
imagery in GEE consists of Level-1 Ground Range Detected (GRD).
We utilized the VV and VH polarization bands, and the intensity
cross-ratio (CR) VV/VH was also calculated. Sentinel-2 is a two-
satellite constellation mission (Sentinel-2A and Sentinel-2B), which
carries a wide-swath multispectral imager with 13 spectral bands.
The image resolutions are 10 m (Blue, Green, Red, and Near
Infrared bands), 20 m (three Vegetation Red Edge bands, Narrow
NIR band, and two shortwave-infrared bands), and 60 m (Coastal
aerosol, Water vapour, and SWIR-Cirrus bands). We used Level-2A
data products, i.e., bottom of atmosphere (BOA) reflectance images
obtained from Level-1C products. Bands 1 (coastal aerosol), 9 (water
vapour), and 10 (SWIR-Cirrus) were excluded as they are specific to
atmospheric characterization and not land surface monitoring.
Besides the individual bands, we used spectral data to calculate
five vegetation indices (Table 2): the normalized difference
vegetation index (NDVI) (Tucker, 1979), normalized difference
water index (NDWI) (Gao, 1996), simple ratio (SR), soil-adjusted
vegetation index (SAVI) (Huete, 1988) and optimized soil-adjusted
vegetation index (OSAVI) (Rondeaux et al., 1996).

Regarding the Sentinel-1 and Sentinel-2 data, for each band or
vegetation index, we considered data from two periods. First, we
considered a composite image of the available images for the period
between August 1st and August 31st. This composite image aims to
capture the spectral reflectance of the bare soil. Second, we also
considered data from Sentinel-1 and Sentinel-2 from the closest date
to the soil collection date. This aims to capture the inter-yearly
variation of SOC between the period when the soil was bare and the
collection date, when the soil was covered by vegetation.

For the period when the soil is almost bare in the SBP system,
i.e., during August, we considered a composite image of the available
Sentinel-1 and Sentinel-2 images for the period between 1st August
and 31st August. The composite image in August captures the
spectral reflectance of the bare soil, and the image closest to the
soil collection period captures the influence of vegetation on SOC.
We also removed pixels masked as clouds and cloud shadow using

the “pixel_qa” band from Sentinel-2 data obtained from GEE.
Additionally, we also used the available image closest to each soil
collection period. All the individual bands and the vegetation indices
were calculated and downloaded using GEE.

2.2.2 Climate, soil and terrain data collection
The mineralization and accumulation of SOC are highly

dependent on climate, specifically soil temperature and moisture
(Rey et al., 2005; Thornton et al., 2009). Therefore, we used data
from the Global Land Data Assimilation System (GLDAS—Rodell
et al., 2004) for these variables. The data available in GLDAS is on a
daily basis and we used both soil temperature and moisture on the
collection date. We also included soil data to characterize SOC, such
as clay, sand, silt content and soil pH (H2O). Soil data was obtained
from SoilGrids (Hengl et al., 2017). SOC is also influenced by terrain
characteristics (Rogge et al., 2018) and thus we used data from
NASA EOSDIS Land Processes DAAC (NASA, 2020) and Theobald
et al. (2015) for the Digital Elevation Model (DEM), the Continuous
Heat-Insolation Load Index (CHILI), the Multi-Scale Topographic
Position Index (mTPI) and Topographic Diversity (topoDivers).
CHILI captures the effects of insolation and topographic shading on
evapotranspiration (calculated by the insolation at early afternoon,
sun altitude equivalent to the equinox). mTPI distinguishes ridge
from valley forms (calculated by the elevation at each location
subtracted by the mean elevation within a neighborhood).
Finally, topoDivers represents the variety of temperature and
moisture conditions available to species as local habitats
(calculated by mTPI and soil moisture). All data was calculated
and downloaded using GEE.

2.2.3 Auxiliary data
We also considered six additional auxiliary variables: the

number of days since the beginning of the production year
(counting from 31st August), the number of days between the
closest Sentinel-2 image and the soil sampling date, the number
of days between the closest Sentinel-1 image and the soil sampling,
the collection method (manual or mechanical) the year, and the
month.

2.3 Modelling and mapping soil organic
carbon

2.3.1 Feature selection
In this study, we used a long list of independent variables

(49 inputs) to estimate SOC content. However, in practice not all
of those variables might be relevant for estimating SOC. To
address this, we used a two-step approach: 1) first, all input
variables were included in the estimation of SOC, then 2) we
applied SFS and retrained the algorithm with a subset of

TABLE 1 (Continued) Description of the collected soil samples per farm and production year.

Farm Year Number of collection periods Number of samples Sample collection method

Total 63 1,121 Manual—502

Mechanical—619

In Bold are the sum of the lines per column.

TABLE 2 Calculation formula for the vegetation indices used in this paper.
NDVI, normalized difference vegetation index; NDWI, normalized difference
water index; SR, simple ratio; SAVI, soil-adjusted vegetation index; OSAVI,
optimized soil-adjusted vegetation index.

Vegetation indices Formula

NDVI NIR−Red
NIR+Red

NDWI Green−NIR
Green+NIR

SR NIR
Red

SAVI 1.5 NIR−Red
NIR+Red+0.5

OSAVI 1.16 NIR−Red
NIR+Red+0.16
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variables. The SFS approach involves adding features in an
automated and iterative manner to form a feature subset. At
each iteration, the best feature to add or remove is chosen based
on the cross-validation score of the model validation procedure.
Then, after applying SFS, we obtained a subset of the input data
that has the most relevant variables for estimating SOC. This
method allowed us to identify and select only the pertinent
variables that are crucial for accurately estimating SOC
content within the dataset.

2.3.2 Regression methods
The SOC content was modelled using four regression methods:

multiple linear regression (MLR—Barbur et al., 1994), random
forest (RF—Breiman, 2001), extreme gradient boosting
(XGBoost- XGB—Chen and Guestrin, 2016) and artificial neural
network (ANN—Rumelhart et al., 1986). To optimize the regression
models, we used Bayesian optimization with 100 initializations to
find the best hyperparameters for each method. The methods and
their respective hyperparameter option spaces are described in detail
in the next section. All methods were implemented on Python 3.8.4,
using multiple toolboxes. For MLR regression and RF, we used the
scikit-learn 0.24 toolbox (https://github.com/scikit-learn/scikit-
learn). For XGB, we used the xgboost 1.4.2 toolbox (https://
github.com/dmlc/xgboost). For ANN, keras 2.9 was used to
construct the ANN architecture and TensorFlow 2.7 as the
backend for keras (https://github.com/keras-team/keras; https://
github.com/tensorflow/tensorflow). To prepare the data, we used
Numpy 1.18.5 (https://github.com/numpy/numpy) and Pandas 1.0.
4 (https://github.com/pandas-dev/pandas). The Bayesian
optimization was performed using the scikit-optimizer 0.8.1
(https://github.com/scikit-optimize/scikit-optimize).

MLR was the simplest method used in this study. It fits a linear
equation to the observed data using the relationship between all
independent variables and a dependent variable, using a least
squares fit. Decision trees/forests, such as RF, is a learning
method that creates multiple decision trees and fits the trees to
training data. In a RF, the value of the response variable can change
across the trees in the forest. However, within each individual tree,
the predicted variable does not change in each leaf. This is because
each tree is built using the same set of predictor variables and the
same splitting criteria, resulting in consistent splits at each node of
the tree. One advantage of RF over other bagging models is its ability
to produce nearly uncorrelated predictions due to the random
features, producing predictions with low variance. For
optimization, we tested various options involving the number of
estimators, the minimum number of samples per leaf, the maximum
depth, the error function, the maximum number of features/inputs
in each split, and the use of a bootstrap approach.

XGB is a newer method, proposed in 2016, that is based on
gradient boosting tree methods. It trains by making predictions
sequentially and combining weak predictive tree models,
learning from the obtained errors. XGB has significant
improvements to traditional gradient boost methods, namely,
in terms of performance, parallelization, distributed computing,
and computational time. For optimization, various options such
as the number of estimators, the learning rate, the maximum
depth of the trees, and L1 and L2 regularization were
considered.

An artificial neural network (ANN) is a multi-layer network
structure that consists of an input layer with a set of input/
explanatory variables, an output layer containing the dependent/
objective variable, and one or more hidden layers with nodes or
artificial neurons. Each hidden layer receives a signal, processes it
through a transfer function, and passes the processed signal to
neurons connected to it in the following layer. In order to optimize
the hyperparameters of the ANN, we considered one or two hidden
layers, the number of neurons in each hidden layer (between 50 and
10,000 with intervals of 50), the learning rate (between 0.01 and
1 with intervals of 0.015), and the activation function (which can be
“elu,” “relu” or “sigmoid”).

2.3.3 Validation approach and accuracy
assessment

We used a random cross-validation (CV) method, considering
10 folds, in order to have an appropriate measure of the estimation
error. The dataset was split into 10 approximately equal portions. In
each fold, a different portion of the data set was used to train the
models (i.e., 9/10 of total samples) and the remaining 1 part (hold-
out samples) was used as the test set. The performance of eachmodel
was measured in the hold-out samples in each fold. This procedure
was applied similarly to all regression models used.

The performance of the obtained models was assessed in the test
sets of the k-fold approach using four metrics: the root mean
squared error (RMSE), the relative RMSE (rRMSE), the ratio of
performance to deviation (RPD) and the coefficient of
determination (r2). The mathematical formula of the metrics are

RMSE �
�������������
1
n
∑N

n�1 c − ŷi( )2√

rRMSE � RMSE

�y

RDP � σ

RMSE

r2 � 1 − ∑N
n�1 yi − ŷi( )2∑N
n�1 yi − �y( )2

where n is the number of observations, yi is the observed value, and
ŷi is the predicted value, �y is the mean of the observed values and σ is
the standard deviation of the observed values.

3 Results

3.1 Analysis of measured soil organic carbon

For the farms with data available for more than 1 year, there was
a tendency for the observed SOC content to increase with time
(Figure 2). This pattern is clearly visible in Farm 1, which had an
average SOC of 12.73 g kg−1 in 2017-18 and 16.87 g kg−1 in 2020-21.
From the second to the third year, there was a 25% increase in SOC
(from 1.92 g kg−1–2.40 g kg−1) and, between the third and fourth
year, there was a 10% increase in SOC (from 2.40 g kg−1–2.63 g kg−1).
Farm 7 had the highest mean SOC (15.72 g kg−1) and Farm 9 had the
lowest mean SOC (5.89 g kg−1).

Additionally, the mean SOC content was 13.12 g kg−1. The
lowest observed SOC content was 4.70 g kg−1 (Farm 9 in 2018-
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19), and the maximum observed SOC content was 32.54 g kg−1

(Farm 1 in 2020-21). A positive correlation was observed between
the number of samples per farm and the variation of SOC. Farm
1 was the farm with the highest variation of SOC. It had an
interquartile distance (considering all years) of 8.30 g kg−1. Farm
1 was also the farm with the highest number of soil samples (237).
On the other hand, Farm 9, which had the lowest number of samples
(12 samples), had the lowest interquartile distance, only 1.14 g kg−1.
From the nine sampled farms, only one (Farm 4) is in Spain, but it
has similar SOC content distribution as the other Portuguese farms.
The average SOC content in Farm 4 is 13.10 g kg−1 (min: 6.03 g kg−1;
max: 19.40 g kg−1) and the average SOC in the Portuguese farms is
13.6 g kg−1 (min: 4.70 g kg−1; max: 32.54 g−kg−1).

Although two sampling methods (manual and mechanical) were
used for sample collection, the observed SOC content between the
two methods was very similar. Specifically, the samples collected
within the same farm using both methods show a high level of
similarity (less than 7% differences with no observable bias), with
any observed differences likely attributable to the typical spatial
variation within the farm.

The Spearman rank correlation between observed SOC content and
the input variables ranged between −0.61 and 0.32 (Figure 3). The
lowest correlation corresponded to the correlation between SOC
content the auxiliary dummy variable for manual or mechanical soil
sampling (−0.61) and the highest correlation of SOC content was with
the year (0.32). Analyzing the average correlation in absolute value, per
type of input (according to the “Type” column in Table 3), auxiliary
variables had the highest correlation (mean: 0.34), followed by climatic
variables (mean: 0.22), and by terrain variables (mean: 0.14); the
remaining average correlations were lower than 0.10. Despite the
low correlations, about 80% (40 out of 49 input variables) were

significantly correlated with SOC content, 37 variables at a
significance level of 5% and 3 variables at 10% significance level.

In the composite image of August, all bands were strongly and
significantly correlated with each other (average correlation of 0.65);
however, the correlation between bands in the Sentinel-2 image
closest to the collection date was significantly lower (average
correlation of 0.35). Vegetation indices, as expected, were
strongly and significantly correlated with the Sentinel-2 imagery
that was used to calculate them, i.e., vegetation indices in August are
strongly correlated with the composite Sentinel-2 imagery. There
were also strong correlations between location variables (latitude
and longitude) and soil variables (sand, silt, and pH) and the DEM.

3.2 Estimation of soil organic carbon

The feature selection procedure using SFS selected only 24 out of
the 49 input variables considered in this work, representing
approximately 48% of the total number of inputs. The selected
inputs covered all the “Process Categories” defined in Table 2. The
remote sensing imagery variables selected were Bands 2 and 12 from
Sentinel-2 in August, Bands 3, 4, 7, 8, and 8 A from Sentinel-2 at the
closest date, and VV from Sentinel-1 at the closest date. The
vegetation indices selected were NDVI and NDWI in August, as
well as NDVI, SR, SAVI, and OSAVI at the closest date. The selected
climatic variable was soil temperature. The soil variables selected
were silt content and pH. The terrain variables considered were the
DEM and the mTPI. Additionally, the auxiliary variables selected
were the number of days since August, the number of days from the
closest Sentinel-2 imagery, and the month of the year. Lastly, both
location variables, latitude and longitude, were also selected.

Among the regression methods used, XGB had the lowest
estimation error for both feature selection approaches, as can be
seen in Table 4 for the metrics of RMSE, rRMSE, RPD, and r2. A
general trend is that more complex models (RF, XGB, and ANN)
outperform simpler models (MLR) in predicting SOC content in SBP
systems. When comparing the regression methods, the mean RMSE of
XGB was, on average, 52% lower than the mean RMSE of the other
methods in the training sets and 11% lower than the other methods in
the test sets. Similar trends can be observed in the other estimation error
metrics. For example, the difference betweenMLR (themethodwith the
highest RMSE) andXGBwas 72% in the training sets (MLR: 3.10 g kg−1;
XGB: 0.87 g kg−1—considering the approach without feature selection),
and the difference was 18% in the test sets (MLR: 3.27 g kg−1; XGB:
2.69 g kg−1). Further, decision tree methods (RF and XGB) have a lower
estimation error than the othermethodsMLR, ANN). The RF andXGB
regression methods had similar estimation errors in the test sets, but
XGB performed better than RF in the training sets. MLR was also the
regression method with the lowest variation of the RMSE between
training and test sets, only 6% (considering the approach without
feature selection). The estimation error between the training set and test
set in the other methods always had an increase higher than 50%, e.g.,
for the ANN, the difference was about 56%. The XGB was the method
with the highest error increase, considering the RMSE, it more than
doubled in the test set in relation to the training set, but even so, it was
lower than in other methods.

Using the feature selection approach, where only 24 out of the
total 49 inputs were used, did not significantly influence the

FIGURE 2
Boxplot of the soil organic carbon (SOC) content for the nine
sampled farms in the four sampled production years.
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estimation error in the test sets for all regression methods. For
example, considering XGB, the RMSE with feature selection was
almost the same with all variables or with the selected variables
(without selection: 2.78 g kg−1; with selection: 2.77 g kg−1).
Nevertheless, in the training error, feature selection reduced the
RMSE in RF and XGB (about 13%) and increased the RMSE of MLR
and ANN (about 6%). This result highlights the efficacy of the
feature selection approach in identifying the most relevant input
variables for estimating SOC content. By accomplishing these dual
objectives, the feature selection process enhances the convergence of
the training procedure and ultimately improves the fitting
performance of the RF and XGB models.

Considering XGB, there was no significant change in the estimation
error between the two feature selection approaches. Figure 4 presents
the estimated SOC versus the observed SOCwhen each sample is left on
the test set using the approach with feature selection (using a hexagonal
binning plot). As can be seen in Table 4, the estimation errors in the test
sets were good, particularly in the region with the highest point density,
i.e., between 10 and 15 g kg−1. In this region, the RMSE in the test sets
decreased by about 20% (2.19 g kg−1). However, there was a non-
significant overestimation of the observed SOC between 7 and 12 g kg−1.

Additionally, there was a noticeable underestimation of the measured
SOC in the highest values (higher than 20 g kg−1), which corresponds to
the range of values with fewer observations.

In the XGB model with SFS, the VV feature (from Sentinel-1)
had the highest importance (about 35%) in the obtained results. It
was followed by the month of the year, latitude, and longitude. The
Sentinel-2 bands in August (Bands 2 and 12) had the lowest
contribution to the estimated SOC (less than 2%). Vegetation
indices also had a greater relevance for SOC estimation than
the individual satellite bands (each Vegetation Index at the
closest date has a feature relevance of about 5%, and individual
bands are lower than 3%). The terrain variables with the highest
contribution are DEM and mTPI with an importance of 3% and
4%, respectively. All the soil input data has an accumulated
importance lower than 7%.

3.3 Application at field-level

The obtained models can be used to estimate SOC for entire
parcels in the farms. As an example of the application, Figure 5

FIGURE 3
Spearman’s rank correlation between the soil organic carbon and the considered input variables. The input variables are: 22 individual bands from
Sentinel-2 (11 in August and 11 in closest date), 2 individual bands from Sentinel-1 (1 in August and 1 in closest date), 10 vegetative indices (5 in August and
5 in closest date), SOC proxies, soil variables, terrain variables, auxiliar variables and location variables. Variable names are explained in Table 3.
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depicts the spatial representation of SOC in the 9 sampled farms.
This figure was obtained for the day of 29 May 2021, using the
dynamic input data for that day, namely, the climatic data, Sentinel-
2 imagery, and vegetation indices. Sentinel-1 imagery was not
available for the same date, so we used Sentinel-1 imagery for the
closest date, i.e., 27 May 2021. All the other input data is static, so it

was not influenced by the date. The model used was the XGB model
with the feature selection approach.

The trends observed in SOC between farms in Figure 2 are also
verified when the XGB model was applied to the entire farm. For
example, Farms 1, 5, and 7 had the highest mean SOC in the year
2020–2021 in both observed and predicted values. Farm 8 was the

TABLE 3 Description of the variables used to model soil organic carbon, including type of data, sources, variable and spatial resolution.

Type Process category Source Variable Spatial resolution (m)

Dynamic Remote sensing imagery Sentinel-1 Single polarisation VV 10

Sentinel-2) Band 2 (Blue) 10

Band 3 (Green) 10

Band 4 (Red) 10

Band 5 (Vegetation red edge) 20

Band 6 (Vegetation red edge) 20

Band 7 (Vegetation red edge) 20

Band 8 (NIR) 10

Band 8A (Vegetation red edge) 20

Band 11 (SWIR) 20

Band 12 (SWIR) 20

Vegetation indices Normalized difference vegetation index (NDVI) 10

Normalized difference water index (NDWI) 10

Simple ratio (SR) 10

Soil-adjusted vegetation index (SAVI) 10

Optimized soil-adjusted vegetation index (OSAVI) 10

Climatic GLDAS Soil moisture 27 km

Soil temperature 27 km

Static Auxiliary variables - Number of days since the beginning of the production year —

Number of days since last Sentinel-2 image —

Number of days since last Sentinel-1 image —

Year —

Month of the year —

Collection method —

Soil GridSoils Clay content 250

Sand content 250

Silt content 250

Soil pH H2O 250

Terrain NASA EOSDIS Land Processes DAAC Digital elevation model (DEM) 30

Theobald et al. (2015) Continuous Heat-Insolation Load Index (CHILI) 90

Multi-Scale Topographic Position Index (mTPI) 270

Topographic diversity (topoDivers) 270

Location — Latitude —

Longitude —
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farm with the highest spatial variation (standard deviation (SD) of
1.34 g kg−1) and Farm 2 had the lowest spatial variation (SD: 0.74 g
kg−1). The minimum predicted SOC was also in Farm 2 (7.56 g kg−1)
and the highest predicted SOC was in Farm 8 (18.80 g kg−1). Farm
2 had the lowest predicted SOC, 7.56 g kg−1, but this farm was not
sampled in the production year 2020-2021. However, there are other
aspects that vary from the observed data. For example, in the
observed date, in the production year of 2020-2021, Farm 1 has
the highest SOC (32.54 g kg−1) and the highest predicted SOC was at
Farm 8, 18.80 g kg−1 in the predicted results. Nevertheless, the
highest observed SOC at Farm 1 was in January (on January 16),

which is significantly far from the date of May 29. Between January
and May, soil temperature increases and soil moisture decreases,
which supports SOC mineralization.

4 Discussion

This study demonstrated that more complex models (such as
RF, XGB, and ANN) perform better in predicting SOC content in
SBP systems in Portugal and Spain compared to simpler models like
MLR (Liu et al., 2011; Ali et al., 2016). Complex models are capable
of capturing complex, high-dimensional relationships between
dependent and explanatory variables, which simple models
cannot achieve. Two feature selection approaches were used to
evaluate the performance impact. Our findings indicate that
using all 49 input variables or a subset of just 24 (48%) yields
comparable estimation performance in both training and testing
phases. Moreover, the remaining variables encompassed almost all
data categories that affect SOC content, including remote sensing,
climatic, soil, and terrain characteristics.

Over the last decade, there has been a substantial increase in the
number of combined applications that utilize satellite RS and ML to
estimate SOC or SOMcontent. To investigate the extent of this increase,
we conducted a very simple search in the Google Scholar database on
10 January 2023, specifically focusing on papers that estimated SOC
content in pastures or grasslands using satellite RS. We utilized the
search string: “(soil organic matter” OR “soil organic carbon”) AND
“remote sensing” AND “satellite” AND “regression” AND “machine
learning”AND (“grassland”OR “pasture”), which resulted in 2,110 hits.
Of these, 30% (688 hits) were from 2022 to 50% (1,080 hits) were from
2021. However, upon sorting the results by relevance according to

TABLE 4 Estimation accuracy of the soil organic carbon in the training and test set of the cross-validation approach, for all using each of the machine learning (ML)
methods and for the two features selection approach. Metrics presented: considering mean root mean squared error (RMSE), relative RMSE (rRMSE), ratio of
performance to deviation (RPD) and r squared (r2). MLR, Multiple linear regression; RF, Random forests; XGB, XGBoost; ANN, Artificial neural network. The model
with the highest performance is in bold.

Without features selection

ML method Mean observed Training Test

RMSE rRMSE RPD r2 RMSE rRMSE RPD r2

MLR 13.12 3.10 0.24 1.59 0.60 3.27 0.25 1.51 0.55

RF 1.23 0.09 4.00 0.94 2.85 0.22 1.73 0.66

XGB 0.87 0.07 5.66 0.97 2.78 0.21 1.81 0.68

ANN 1.90 0.14 2.59 0.89 2.97 0.23 1.66 0.64

With features selection

ML method Mean observed Training Test

RMSE rRMSE RPD r2 RMSE rRMSE RPD r2

MLR 13.12 3.34 0.25 1.47 0.54 3.40 0.26 1.45 0.52

RF 1.05 0.08 4.69 0.95 2.83 0.22 1.74 0.64

XGB 0.76 0.05 5.60 0.98 2.77 0.21 1.80 0.68

ANN 1.98 0.15 2.49 0.85 3.06 0.23 1.61 0.59

FIGURE 4
Estimated versus observed soil organic carbon (SOC) using the
best model (XGBoost) in the features selection approach (i.e., only
using 24 features).
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Google Scholar, none of the first 50 hits were focused on grassland or
pasture systems as the present paper does. This analysis is by nomeans a
thorough review of the literature and surely depicts incomplete results,
but shows that grassland systems remain under analysed and, in
particular, this is the first study of this nature focusing on SBP.

This paper achieved better estimation performance for SOC
content in grasslands and pastures compared to many other
papers in the literature. For instance, Zhou et al. (2021)
obtained an r2 of 0.47 in their best model using a cross-
validation approach for Switzerland’s multiple land use/cover
systems, whereas the highest r2 obtained in this study was 0.70.
Hamzehpour et al. (2019) predicted SOC stock in a sub-region of
Iran and achieved an r2 of 0.44, while Wu et al. (2019) predicted

SOC content in a sub-region of China using various machine
learning regression models, and their best model, XGB, had an r2

of 0.74, which was similar to the r2 obtained in this paper.
Similarly, Keskin et al. (2019) estimated total soil carbon in a
sub-region of the United States of America using multiple
regression models, and the best model was a RF with an r2 of
0.72 in the validation set. Notably, decision trees consistently
outperformed other simpler or more complex methods (such as
ANNs) in all the studies that used different regression methods.
In this study, extreme gradient boosting (XGB) demonstrated
superior performance compared to the other models. Specifically,
the XGB model, along with other decision tree-based models,
outperformed artificial neural networks (ANN). There are several
plausible reasons for this observation. Firstly, XGB models tend
to be less reliant on extensive fine-tuning of hyperparameters,
potentially contributing to their improved performance, as
suggested by the results (Memon et al., 2019; Shwartz-Ziv and
Armon, 2022).

In this study, we observed that the estimation accuracy for the
highest SOC values was significantly lower than that for low-
medium values. This trend has been observed in other studies
that estimated SOC, as well as in the estimation of other
variables in croplands and grasslands, among others (Castaldi
et al., 2018). The normal frequency distribution of the data on
SOC is the cause of this limitation since the dataset is dominated by
mid-range values. To overcome this limitation, quantile regression
methods based on the approach used in this study can be employed,
such as quantile RF. Quantile regression models the relationship
between independent variables and specific percentiles of the
dependent variable, which is an improvement over regression
methods that represent the mean increase in the response
function produced by one unit increase in the associated
independent variables. In fact, recent studies have applied these
regression methods to SOC estimation (Lombardo et al., 2018;
Kasraei et al., 2021; Zhao et al., 2021). In the future, the
application of these methods should be tested to confirm if the
estimation performance increases significantly.

In addition, the number of observations per farm can also influence
results. It has been observed that the model tends to achieve a better fit
when applied to farms with a larger number of samples compared to
those with a smaller number of samples. For instance, Farm1 consists of
a total of 237 samples, while Farm 2 comprises only 35 samples.
Consequently, the model is more likely to exhibit improved
performance in capturing the specific characteristics associated with
Farm 1 rather than Farm 2. The imbalance in the number of
observations across farms may also impact the generalization error
when applying the model to other locations. However, considering that
the characteristics of the different farms are not significantly different,
we do not anticipate that the obtained model would yield highly
inaccurate estimations of SOC content for the sample used here.
The effectiveness of the model when applied to other SBP farms
should be assessed in future research work.

Here, we developed a rapid and cost-effective indirect method
for the purpose of expedite mapping of SOC in SBP farms. This
represents a significant improvement compared to the approach
proposed by Morais et al. (2021), which relied on data from in situ
field spectrometry and only replaced the laboratory analysis. In
terms of results, the obtained r2 value (0.68) is lower than the value

FIGURE 5
Spatial representation of the predicted SOC in the 9 sampled
farms using the best model (XGBoost) in the features selection
approach (i.e., only using 12 inputs). These results were obtained using
the Sentinel-2 image of May 29 and Sentinel-1 image of 27 May
2021. (A) Farm 1; (B) Farm 2; (C) Farm 3; (D) Farm 4; (E) Farm 5; (F) Farm
6; (G) Farm 7; (H) Farm 8; (I) Farm 9.
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previously reported by Morais et al. (0.80). However, it is important
to note that our method is solely based on remote sensing data and
therefore applicable to multiple farms and regions without the need
for repeated field work and laboratory analysis.

In this study, we used RS data from Sentinel-1 and Sentinel-2,
which offer significantly higher spatial resolution compared to other
spatially explicit variables. The inclusion of Sentinel-1 and Sentinel-2
data allowed us to capture fine-scale spatial variations within individual
parcels or farms. Conversely, other static data sources with lower spatial
resolution lacking the capability to capture intricate spatial variations
within parcels primarily facilitated the assessment of regional variation.
Additionally, remote sensing data provided a distinct advantage by
enabling us to capture of temporal variations across different years, as
they were the only data sources exhibiting temporal variability over
time. Despite achieving good performance in our study, there is
potential for improvement by enhancing the quality of climatic and
soil data. It is important to note that the SFSmethod, while not affecting
SOC estimation performance, may be influenced by the spatial
resolution of the input data. SFS excluded soil temperature and soil
moisture as explanatory variables, probably due to the course scale of
the data sources available. However, those variables are vital in
regulating microbial activity, nutrient availability, and overall soil
health. The same was true of some climate variables, which had a
spatial resolution of 27 km, which may be insufficient for depicting
intra-farm variations.

RS data derived from Sentinel-1 and Sentinel-2 present a
significantly elevated spatial resolution in comparison to other
spatially explicit variables. The utilization of Sentinel-1 and Sentinel-2
data enables the capture of intricate spatial variations within individual
parcels or farms. Conversely, static data sources with diminished spatial
resolution predominantly facilitate the assessment of regional variations,
as they lack the ability to capture the detailed spatial nuances within
parcels. Moreover, remote sensing data proffers the distinct advantage of
capturing temporal variations across different years, rendering it the sole
data source characterized by temporal variability over time. In fact, this
procedure of using multiple data sources with multiple spatial and
temporal resolutions is frequently used to characterize different land
cover systems (Zhang et al., 2016; Venter and Sydenham, 2021), namely,
to estimate SOC content, e.g., Venter et al. (2021). Nevertheless,
enhancing the spatial resolution of the data with low spatial
resolution could potentially improve the estimation performance of
SOC content. For example, in this study, the soil data used had a spatial
resolution of 250m. It is not expected that soil characteristics such as
sand, clay, and silt fractions would vary significantly within the same
farm.Consequently, the variables that contributed themost to explaining
SOC content were the ones that had the higher resolutions, such as those
measured or calculated from Sentinel-1 and Sentinel-2 data. Increasing
the spatial resolution of coarse soil-specific data could enhance the fine
variation of SOC content and help address some of the variance
unexplained by our model.

The obtained models in this study have a spatial resolution of 10 m,
which is the lowest resolution among all the spatialized data used,
including Sentinel-1 data and the red, green, and blue bands of Sentinel-
2. However, even this resolution may not be sufficient to capture all the
spatial variability of pasture systems such as SBP. To enhance the spatial
resolution of RS data from satellites, UAVs can be utilized. UAVs can
have a spatial resolution of a few centimeters, providing a significant
improvement in spatial resolution. For instance, a 5 cm resolutionUAV

would yield 100,000 pixels in a 10 × 10 m pixel of Sentinel-2. UAVs are
currently preferred for agricultural land characterization due to their
affordability and ease of operation. Nonetheless, UAV data has a
significantly lower spatial coverage, lower spectral resolution, and
potentially lower temporal coverage than satellite data (Colomina
and Molina, 2014; Vilar et al., 2020). Moreover, the quality of UAV
data can be negatively impacted by factors such as sun elevation angle,
diffuse sunlight, and shadow effects of objects such as trees (De Luca
et al., 2019). Rather than completely replacing satellite data with UAV
data, it is more beneficial to use them in combination to minimize
estimation errors. For instance,Maimaitijiang et al. (2020) improved the
estimation of biomass characteristics by integrating RGB UAV data
with Sentinel-2 data.

In this paper, we used individual bands from the Sentinel-1 satellite.
Nevertheless, recent research has proposed a technique to merge two
Sentinel-1 image products of complementary polarimetric information
(HH/HV and VH/VV) to derive pseudo-polarimetric features (Braun
and Offermann, 2022). Despite some inaccuracies, the polarimetric
features turned out to improve potential land cover mapping
compared with backscatter intensities and dual-polarization features
of the input products alone. However, such a technique has not yet been
tested in regression problems to estimate SOC content. Alternatively,
synthetic-aperture radar data fromother satellites could provide different
bands and wavelengths (Moreira et al., 2013). Data with different
wavelengths and frequencies also have different penetration power,
spatial resolution, sensitivity to surface roughness, and sensitivity to
atmospheric effects (Moreira et al., 2013; Paek et al., 2020; Le et al., 2021).
The C-band used in Sentinel-1 refers to the microwave frequency range
between 4 to 8 GHz (Gigahertz) in the electromagnetic spectrum (ESA,
2022). It is one of themost commonly used bands in SAR remote sensing
due to its favourable characteristics, namely: moderate penetration
capabilities, meaning it can penetrate through vegetation and light to
moderate rainfall; good spatial resolution allowing the detection of small
to medium-sized features on the Earth’s surface; sensitivity to surface
roughness variations, which makes it useful for monitoring changes in
ocean waves, soil moisture, and snow cover; and is less affected by
atmospheric conditions like clouds and precipitation compared to
higher-frequency bands (e.g., X-band or Ku-band) (Monti-Guarnieri
et al., 2017; ESA, 2022). Another frequency band that is commonly used
is the P band, for example, used in ALOS (Advanced Land Observing
Satellite) PALSAR (Phased Array type L-band Synthetic Aperture
Radar), which is in the microwave frequency range between 0.3 to
1 GHz (Gigahertz) in the electromagnetic spectrum. The P-band has
higher penetration than the C-band. Due to its lower frequency, P-band
SAR typically has a coarser spatial resolution compared to higher-
frequency bands like the C-band. P-band SAR is also less sensitive to
surface roughness compared to C-band SAR, but it is relatively less
affected by atmospheric conditions (Li et al., 2019; Minh et al., 2021).
Other bands with higher frequency (e.g., X-band) have higher spatial
resolution but lower penetration capacity (Zhou et al., 2020). Thus, in the
future, approaches that combine alternative/complementary SAR data
should be tested to improve the characterization of land cover systems,
such as grasslands.

Here we used several vegetation indices (NDVI, NDWI, SR,
SAVI, and OSAVI) as well as the raw data for the bands used to
calculate them. The fact that the bands are used nonlinearly takes
away some of the explanatory power of the indices. However,
because the indices were more important than the individual
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bands in our results, exploring additional indices may offer valuable
insights into SOC content estimation. For example, the Normalized
Difference Red/Green Redness Index and the Dark Green Color
Index that utilize both red and green bands have been previously
used to estimate SOC content in agricultural soils (Heil et al., 2022).
These and other alternative indices could potentially complement
the existing ones and enhance the accuracy of SOC estimation.

In this study, we did not perform an assessment of bare soil pixels,
which is a common practice in other research studies (Bhunia et al., 2017;
Castaldi, 2021). Typically, bare soil pixels are determined using vegetation
indices calculated from individual bands of Sentinel-2, such as NDVI and
normalized burn ratio 2 (NBR2) (Castaldi, 2021). This process involves
defining a threshold for the vegetation indices, and pixels with lower
values than the threshold are classified as bare. However, the number of
bare soil pixels can vary significantly depending on the chosen thresholds.
For instance, Castaldi (2021) observed that reducing the NBR2 threshold
from 0.2 to 0.05 in Northeastern Germany croplands led to a decrease in
the percentage of Sentinel-2 pixels classified as bare soil from over 25% to
about 10%. Additionally, this method requires the removal of data points
that donotmeet the defined thresholds. For these reasons, we chose not to
use this approach. Instead, we utilized data not only near the sampling
date but also data from August when the soil is mostly bare in well-
managed SBP systems. Incorporating observations fromAugust allows us
to capture the soil’s characteristics when it is bare, while observations near
the sampling date enable us to indirectly evaluate the effect of vegetation
on SOC.

The models that we developed lack a formal representation of
the processes that occur in soil and influence SOC content, such as
an equation for SOC mineralization that process-based models
possess (Morais et al., 2019). Unlike data-driven models, process-
based soil models consider biogeochemical processes formulated
based on mathematical-ecological theory (Coleman et al., 1997; Liu
et al., 2011). These models’ equations are often derived from
statistical relationships, which can be improved by incorporating
data-driven modeling approaches. Combining the benefits of both
data-driven models (such as those used in this study) and process-
based modeling is critical for developing more robust models in the
future. One approach is to replace process-based models’ rate
modifiers with ML models. Tsai et al. (2021) have done this
successfully to predict soil moisture and streamflow.

The models derived in this study have the potential to
retrospectively estimate SOC content since 2015 when Sentinel-2
data was initiated. Consequently, a considerable amount of data can
be generated that can be employed in other models. Process-based
models, such as those that evaluate soil sinks and emissions of
carbon and nitrogen and their impacts on environmental concerns,
can benefit significantly from longer data series (Prado et al., 2006;
Morais et al., 2018; Teixeira et al., 2019).

5 Conclusion

This work combined multiple data types from different sources
with ML methods in order to estimate SOC content of SBP in
Portugal and Spain. The most relevant variables that are known to
influence SOC content and change, such as climatic, soil, and terrain
characteristics, were combined with RS imagery. The most relevant
variables from the full set of independent (or input) data were

selected using an SFS approach. This approach reduced the number
of variables to 24 (instead of 49) but maintained the overall accuracy
of the best model: without feature selection, the root mean squared
error (RMSE) was 2.78 g kg-1 (on the test set) and with feature
selection, the RMSE was 2.77 g kg-1. XGB was the model with the
highest estimation performance, using a cross-validation approach.

SOC content plays a significant role in plant growth and
characteristics. Nevertheless, the type of models developed in this
work are still infrequently used as a farm management tool, despite
the fact that they are powerful tools that could increase incomes and/or
reduce costs. Based on the best models, SOC content can be
approximately estimated throughout the year, even when the soil is
covered by plants, and with that, advisors can inform farmers to perform
practices to improve soil quality for plant and animal production.
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