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The rapid development of remote sensing technologies is creating
unprecedented opportunities for monitoring and inventorying forest
ecosystems. One advantage of remote sensing data is that it can be used to
monitor and measure tree growth in near real-time, providing extremely useful
data for growth modelling. This study used Aerial Laser Scanning (ALS) data from
14,920 Scots pine stands for the Katowice Regional Directorate of State Forests in
southwestern Poland. We tested the possibility of calibrating a regional height
growth model for Scots pine for a study area covering 754 thousands of hectares
of forests. The model was validated with models developed for Scots pine using
the traditional approach based on field data. Our results show that the model
calibrated using remote sensing data does not differ significantly from the model
calibrated using traditional field measurements from stem analysis. What is more,
using a model developed from ALS data gives even better accuracy in modelling
height growth than a traditional model calibrated with ground data. Our results are
promising for the application of repeated ALS data to the development of regional
height growth models, allowing long-term prediction of tree growth under
current climatic conditions.
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1 Introduction

Forest ecosystems play a key role in the Earth system, thus monitoring andmodelling the
dynamics of forest growth is of great importance. Many recent studies (Pretzsch et al., 2014;
Socha et al., 2020a; Mensah et al., 2021) provided evidence of changing growth patterns in
the Northern Hemisphere as a result of climate and anthropogenic pressures. Therefore, near
real-time monitoring of forest is needed to understand and model current growth dynamics.

To date, monitoring and modelling of forest growth has mostly been based on data from
repeated measurements of permanent sample plots or data from National Forest Inventories
(NFIs). However, these approaches require long-term measurements on a large number of
plots, which is a major limitation of them (Perin et al., 2013; Raulier et al., 2003). In addition,
permanent sample plots are usually established for experimental purposes, mainly at sites
with better conditions for tree growth, which limits the range of site conditions represented
by the data. Similarly, for NFIs data, results from permanent sample plots are usually
representative of large areas and do not ensure representation of rare sites. Therefore,
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modelling over large areas using traditional field measurements
often doesn’t take into account the full variability of growing
conditions and leads to simplifications, resulting in over- or
underestimation of tree growth (Marziliano et al., 2019; Raulier
et al., 2003; Socha and Tymińska-Czabańska, 2019). Another
important challenge is to capture short-term growth fluctuations
due to climate change on tree growth patterns, which is particularly
difficult when using field inventory data. Furthermore, the use of
these data sources is associated with high labour and time intensity
(Noordermeer et al., 2018). Most of the problems associated with
field inventories can be addressed by inventory and monitoring
using remote sensing technologies. The spatial and temporal
resolution of these technologies overcomes the limitations of the
sample plots available from traditional NFI or long-term
experimental networks (White et al., 2016).

Unprecedented opportunities for monitoring and inventorying
forest ecosystems are arising from the rapid development of remote
sensing technologies. One advantage of remote sensing data is that it
can be used to monitor and measure tree growth in near real time,
providing extremely useful data for growth modelling. One of the
main technologies is Light Detection and Ranging (LiDAR). It has
been proven useful in measuring forest structure characteristics due
to its speed, coverage, and ability in describing 3D attributes (Beland
et al., 2019). ALS is an accurate tool for measuring topography, but
also more complex attributes of the structure of the forests (Jurjević
et al., 2020; Lefsky et al., 2002; Wang et al., 2019). ALS data have a
great capacity to be a tool for the estimation of tree and forest height
(Næsset et al., 2004; Holmes et al., 2015). The results of
measurements of the height of trees from the upper storey of a
stand using the ALS are even much more accurate than the ground
measurements that are traditionally used (Jurjević et al., 2020; Wang
et al., 2019). LiDAR data are particularly effective in measuring tree
height increment (Hopkinson et al., 2008).

Due to its close correlation with timber and biomass increment,
tree height is an indirect proxy for estimating forest productivity, so
measuring height and growth is important for both forest research
and management. Monitoring and assessment of the impact of
climate change on site productivity by measuring changes in
height growth rate can be extremely useful in assisting
researchers and forest managers to develop effective adaptation
strategies for sustainable forest management.

The first attempts to use ALS data to calibrate height growth
models have been made in recent years (Socha et al., 2017;
Tompalski et al., 2015; Tymińska-Czabańska et al., 2021).
However, these models have been developed for relatively small
areas at a local scale, with a relatively low degree of variation in site
conditions. Increasing availability of data from repeated ALS
acquisitions enables growth monitoring and model development
for increasingly larger areas. Spreading the data allows calibrating
growth models for whole regions or even countries. Therefore, this
study aims to test and demonstrate that bi-temporal ALS height
growth data collected at an unprecedented quantitative and spatial
scale from 16 688 232 trees growing in 27 753 stands are robust for
modelling height growth.

The study was carried out for Scots pine, which is one of the
most important European forest tree species. In Poland, it is the
most widespread and most important species in both ecological and
economic terms (Zajączkowski et al., 2018). Thus, the ability to

monitor increment and develop growth models for Scots pine using
repeated ALS data may be of interest to forest science and has great
practical importance for forest management. To achieve our
objectives, we tested the possibility of calibrating a height growth
model for Scots pine using wall-to-wall data from the entire
Katowice Regional Directorate of State Forests in southern
Poland covering 754 thousands of hectares of forests. In addition
to demonstrating the ability to calibrate the height growth model for
the study area, the developed model was tested against models
developed for Scots pine using the traditional approach based on
field data.

2 Materials and methods

2.1 Study area description

The study area covers Scots pine stands in the Katowice Regional
Directorate of State Forests located in three natural forest regions of
southwestern Poland (Figure 1). The main species within the study
area is Scots pine (about 66%) with a mean age of stands 56 years.
For model calibration, pine stands for which ALS data were available
for two different years were selected. The selected stands had a Scots
pine share of more than 70% from Scots pine and were aged between
10 and 140 years.

The study area is located within two natural forest regions.
14 920 stands were located in Region V (14 920) and 12 833 were
located in region VI. Natural forest regions in Poland are adopted
as regionalisation units. They are characterised by high natural
diversity, especially in terms of climatic and geological conditions,
naturally occurring ranges of the main forest-forming tree species,
the presence and distribution of natural landscapes, and the
distribution of primary units of potential natural vegetation
(Zielony and Kliczkowska, 2012).

2.2 TH estimation from repeated ALS data

The ALS data were collected from the General Office of Geodesy
and Cartography (GUGiK) repository and are publicly available on
the Geoportal webpage (https://mapy.geoportal.gov.pl/). The ALS
data were acquired in leaf-off conditions which is significant in the
tree stands with well-developed deciduous undergrowth during the
classification of ground points and therefore determination of the
top height. The mean density of the data was 4 points/m2. The
positional accuracy of the ALS was not worse than 0.5 m. The
acquisition period is between 2011–2019 years however most of the
data were acquired in the 2011 and 2019 years (Table 1).

We used the lidR package in the R environment (Computing,
2013) for point cloud processing (Roussel et al., 2020). We used the
“normalize_height” algorithm to preprocess the point cloud for each
date and normalize it. The canopy height models (CHMs) have been
created with the “p2r” algorithm. The spatial resolution of the
CHMs was 1.0 m.

For the TH (top height) estimation we used the modified
approach proposed by Socha et al. (2020a) (Figure 2). To avoid
the edge effect we have created, an internal buffer (15 m) for each
forest stand. The CHMs were resampled into 10 × 10 grid cells. For
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each year in each forest subdivision, the TH has been calculated as
the average of two-thirds of the highest values in the 10 × 10 grid.
We excluded tree stands with the TH variance in the forest
subdivision higher than 2 and the percentage of no data higher
than 0.5. We assumed that these tree stands are in the process of
reconstruction or there are outliers caused by tilting the top of the
tree to another cell.

To remove the outliers we have applied the standard outlier
elimination proposed by Tukey (1977) and used by Socha et al.
(2017) for the TH estimation based on the ALS data. We calculated
differences between TH in two subsequent periods for each grid cell.
Outliers were separated using lower and upper quartiles (Q1–Q3),
and the interquartile range (IQ) was calculated. We defined extreme
values in the tails of the distribution by the lower inner bound Q1 −
1.5 × IQ and the upper inner bound Q3 + 1.5 × IQ according to
Tukey (1977), which picked 1.5 × IQ as the demarcation line for

outliers. The reasonableness of this measure for bell-curve-shaped
data means that usually, about one percent of the data will ever be
outliers. The outliers elimination has been performed for age classes
based on the 20 years interval.

2.3 Height growth models calibration

For the height growth model calibration we have used the
dynamic equation based on the Bertalanffy–Richards function
using the generalized algebraic difference approach (GADA),
proposed by (Cieszewski, 2001):

TH � TH1

Tβ1 Tβ1
1 R + β2( )

Tβ1
1 Tβ1R + β2( )

FIGURE 1
(A) Location of the study area within the distribution of Scots pine in Central Europe. (B) Distribution of the tree stands within the study area, where
two periods ALS data were available (light blue). Analyzed tree stands (share of Scots pine above 70%) are in dark green other stands are in light green.

TABLE 1 Time and percentage of the bi-temporal aerial laser scanning (ALS) data acquisition in the analyzed tree stands.

First ALS acquisition year Second ALS acquisition year Percentage of the analyzed stands [%]

2011

2019

59.40

2012 22.77

2013 13.17

2014 4.62

2015 0.04
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where

R � Z0 + Z2
0 +

2β2TH1

Tβ1
1

( )0.5

Z0 � TH1 − β3

and β1, β2, and β3 are global model parameters, TH is the top height
at age T and TH1 is the top height at age T1.

We have used all prepared and filtered earlier data. We fitted the
global parameters and site-specific parameters simultaneously using
the nonlinear least-squares optimization and the Levenberg-
Marquardt algorithm (Moré, 2006) in the R environment
(Computing, 2013) using the gslnls library. Levenberg-Marquardt
algorithm, attempt to find a local minimum of the objective function

bymaking iterative steps in the direction of the solution informed by
the gradient of a first- or second-order Taylor approximation of the
nonlinear objective function (Moré, 2006). As starting parameters
we choose b1 = 1, b2 = 10000, and b3 = 28, according to (Socha et al.,
2017).

Due to the significant variation in growth conditions within
the study area, we decided to develop three height growth models
using ALS data. The first model has been developed for the entire
study area, while the other two models have been developed for
areas located in the natural forest region V and VI respectively.
For each model, we used the maximum number of iterations. To
estimate the model significance of the calibrated parameters we
performed a t-test and calculated Standard Error (SE), t-value
and p-value.

FIGURE 2
(A) Tree tops detected based on the canopy heightmodel (CHM) generated from the ALS data. (B) Top height (TH) calculated in the 10 × 10 grid cells,
with the consideration of an internal buffer (15 m) for each forest stand. (C)Grid cells after the exclusion of cells with the TH lower than two-thirds of the
highest values in each subdivision. (D) TH calculated for each subdivision.

TABLE 2 The number of growth series and the parameters of the global and regional height growthmodels used for the validation of the aerial laser scanning (ALS)
models (Socha et al., 2021b).

Model Number of growth series b1 b2 b3

SA-GLOBAL 855 1.363 5920.904 30.443

SA-V 39 1.39 3325.004 36.6838

SA-VI 311 1.44385 21667.2 −9.1771
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2.4 Models validation

We compared the obtained models with the height growth
models for Scots pine in Poland developed based on Stem
Analysis (SA) data (Socha et al., 2021a) (Table 2). Models
calibrated on SA data were used as a reference. Model developed
using repeated ALS data for whole study area was compared with
global height growth models for Scots pine for Poland. Models

developed for areas located in the natural forest regions V and VI
was compared with SA regionals models.

For each model we have calculated mean absolute error
(MAE) and RMSE (root mean squared error) based on the
equations:

RMSE y, ŷ( ) � ������������∑N−1
i�0 yi − ŷi( )2

N

√

TABLE 3 Parameters and fit characteristics of the regional top height growth models for the Scots pine for Katowice Regional Directorate of State Forests based on
the bi-temporal aerial laser scanning (ALS) data.

Model Parameter Estimate Standard error t-value p-value

ALS- Global b1 1.14711 0.01518 75.571 <2e-16

b2 372.63998 245.73587 1.516 0.129

b3 51.61396 1.09208 47.262 <2e-16

ALS -V b1 1.166513208 0.016104574 72.43365792 <2e-16

b2 2748.341304 347.4405851 7.910248318 2.93773E-15

b3 35.49450202 1.472985185 24.09698507 1.255E-123

ALS -VI b1 1.305076733 0.017488256 74.62589279 <2e-16

b2 −778.7063391 248.7820607 −3.130074318 0.001756058

b3 53.85751441 0.832881799 64.66405494 <2e-16

FIGURE 3
Growth trajectories of three top height growth models developed using aerial laser scanning (ALS) data against the observed top height increment
(THI) values from ALS measurements over two periods (thin grey), black dashed line represent base age.
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MAE y, ŷ( ) � ∑N−1
i�0 yi − ŷi

∣∣∣∣ ∣∣∣∣
N

where, yi is the measured value; ŷi is the predicted value; i is the
summation index; N is the number of cases. We also calculated and
adjusted R2 as a measure of model fit.

3 Results

3.1 ALS-derived TH growth model

By estimating the parameters of the growth function, we
developed three TH growth models for the Scots pine stands
based on the bi-temporal ALS data (Table 3).

The parameters fitted based on the ALS data differ from regional
and global parameters for the models developed from SA. Across the
range of site conditions, the developed global ALS model
demonstrate a good fitting to the data (Figure 3). For the sites
with the highest productivity, the course of the model curves is
almost identical. Some slight differences are visible in the younger
stands growing on more poor site conditions.

The modeled TH values did not differ significantly from the
reference data (Figure 4). The smooth lines were well fitted across
most of the TH observation distributions, only on the edge of the
distribution slight differences were visible.

Errors in TH estimation for the ALS-derived models were not
correlated with stand age (Figure 5). In most cases the errors in TH
estimation are within about 1 m. The ALS models were
characterized by lower error values, comparing to the SA models.
The residuals are evenly distributed across the Global and V region
models. For the model from the VI region, more residuals have
negative values, especially for the SA model, where majority of the
residuals are below 0.

Using the global ALS model, a site index map was produced for
the study area (Figure 6). As the site productivity indicator we used
the site index (SI), which is commonly used indicator of the site
productivity assessment in the forestry (Hägglund and Lundmark,
1977). We calculated the SI as the height that the tree stand will
reach at the base age of 100 years. Our results show large variation in
site conditions throughout the study area. These differences are also
visible within the forest regions. The V-forest region is characterized
by higher SI, especially in the north-western part, while Scots pine
stands in the central part of Region V and most stands in Region VI
are characterized by substantially lower site productivity. The
majority of the stands in Region VI are characterized by an SI of
between 20 and 35 m.

3.2 Models validation

In the first step, we compared the ALS-derived global model
with the global model developed by Socha et al. (2021b) for Scots
pine in Poland based on SA data. We found that the model TH
growth trajectories developed from the ALS data do not differ
significantly from the global model developed from the SA data
(Figure 7). Compared to the global model for Poland developed
from SA data, the model calibrated with ALS data showed only
slightly higher values of height increment for younger stands from
the most productive sites.

Next, we compared the regional ALS-derivedmodel withmodels
built from SA data for natural forest region V and VI (Figure 8). The
ALS model curves for stands located in V Natural forest region was
compared with SA model for region V. Models show a high
similarity, only in the younger stands especially growing on poor
site conditions slightly differences are noticeable (Figure 8A). Larger
differences are evident when comparing the ALS model with the
model-based SA data from natural forest region VI (Figure 8B).

FIGURE 4
Predicted vs. measured values of top height (TH) based on the aerial laser scanning (ALS) derived TH growth model for Scots pine stands in the
Katowice Regional Directorate of State Forests: (A) Global ALS Model; (B) V natural forest region ALS Model; (C) VI natural forest region ALS Model.
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While, for the most productive sites the model curves for these
models are very similar, for the poorest sites, the TH growth model
developed from ALS data shows an overall lower increment than the
model developed from SA data.

Despite satisfactory model-fitting results, the THI trajectories
for the V (Figure 8C) and VI (Figure 8D) natural forest regions

developed with the use of ALS data slightly differed from the SA
model THI trajectories. According to the THI from ALS data, the
culmination of growth occurs faster and THI is slight higher,
especially in the stands with the higher SI.

Finally, we compared the fit statistics for three ALS-derived
models with the two regional models and the global model

FIGURE 5
Residual top height versus age and aerial laser scanning (ALS) derived top height based on bi-temporal ALS data for the Katowice Regional
Directorate of State Forests Scots pine stands: Global ALS (A) and Stem Analysis (SA) Models (B); V natural forest region ALS (C) and SA Models (D); VI
natural forest region ALS (E) and SA Models (F).
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developed on SA data (Table 4). The ALS-derived TH was taken as
reference data. All models are characterized by the similar R2.
However, the all ALS models have lower RMSE and MAE errors.
The highest RMSE and MAE (0.645 m, 0.519 m) have a regional
model for natural forest region VI developed using SA. In
comparison the ALS model for the VI natural forest region has
lowest RMSE (0.48 m) and MAE (0.36 m) errors.

The residual distribution is quite similar for all models
(Figure 9). However, it can be seen that the SA models have
higher errors, especially for the natural forest region VI. Both
positive and negative residuals are evenly distributed across the
models, except the SAmodel from the VI natural forest region. In all
the models we can see that the outliers are higher in the lower stands
where there are a smaller number of observations.

4 Discussion

Our study demonstrate the usefulness of ALS data for calibration
height growth models for large areas.We calibrated the height growth
model of Scots pine stands in the Katowice Regional Directorate of
State Forests based on the bi-temporal ALS measurements. Our
results show that the model calibrated using remote sensing data
does not differ substantially from the model calibrated using

traditional field measurements from SA. Bi-temporal ALS data
have been used previously to calibrate growth models, but for
relatively small areas (Socha et al., 2017; Socha et al., 2020b;
Tompalski et al., 2015; Tymińska-Czabańska et al., 2021). The
growth trajectories obtained from models developed on ALS data
are similar to those obtained from models calibrated on SA data.

We found that model curves constructed from ALS data for
entire study area were almost identical to model curves derived from
SA data. Very slight differences can be observed in the younger and
middle age classes (Figure 5). However, the ALS model was
developed based on data from 27 753 stands while the SA model
was based on data from 855 trees. Therefore, the model developed
from ALS data may even better reflect the growth patterns currently
observed for Scots pine on the most productive sites of the study
area. ALS models developed for stands located in natural forest
region V and VI are characterised by slightly different model curves,
but also show a very high similarity to the models developed on the
basis of data from SA. The model developed on the basis of the ALS
for natural region VI shows larger differences in the course of
growth trajectories, especially in the lowest productivity areas,
compared to the SA model. This is most likely due to the local
specificity of the site conditions. We also found that the model
calibrated with ALS data has better accuracy in the prediction of
height growth than the traditional model calibrated with field data.

FIGURE 6
Modeled site index (base age of 100 years) for Scots pine stands based on aerial laser scanning (ALS) global model in the Regional Directorate of State
Forests in Katowice.
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Compared to the SA data, the period of availability of the ALS
data is relatively short, which is one of the limitations in modelling
forest growth (Coops, 2015). Moreover, in the case of growthmodels
developed using data from a short observation period, height growth
trajectories may be affected by weather conditions between ALS
acquisitions (Tymińska-Czabańska et al., 2021). However,
Hopkinson et al. (2008) observed that after the 5-year ALS
observation period the uncertanities in the THI decreased to 6%.
Furthermore, the advantage of the ALS data on height growth over a
short period of time is that they reflect the actual growth trends. In
addition, the ALS makes it possible to collect data from the entire
region, which makes it possible to cover the whole distribution of
forest age and site conditions. By calibrating the growth model using
SA data, we are able to capture long-term trends. However, due to
climate change, such models may reflect historical growth patterns
that are not necessarily observed under current climate conditions.
Moreover, Raulier et al. (2003) claim that SA models often
overestimate the TH increment when compared to the
permanent sample plots. In contrast, ALS data reflect current
growth trends. ALS data allow to observe changes in the height
of individual stands and trees for the whole area of interest, and
therefore may better represent height growth trends compared to
sample plot data or growth trajectory reconstructions from SA
traditionally used in forestry research. In addition, a major
advantage of remote sensing data is that it can be collected using
a consistent methodology. Remote sensing provides a standardized

way of collecting data, reducing the risk of human error and bias
(Jurjević et al., 2020). This allows more reliable comparisons to be
made over time and between regions.

Currently, the main limitation related to the applicability of
multi-temporal ALS data in monitoring and modelling forest
growth is connected with the availability of repeated ALS data
(Tompalski et al., 2021). Another limitation is the need for data
from a specific point in the growing season. If ALS is acquired during
the height growth period, there is no certainty that growth from a
given year is already included in the measurement. For this reason,
data collected outside the height growth period is preferable. Remote
sensing can also be used to accurately measure the height of trees in
the upper canopy layer. Trees growing below the canopy are more
difficult to detect and the accuracy of the measurement is much
lower due to the number of individual laser beams (Xu et al., 2021).
However, over time, as ALS becomes more widely used, it may
become an alternative to traditional data collection methods,
especially for measuring forest height and growth increment
(Tompalski et al., 2021). Another limitation of ALS data to date
has been its accuracy with respect to point cloud density (Nilsson
et al., 2017). However, developments in remote sensing technologies
are increasing the availability of dense point clouds covering entire
countries (Kurczyński and Bakuła, 2013). The use of multi-temporal
data appears to be very promising, as it avoids the problems
associated with short-term growth fluctuations driven by weather
conditions, while at the same time exploiting the advantage of

FIGURE 7
Comparison of growth curves for top height global model calibrated with aerial laser scanning (ALS) derived point cloud (green, thick lines) and
global Stem Analysis model (dashed, black line).
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models that capture current growth trends. Therefore, ALS appears
to be a promising source of data for height growth modelling. It is
expected that repeated ALS will become increasingly important and
a common data source in forestry (Socha et al., 2020a; Tompalski
et al., 2021). The biggest advantage of remote sensing is its ability to
cover large geographical areas, allowing us to monitor forest growth
on a global scale (Tompalski et al., 2021). It would be incredibly
time-consuming and costly to collect data on a similar scale using

field measurements. In addition, remote sensing data can be
collected repeatedly over the same area, allowing time-series
analysis. This allows scientists to track changes in forest growth
and health status over time, which can provide important insights
about the effects of climate change, pest outbreaks or other
disturbances (Tymińska-Czabańska et al., 2022).

What is important, some remote sensing technologies can
provide near real-time data, making it possible, for example, to

TABLE 4 Fit statistics of the top height growth models developed on the basis of aerial laser scanning (ALS) data and of the top height growth models developed
on the basis of Stem Analysis (SA) data.

ALS—global ALS—V ALS—VI SA—V SA—VI SA—global

RMSE 0.54 0.53 0.48 0.56 0.65 0.57

MAE 0.41 0.41 0.36 0.43 0.52 0.43

R2 0.97 0.97 0.98 0.97 0.97 0.97

FIGURE 8
Comparison of the top height growth regional model for Scots pine stands with aerial laser scanning (ALS) derived point cloud and stem analysis
model from the area of V natural forest region (A), and the VI natural forest region (B). Comparison of the top height increment for Scots pine stands with
ALS-derived point cloud and Stem Analysis model from the area of V natural forest region (C), and the VI natural forest region (D).
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track the response of forests to changing climatic conditions. A
model developed using the most up-to-date data provides a reliable
prediction of forest growth under currently observed climatic
conditions, which may differ significantly from those observed in
the past (Socha et al., 2021a; Mensah et al., 2021). In the future,
different remote sensing data fusion should be utilized. The use of

machine learning methods allows to implementation of robust
models for the site productivity assessment (Bombrun et al.,
2020). The implementation of optical remote sensing data and
climatic variables could substantially increase the results of the
ALS model (Rahimzadeh-Bajgiran et al., 2020; Schneider et al.,
2023; Tymińska-Czabańska et al., 2021). The data fusion

FIGURE 9
Top height residuals against values predicted from aerial laser scanning (ALS) derived models and three models based on the Stem Analysis (SA) for
Scots pine stands in Katowice Regional Directorate of State Forests: Global ALS (A) and Stem Analysis (SA) Models (B); V natural forest region ALS (C) and
SA Models (D); VI natural forest region ALS (E) and SA Models (F).
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approach could help us to create and integrate the forest
productivity and forest growth models from local to global scale
(Schneider et al., 2023). This is particularly important for both the
adaptation of forests to climate change and the provision of
ecosystem services. For example, it can help identify areas of
environmental stress (Tymińska-Czabańska et al., 2022) or assess
the effectiveness of forest management and adaptation efforts. In
this context, regional height growth models can be a tool to predict
the future role of forest tree species under changing climatic
conditions, which can help to select appropriate forest
management strategies.

Numerous studies have shown that growth modelling,
especially on a regional scale, provides information for a more
accurate assessment of forest growth and should be an important
component of regional forest planning and management (Coops
et al., 2007; Coops et al., 2010; Socha et al., 2020b). Variability in
growth dynamics can lead to differences in height growth
trajectories due to local variations in climate, soils and
genotype-environment interactions (Viet et al., 2022). Thus,
regional variation in growth trajectories can lead to
inappropriate estimates of site productivity (Socha et al.,
2021b). This can result in under- or overestimation of growth
potential at a given site (Monserud and Rehfeldt, 1990; González
et al., 2005). Research results indicate that variability due to
environmental factors is the main reason why a more flexible
approach should be used in the development of height growth
models in order to accurately reflect height growth variability at
the regional scale (Bravo-Oviedo et al., 2008). Therefore, more
reliable predictions of stand growth and more accurate forest
management decisions can be made by taking into account the
local specificity of site conditions through the construction of
regional growth models. Both biomass production and carbon
sequestration are closely linked to the dynamics of height growth.
Furthermore, one of the most important demands of modern
forestry is to determine the global CO2 sequestration capacity
of forests (Smith et al., 2014; Shukla et al., 2019). A reliable
assessment of the biomass production and carbon sequestration
capacity of forest ecosystems therefore depends on the ability to
adequately estimate forest growth (Pretzsch, 2009; Bontemps and
Bouriaud, 2014; Coops, 2015). Therefore, monitoring regional
forest growth helps scientists understand the role of forests in
the global carbon cycle, which is crucial for climate change
research and mitigation strategies.

Research aimed at developing forest growth models is of great
importance both for the development of forest science and for forest
management practice. Further research into remote sensing data
processing methods and their application in forestry can contribute
to the scientific understanding of many forest ecosystem processes,
which is particularly important in an era of climate change and
anthropopression. Previous studies have demonstrated the
feasibility of developing local height growth models using ALS
data. Our study demonstrates the high suitability of bi-temporal
ALS data for the development of regional models. The regional
variability in site conditions and most recent data should be taken
into account when modelling height growth, especially if up-to-date
models are desired. The longer observation period with multi-
temporal ALS data collections and the extension of the study

area to the country level may allow further development of the
proposed approach.

5 Conclusion

We have demonstrated that ALS data can be used for height
growth modelling on a regional scale. We developed three TH
growth models for the Scots pine stands based on the bi-temporal
ALS data and validated them with models developed for Scots pine
using the traditional approach based on field data. Our results
show that the model calibrated with remote sensing data does not
differ significantly from the model calibrated with traditional field
measurements from stem analysis, and that the model calibrated
with ALS data has better accuracy than the traditional model
calibrated with field data. Our study highlights that modelling
height growth for regions allows local patterns of growth to be
captured. This may be important for determining forest
productivity at the scale of regions, as well as having
implications for regional forest management. Our results are
also promising for long-term prediction of tree growth under
current climatic conditions using repeated ALS data for the
development of regional height growth models.
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