AUTHOR=Wang Wei , Gao Jie , Liu Zheng , Li Chuanqi TITLE=A hybrid rainfall-runoff model: integrating initial loss and LSTM for improved forecasting JOURNAL=Frontiers in Environmental Science VOLUME=Volume 11 - 2023 YEAR=2023 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2023.1261239 DOI=10.3389/fenvs.2023.1261239 ISSN=2296-665X ABSTRACT=Accurate rainfall-runoff modeling is crucial for disaster prevention, mitigation, and water resource management. This study aims to enhance precision and reliability in predicting runoff patterns by integrating physical-based models like HEC-HMS with data-driven models, such as LSTM. We present a novel hybrid model, Ia-LSTM, which combines the strengths of HEC-HMS and LSTM to improve hydrological modeling. By optimizing the 'initial loss' (Ia) with HEC-HMS and utilizing LSTM to capture the effective rainfall-runoff relationship, the model achieves a substantial improvement in precision. Tested in the Yufuhe basin in Jinan City, Shandong province, the Ia-LSTM consistently outperforms individual HEC-HMS and LSTM models, achieving notable average Nash-Sutcliffe Efficiency (NSE) values of 0.873 and 0.829, and average R 2 values of 0.916 and 0.870 for calibration and validation, respectively. The study shows the potential of integrating physical mechanisms to enhance the efficiency of data-driven rainfall-runoff modeling. The Ia-LSTM model holds promise for more accurate runoff estimation, with wide applications in flood forecasting, water resource management, and infrastructure planning.